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Abstract

The CDCL algorithm for SAT is equivalent to the resolution
proof system under a few assumptions, one of them being
an optimal non-deterministic procedure for choosing the next
variable to branch on. In practice this task is left to a vari-
able decision heuristic, and since the so-called VSIDS deci-
sion heuristic is considered an integral part of CDCL, whether
CDCL with a VSIDS-like heuristic is also equivalent to reso-
lution remained a significant open question.
We give a negative answer by building a family of formulas
that have resolution proofs of polynomial size but require ex-
ponential time to decide in CDCL with common heuristics
such as VMTF, CHB, and certain implementations of VSIDS
and LRB.

1 Introduction

Conflict-Driven Clause Learning (CDCL) is nowadays the
top-performing algorithm to solve SAT in practice. When
a CDCL solver finds a formula to be unsatisfiable, a proof
of this fact can be read from its execution trace, and
that proof can be formalized in the resolution proof sys-
tem (Beame, Kautz, and Sabharwal 2004). It is not obvious
whether all resolution proofs can be obtained using a CDCL
solver; for instance, the preceding DPLL algorithm is re-
stricted to producing tree-like resolution proofs, which are
exponentially weaker than general resolution (Goerdt 1993;
Urquhart 1995; Bonet et al. 2000).

Progress towards this question was made showing
that tweaked versions of CDCL polynomially simulate
resolution—in other words, the algorithm can produce
proofs that are only polynomially worse than the optimal
resolution proof—either allowing the solver to not resolve
conflicts immediately (Beame, Kautz, and Sabharwal 2004)
or making an additional pre-processing step (Hertel et al.
2008). The question was largely settled by Pipatsrisawat and
Darwiche (2011), who showed that under a few assumptions
CDCL polynomially simulates resolution.

Naturally there has been work towards understanding
which assumptions are needed; to explain them we have
to sketch how the CDCL algorithm works. Similarly to
DPLL, the algorithm assigns values to variables, either by
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choice or forced by a clause, until either a solution or a
conflict is found. Upon reaching a conflict DPLL back-
tracks and makes the last choice forced to its opposite.
CDCL also backtracks, but analyses the conflict to learn a
new clause that precludes the same conflict—and potentially
many others—from occurring again. Since part of the state
is kept in the learned clauses it makes sense to occasionally
restart the search, and for memory management reasons to
forget some of the clauses.

A first, mild assumption is that the solver restarts of-
ten enough. This is a reasonable assumption to make since
solvers restart frequently in practice, but it is still interesting
to study what would be the case without restarts, if only to
understand the power of restarts. The pool resolution subsys-
tem (Van Gelder 2005) captures proofs produced by solvers
that do not restart, and a few candidates for a separation
between pool and general resolution were proposed but all
turned out to have short pool resolution proofs (Bonet, Buss,
and Johannsen 2014; Buss and Kołodziejczyk 2014). Long
story short, we still do not know if restarts are needed.

Another assumption is that the solver never forgets a
clause. This is less realistic since in practice solvers throw
out many of the clauses they learn. A much weaker assump-
tion is needed, in that solvers need to keep at least a few
selected clauses in order to produce optimal proofs (Elffers
et al. 2016), but there is a large stretch between having to
keep a few selected clauses and all clauses, and we do not
know where in this line the truth lies.

The last assumption we consider is that when the solver
chooses which literal to branch on, it makes optimal non-
deterministic choices—that is, with external oracle advice.
Of course this is not at all what happens in practice, in
fact furnishing CDCL with a conflict-based decision heuris-
tic is considered crucial for CDCL to work well if not
an inextricable part of CDCL (Marques-Silva, Lynce, and
Malik 2009; Katebi, Sakallah, and Marques-Silva 2011;
Biere and Fröhlich 2015), hence we cannot close the ques-
tion whether CDCL polynomially simulates resolution un-
less we allow a heuristic that is closer to practice.

For instance, we can relax the non-deterministic assump-
tion to frequent enough random choices and obtain a weaker
conclusion. In this case, and still using the first two assump-
tions, CDCL can simulate bounded-width resolution (Atse-
rias, Fichte, and Thurley 2011). At the same time, it is most
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likely that an assumption along these lines is needed, since
a recent result shows that if P �= NP then no determinis-
tic algorithm that produces resolution proofs—in particular
CDCL with any deterministic heuristics—can polynomially
simulate resolution (Atserias and Müller 2019).

1.1 Our Results

In this work we look into this last assumption, non-
deterministic branching, and we prove unconditionally—
without depending on whether P = NP—that if the CDCL
algorithm uses conflict-based heuristics, then it cannot poly-
nomially simulate resolution. This answers in the negative a
question of Mikša and Nordström (2014), who ask whether
CDCL with VSIDS, 1UIP, and phase saving polynomially
simulates resolution.

Theorem 1.1 (Informal). There exists a family of formulas
that have polynomial-size resolution proofs but CDCL with
conflict-based decision heuristics runs in exponential time.

We explain exactly what we mean with conflict-based in
Sections 2.3 and 3, and for now we just say that the decision
heuristics we look into all have in common that they select
variables that have been recently involved in generating con-
flicts. These include VMTF, CHB, and certain implementa-
tions of VSIDS and LRB.

We do not need to make assumptions on the remaining
parts of the algorithm, but it is worth mentioning a caveat
concerning which decision heuristics our result applies to.
For technical reasons in some heuristics we need to impose
that variable scores are stored either with arbitrary precision
or in a stable data structure. We opt for the latter choice
since, as we argue in Section 2.4, it is a plausible condition
that does not make much difference in practice.

In addition to proving a theoretical result, we run exper-
iments on the formulas we craft. The experiments confirm
our theoretical findings, that is the formulas are very hard
for SAT solvers that employ the heuristics we discuss, but
trivial if we specify a static variable order. Even more, for
certain parameter ranges it is more effective to make many
decisions at random.

1.2 Related Work

We know of other branching heuristics that are not enough
to simulate resolution; for instance in the context of en-
coding constraints into CNF a branching heuristic that only
picks input variables (that is variables from the problem
domain, as opposed to auxiliary variables introduced dur-
ing translation to CNF) is exponentially weaker than full
CDCL (Järvisalo and Junttila 2009), and recently Mull,
Pang, and Razborov (2019) proved that CDCL with ordered
decisions and the decision learning scheme is also exponen-
tially weaker than resolution. However, our work is the first
to expose the theoretical limits of conflict-based heuristics.

By no means we are the first to observe that there are for-
mulas where VSIDS performs badly or that making random
decisions can be helpful—in fact the appendix to the Mini-
Sat solver description (Eén and Sörensson 2004) discusses
random decisions, and one may find plenty of concrete ex-

amples where a static variable order drastically outperforms
VSIDS in the thorough evaluation of Elffers et al. (2018).

1.3 Techniques

To prove our result we design a formula with the explicit
purpose of tricking decision heuristics. Our formula consists
essentially of an easy part that has polynomial-length proofs,
a hard part that requires exponential-length proofs, and a set
of pitfall gadgets that trick the solver into exploring the hard
part before the easy part. Coming up with robust gadgets is
a significant part of the work.

Proving an upper bound on resolution length is straight-
forward, but proving a lower bound on CDCL time be-
comes a delicate task. To do so we mix a low-level step-
by-step simulation with a high-level proof-complexity argu-
ment. The simulation is an ad-hoc argument where we run
the algorithm for a few steps, carefully controlling the state
of the solver, until we reach a state where the solver is re-
stricted to working on a reduced set of variables. Then we
use a black-box proof-complexity result to show that any
proof of the restricted formula must be of exponential size.

2 Preliminaries

2.1 Proof Complexity

A resolution refutation of a CNF formula F is a sequence
of disjunctive clauses C1, . . . , CT such that every clause Ct

either belongs to F or it can be obtained by applying the
resolution rule

C ∨ x D ∨ x
C ∨D

(1)

with C ∨ x = Ci, D ∨ x = Cj , and i, j < t. The length of a
refutation is T , the number of clauses in the refutation.

The restriction of a clause C by a truth value assignment ρ
is C�ρ =

∨
l∈C ρ(l). The restriction of a set of clauses is the

result of restricting each individual clause and eliminating
tautologies. If π is a resolution refutation of F , then π�ρ is a
valid resolution refutation of F �ρ.

The Tseitin formula of a graph G(V,E) and a charge
function χ : V → {0, 1} is a CNF with one variable per
edge and the set of constraints Ts(G,χ) =

∧
v∈V Parity(v)

where Parity(v) is the CNF encoding
⊕

e�v xe = χ(v). A
Tseitin formula is unsatisfiable if and only if

∑
v∈V χ(v) is

odd, which we assume from now on. Tseitin formulas are
hard to prove within the resolution proof system.

Theorem 2.1 (Urquhart 1987). There is a family of graphs
on n vertices and constant degree such that Ts(G,χ) re-
quires resolution proofs of length exp(Ω(n)).

2.2 The CDCL Algorithm

We follow the description of CDCL of Elffers et al. (2016).
The input is a CNF formula F . The state is formed by the
trail 〈ρ〉, which is a sequence of assignments, and the clause
database D, which is a set of clauses. Initially 〈ρ〉 = ∅ and
D = F . The algorithm runs in a loop and the action to take
at each step depends on D�ρ. If the empty clause ⊥ is in
D�ρ then we say there is a conflict. If we can resolve it then
we learn a clause and add it to D, otherwise the formula
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Algorithm 1: CDCL
1 while not solved do
2 if conflict then learn()
3 else if unit then propagate()
4 else
5 maybe forget()
6 maybe restart()
7 decide()

is unsatisfiable. If there is a unit clause xb ∈ D�ρ then we
propagate its value by appending x = b to 〈ρ〉. Otherwise
we say that we are in a stable state. In this case we might
forget a few clauses and use a reduced database D′ ⊆ D,
we might restart the search by resetting the trail to 〈ρ〉 = ∅
but keeping the learned clauses, or we decide the value of
some unassigned variable by appending x = b to the trail,
unless all variables are assigned in which case we found a
satisfying assignment.

In order to fully determine the CDCL algorithm we need
to specify its learn, propagate, forget, restart, and decide
components. We assume about the learning component that
any learned clause can be derived from the conflict clause
and unit-propagating clauses (Beame, Kautz, and Sabharwal
2004) but nothing more. The clauses used in such derivation
are said to participate in a conflict, and so are all the vari-
ables contained in clauses that participate in a conflict.
Lemma 2.2 (Beame, Kautz, and Sabharwal 2004). If a for-
mula F over n variables is found unsatisfiable by a CDCL
solver in T conflicts, then there is a resolution refutation
of F of length at most n · T using only conflict and unit-
propagating clauses.

We do not make any assumptions about which variable
is propagated first when multiple choices are possible, nor
about which clauses are forgotten, nor when to restart the
search, and we discuss branching heuristics next.

2.3 Branching Heuristics

In the heuristics we consider the decision of which literal
to branch on is actually taken by running two procedures,
first a variable decision heuristic, or decision heuristic for
short, and then a phase decision heuristic. We assume that
the phase is chosen according to the phase-saving heuristic,
that is with the same sign as the last time that the selected
variable was last assigned. If a variable has never been as-
signed, we assume that it is first assigned to 0.

The variable decision heuristics we consider all assign a
score q to each variable, which is updated as the search pro-
gresses, and at the time to make a decision they choose the
variable with the largest score. Tie-breaking is often consid-
ered an implementation detail.

We consider the top-performing decision heuristics eval-
uated by Biere and Fröhlich (2015), and in addition two
later heuristics that outperform VSIDS on certain bench-
marks (Liang et al. 2016a; 2016b).

In VSIDS (Moskewicz et al. 2001; Eén and Sörensson
2004) the score of a variable is bumped each time it par-

ticipates in a conflict and decays at every conflict. More for-
mally, the score of variable x after conflict t is q(x, t) =
b(x, t) + δ · q(x, t− 1), where 0 < δ < 1 is the decay factor
and b(x, t) ∈ {0, 1} is 1 if x participated in the conflict.1
The decay factor can be a constant or change over time.

In VMTF (Ryan 2004) the score is q(x, t) = t if x partic-
ipated in the conflict2 and q(x, t−1) otherwise. The relative
order among tied variables is preserved.

In ACIDS (Biere and Fröhlich 2015) the score is (t +
q(x, t))/2 if x participated in the conflict and q(x, t − 1)
otherwise.

In CHB (Liang et al. 2016a) the score is updated after
every set of propagations leading to a stable state or conflict
s, but only for variables added to the trail since state s−1; the
rest is not modified. If variable x is updated at state s, then
q(x, s) = α · r(x, s)+ (1−α) · q(x, s−1), where r(x, s) =
μ(s)/Δ(x, s), μ(s) = 1 if we reached a conflict and 0.9
otherwise, and Δ(x, s) is the number of conflicts since x last
participated in a conflict. The MapleSAT implementation of
CHB has α decreasing after each conflict.

In LRB (Liang et al. 2016b) the score is updated after
each conflict or restart, but only for variables getting unas-
signed. We have q(x, s) defined as in CHB, but r(x, s) =
p(x, s)/Δ(x, s), where p(x, s) is the number of times x par-
ticipated in a conflict or belonged to a clause that propagated
a literal found in the learned clause, and Δ(x, s) is the num-
ber of conflicts, all of these measured since x was last as-
signed. We also decay the score of all variables by a factor δ
after each conflict.

2.4 Implementation Details

Precision If we expand the definition of VSIDS we get
that q(x, t) =

∑t
i=1 δ

t−ib(x, i). However, since in prac-
tice we keep the scores using floating point numbers, it is
more accurate for our model to drop the tail of the sum. In
other words we only need to account for the last K conflicts,
where K is such that

t−K∑
i=1

δt−i =
δK − δt

1− δ
<

δK

1− δ
< ε (2)

with ε being the minimum number that can be represented
with a particular floating point type. If we have e bits of
exponent, this means

K >
log(ε(1− δ))

log(δ)
=

−2e + log(1− δ)

log(δ)
. (3)

To put this in numbers, MiniSat uses e = 10 and δ = 0.95,
hence no more than the last 14 000 conflicts matter.

Asymptotically, if we make the assumption that to solve
a problem of size n we use data types of size Θ(log n) in
bits, then we have Θ(log n) bits of floating point exponent,

1The original Chaff implementation has a score for each literal,
a literal is bumped if it belongs to the learned clause, and decays
and reordering happen once every 256 conflicts.

2The original Siege implementation only bumps variables in the
learned clause.
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which gives a value for K of 2Θ(logn) = nΘ(1), that is only
a polynomial number of recent conflicts matter.

In our analysis we need to separate variables that partic-
ipated in a conflict up to exponentially many conflicts ago
from variables that did not participate in a conflict at all,
but as we just discussed their scores will be both indis-
tinguishable from 0, therefore we need to pay attention to
tie-breaking. Ultimately which variable gets decided among
variables of equal score depends on which data structure is
used to implement the priority queue of unassigned vari-
ables, hence we consider two kinds of data structures de-
pending on whether they preserve the preexisting order.

A stable priority queue—and, by extension, a stable de-
cision heuristic—has the property that if at a state s we
have q(x, s) > q(y, s) and for every state s′ > s we have
q(x, s′) ≥ q(y, s′), then x is dequeued before y. An example
of a stable priority queue is a radix heap (Biere and Fröhlich
2015), while an example of an unstable priority queue is the
binary heap used in MiniSat. The split queue present in re-
cent versions of Lingeling (Biere 2015) is only stable with
respect to zero and near-zero scores, hence for our purposes
we consider it to be stable.

Since in practice the choice of data structure is not partic-
ularly consequential (Biere and Fröhlich 2015), whenever
we need to we will assume that we use a stable priority
queue and make an explicit note of it.

Initialization As we mentioned we assume that when de-
ciding a variable that has never been assigned we set its
phase statically to 0. Other ways to choose an initial phase
are with the one-sided Jeroslow–Wang heuristic or at ran-
dom, but our proof is limited to a static initial phase.

Some ways to pick the initial variable order are to use the
same static order as the input, the JW order, or to pick a
random order. To make our model more robust we assume
the order is random and prove that our result holds except
for an exponentially small fraction of initial orders.

2.5 Preprocessing

Most solvers use preprocessing techniques in an attempt to
simplify their inputs before and even interleaved with the
search. While we do not aim to cover all of these tech-
niques, we do not want our formulas to contain pure literals,
unit clauses, or similar artefacts that can be easily removed.
Therefore we look into the following simple preprocessing
rules.
• Self-subsuming resolution (Eén and Biere 2005). If we

have clauses C∨ l and D∨ l, and C ⊆ D, then we remove
l from D.

• Bounded variable elimination (Eén and Biere 2005). Re-
solve all clauses containing x with all clauses containing
x. If the resulting set is not larger, replace the original set.

• Failed literal elimination (Le Berre 2001). If setting a lit-
eral l unit propagates a conflict, add the unit clause l.

• Blocked clause elimination (Järvisalo, Biere, and Heule
2010). If a clause contains a literal l such that resolving C
with all clauses containing l only yields tautologies, then
we remove C.

3 Separation

The key property that we use from the decision heuristics
we study is that they give priority to variables participating
in conflicts.

Definition 3.1. We say that a decision heuristic rewards
conflicts if a variable that has participated in a conflict is al-
ways selected before a variable that has never been assigned.

To prove that concrete heuristics reward conflicts we as-
sume that on a problem of size n the solver uses a float-
ing point type with Θ(log n) bits of exponent and runs for
exp(O(n)) many steps.

Lemma 3.2. Stable VSIDS, VMTF, ACIDS, CHB, and Sta-
ble LRB reward conflicts.

Proof. Let x be a variable that participated in conflict t, and
y a variable that has never been assigned. All heuristics we
consider satisfy q(x, s) ≥ 0 and q(y, s) = 0 for all states
s, hence for stable decision heuristics it is enough to show
that q(x, t) > 0, while for the rest we have to show that
q(x, s) > 0 for all states s ≥ t.

It is immediate from the definitions that for stable VSIDS
we have q(x, t) ≥ 1, and for VMTF and ACIDS we have
q(x, s) ≥ q(x, t) = t.

For CHB we have q(x, s) ≥ αμ/Δ(x, s) > 1/(20s) for
all s ≥ t, and since s = exp(O(n)), a floating-point repre-
sentation can distinguish 1/(20s) from 0.

Finally, for stable LRB, even if we cannot guarantee that
q(x, t) > 0, we only need to prove that x is selected before
y when both choices are available, and as soon as we reach
a state s > t where x is unassigned the score of x is updated
to q(x, s) ≥ α/t > 1/(20t).

To exploit this property we craft a formula with an easy
part and a hard part, but such that setting variables from the
easy part makes the solver find a conflict involving all vari-
ables from the hard part.

The formula has 5 types of variables, each type subdi-
vided into k blocks: X =

⋃
j∈k Xj with |Xj | = m are hard

variables, Y =
⋃

j∈k Yj with |Yj | = n are easy variables,
and P =

⋃
j∈k Pk with |Pj | = m + n, Z =

⋃
j∈k Zj with

|Zj | = n, and A =
⋃

j∈k Aj with |Aj | = 3 are auxiliary
variables. This makes a total of k(2m + 3n + 3) variables.
We think of k as a constant and assume that m = Θ(n).

Next we describe a few gadgets out of which we build the
formula. The hard gadget consists of a padded formula, that
is given a formula F and a clause C, the padded formula
F ∨ C is {D ∨ C | D ∈ F}.

A pitfall gadget Ψ(y1, y2) is is the CNF y1∨y2∨pj,1, y1∨
y2∨pj,2, . . . , y1∨y2∨pj,m+n, where j is the block index of
both y1 and y2. We call y1 and y2 the trap variables. The goal
of a pitfall gadget is to deviate the solver’s attention from Y
variables towards X variables via P variables: observe that
setting y1 = 0, y2 = 0 leads to a parallel propagation of Pj .

A pipe gadget Π(y) is the CNF y ∨∨i �=1 pj,i ∨ xj,1, y ∨∨
i �=2 pj,i ∨ xj,1 ∨ xj,2, . . . , y ∨ ∨i �=m pj,i ∨ xj,1 ∨ · · · ∨

xj,m, y ∨ ∨i �=m+1 pj,i ∨ xj,1 ∨ · · · ∨ xj,m ∨ zj,1, . . . , y ∨
∨∨i �=m+n pj,i ∨ xj,1 ∨ · · · ∨ xj,m ∨ zj,2 ∨ · · · ∨ zj,n, where
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j is the block index of y. Note that the last clause does not
contain zj,1. The goal of a pipe gadget is to follow-up on a
pitfall gadget: setting y and all Pj variables to 0 leads to a
sequential propagation of all variables in Xj ∪ Zj .

A tail gadget Δ(y, z) is the CNF aj,1 ∨ aj,3 ∨ z, aj,2 ∨
aj,3 ∨ z, aj,1 ∨ z ∨ y, aj,2 ∨ z ∨ y, where j is the block index
of both y and z. The goal of a tail gadget is to ensure that
Z variables do not flip values: if y = 1, then setting z = 1
immediately leads to a conflict.

We denote Ψj =
{
Ψ(y1, y2)

∣∣ (y1, y2) ∈ (Yj

2

)}
, Πj =

{Π(y) | y ∈ Yj}, and Δj = {Δ(y, z) | (y, z) ∈ Yj × Zj}.

Definition 3.3. The pitfall formula Φ(G,χ, n, k) consists of
k padded copies of an unsatisfiable Tseitin formula, Tsj =
Ts(G,χ) ∨ ∨zi∈Zj

zi, k pitfall gadgets Ψj , k pipe gadgets
Πj , k tail gadgets Δj , and n/2 clauses Γ� =

∨
j∈[k] yj,2� ∨

yj,2�+1, which we refer to as easy clauses.

Note that only easy clauses contain variables in different
blocks. The total number of clauses on a graph of degree d is
therefore k·((2m/d)·2d−1+

((
n
2

)
+n
)·(m+n)+4n2+n/2

)
.

There is nothing particularly special about a Tseitin formula,
and we could replace it with other hard formulas.

We claim that the formula is not affected by the prepro-
cessing rules we described in Section 2.5.

Lemma 3.4. Φ is invariant with respect to the SSR, BVE,
FLE, and BCE preprocessing rules.

We omit the proof for space reasons and move into prov-
ing Theorem 1.1. First we show how to build short proofs of
pitfall formulas.

Lemma 3.5. There is a resolution refutation of
Φ(G,χ, n, k) of length 2O(k2) +O(kn2(n+m)).

Proof. For any pair of variables yj,�, yj,�′ we can derive the
clause yj,� ∨ yj,�′ in O(n) steps as follows.

First we derive the clause yj,� ∨ pj,1 ∨ · · · ∨ pj,m+n. Let
Π(yj,�) = C1, . . . , Cm+n be the clauses of the correspond-
ing pipe gadget and let D ∈ Tsj be a clause that is not
satisfied by setting Xj = 0, that is D = xj,i1 ∨ · · · ∨
xj,id ∨ zj,1 ∨ · · · ∨ zj,n. We resolve D with the pipe clauses
in reverse, that is, we begin with Dm+n = D and at each
step from i = m + n to 1 we resolve Di with Ci to ob-
tain Di−1. Note that Di−1 is the same as Ci with the last
literal removed and the literal pi,j added, and in particular
D0 = yj,� ∨ yj,�′ ∨ pj,1 ∨ · · · ∨ pj,m+n.

This allows us to derive the clause yj,� ∨ yj,�′ in m + n
steps simply by resolving yj,� ∨ pj,1 ∨ · · · ∨ ∨pj,m+n with
all the clauses in the corresponding pitfall gadget.

Using this procedure we can derive the clauses yj,� ∨ yj,�′

for j ∈ [k] and (�, �′) ∈ ([2(k+1)]
2

)
in O(kn2(n+m)) steps.

Together with the first k+1 easy clauses Γ1, . . . ,Γk+1, these
form a formula F over 2k(k + 1) = O(k2) variables. We
claim that F is unsatisfiable, therefore there is a resolution
refutation of F of length 2O(k2), proving the lemma.

To prove that F is unsatisfiable we reason by contradic-
tion and assume there is an assignment that satisfies F . In
order to satisfy all Γ1, . . . ,Γk+1 clauses at least k + 1 vari-
ables must be set to 0, hence by the pigeonhole principle

there is at least one block j with two variables set to 1. But
this falsifies a clause of the form yj,� ∨ yj,�′ , contradicting
that an assignment exists.

We end the section proving the hard part of Theorem 1.1,
namely that CDCL requires exponential time to solve pitfall
formulas.
Theorem 3.6. There exists ε > 0 and a family of graphs
Gn of constant degree such that CDCL with a decision
heuristic that rewards conflicts runs for T steps on input
Φ(Gn, χ, n, k) with Pr[T ≤ 2εm] ≤ 2−εn.

Before dealing with the formal details, let us think of a
simplified scenario and discuss what happens if the two first
decisions are y1,1 = 0 and y1,2 = 0. In this case the pit-
fall gadget Ψ(y1,1, y1,2) immediately propagates all the P1

variables p1,1 = 0, p1, 2 = 0, . . . , p1,m+n = 0. After
this, the pipe gadget Π(y1,1) propagates all the X1 variables
x1,1 = 0, x1,2 = 0, . . . , x1,m = 0, in this order. At this point
we have a truth value assignment that falsifies the first copy
of the Tseitin formula (because we are assigning values to all
of the variables of an unsatisfiable formula), so it is only the
fact that Tseitin clauses are padded with Z1 variables, which
are unset, that keeps us from a conflict. But immediately af-
ter setting x1,m, the same pipe gadget Π(y1,1) propagates all
the Z1 variables z1,1 = 0, z1,2 = 0, . . . , z1,n = 0, also in
this order, and at this point we reach our first conflict.

Analysing the conflict we see that variables X1 ∪ Z1 ∪
{p1,i | i > 1} ∪ {y1,1} are all involved in it, and their score
is bumped, hence they are the next in line to be decided.
With a case analysis we can prove that no matter to which
polarity we choose, once we assign all of these variables we
reach another conflict, until we eventually declare the for-
mula unsatisfiable and extract a resolution proof from the
execution trace. But since we always assigned variables in
the first block, we never used any of the clauses from other
blocks or any of the easy clauses that go across blocks, hence
our proof is in fact a refutation of the first copy of the Tseitin
formula, which requires exponentially many steps.

To prove Theorem 3.6 formally we need to deal with ad-
ditional variables being decided prior to two Yj variables,
thus we introduce the following solver states. In state (a) no
conflict has occurred, all assigned variables are set to 0, no
pair of Yj variables is assigned, and for each set Zj and Pj

at least three variables are unassigned. State (b) is like state
(a), except that a pair of Yj variables is assigned. In state (c)
variables Xj ∪ Zj ∪ {pj,i ∈ Pj | i > 1} plus one yj,i vari-
able have participated in a conflict; no variable with an index
j′ �= j has participated in a conflict; all assigned variables
with index j′ are set to 0; no pair of Yj′ variables is assigned;
and for each set Zj′ and Pj′ at least three variables are unset.

The solver starts in state (a) and, since Φ is unsatisfiable,
ends after reaching a conflict that cannot be resolved. We
prove that with high probability the solver moves from state
(a) to (b) to (c) and ends at state (c).
Lemma 3.7. When the solver moves away from state (a), it
moves to state (b) with probability 1− exp(−Ω(n)).
Lemma 3.8. The solver moves from state (b) to state (c).
Lemma 3.9. The solver never leaves state (c).
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This is enough to prove Theorem 3.6.

Proof of Theorem 3.6. Consider the resolution proof π in-
duced by a solver run that moves from state (a) to (b) to (c).
We hit π with a restriction ρ that sets variables in the fol-
lowing way: X variables remain unset, Y and P variables
are assigned to 1, and Z and A variables are assigned to 0.
Observe that ρ falsifies Φ, so for all we know it could be
that π�ρ is trivial, but in fact the only clauses that ρ falsi-
fies are Γ clauses, and (Φ \ Γ)�ρ = Ts(G,χ). Therefore if
we show that π never uses Γ clauses as axioms then we will
have that π�ρ is a refutation of Ts(G,χ), hence by Theo-
rem 2.1 it has length exp(Ω(m)), and by Lemma 2.2 it takes
T = exp(Ω(m)) conflicts to produce.

To prove that π never uses Γ clauses, by Lemma 2.2 it
is enough to to show that Γ clauses never unit-propagate or
conflict, which is true since each easy clause contains two
variables from each set Yj , and for all but one of the sets Yj

there is only one variable ever assigned, so at least k − 1
variables of each Γ clause remain unset at all times.

We finish the proof of the lower bound by proving the
main technical lemmas, skipping Lemma 3.8.

Proof of Lemma 3.7. We begin analysing which clauses
might unit propagate. At an (a) state padded Tseitin clauses
do not propagate because at least two of the Z variables are
unset. The clauses of a pitfall gadget can propagate only if
both trap variables are set; otherwise variable pj,i is set to
0 and satisfies the clause. Pipe clauses do not propagate be-
cause at least two of the P variables are unset. Tail gadgets
do not propagate because literals y and z are either unset
or satisfied, and easy clauses do not propagate because each
clause has at least half of its variables unset.

Assume that we are at a stable (a) state and the next action
is to decide a variable. If it is an X or A variable, then no
propagation happens and the next state is a stable (a) state.
If a Y variable yj,� is decided and another Yj variable is al-
ready assigned, then the next state is a (b) state; otherwise no
propagation happens and the next state is a stable (a) state. If
a P or Z variable is decided then no propagation happens as
long as the variable was not the m+n−2-th Pj or (n−2)-th
Zj variable to be assigned.

Therefore it is enough to prove that with high probability
we decide a pair of Yj variables before any set of n−m− 2
Pj or n − 2 Zj variables are decided. In fact we prove that
with high probability we decide k+1 Y variables before any
n− 2 variables in P ∪ Z, which implies the first event.

Let E be the latter event. Then Pr[E] = Pr[H ≥ k + 1],
where H is the random variable measuring the number of Y
variables decided among the first n+ k − 1 decided Y ∪ Z
variables, that is a hypergeometric random variable with a
population of N = k(3n+m), a success population of K =
kn, and a number of draws of n′ = n+ k − 1.

Using the tail bound Pr[H ≤ (K/N − t)n′] ≤
exp(−2t2n′) for the hypergeometric distribution (Chvátal
1979) we obtain a bound for Pr[H ≤ k] of

exp

(
−2 ·

(
n

3n+m
− k

n+ k − 1

)2

· (n+ k)

)
, (4)

that is exp(−Ω(n)).

Proof of Lemma 3.9. At a state of type (c), the set of vari-
ables that have been involved in a conflict is bounded below
by the set S− comprising Xj ∪ Zj ∪ {pi,j ∈ Pj | i > 1}
and a variable y ∈ Yj . The set of variables that have been
ever assigned is bounded above by the set S+ comprising
all of X , Pj , Zj , and A, one variable from each set Yj′ , and
all but three variables from each set Zj′ and P ′

j . We need
to prove that we never reach a conflict where Yj′ variables
participate, and in fact we prove that we never propagate any
variable from a j′ block.

We claim it is enough to prove that (i) setting all of the
variables in S− always produces a conflict and that (ii) set-
ting all of the variables in S+ does not propagate any vari-
able with index j′. Indeed, since the decision heuristic re-
wards conflicts, all of the variables in S− must be assigned
before a variable not in S+ is decided, and by item (ii) no
such variable is propagated either. But by item (i), once all
of the variables in S− are assigned we reach a conflict. After
resolving the conflict either part of S− is unassigned, or we
reach another conflict, or the formula is found unsatisfiable
and the solver terminates.

To prove claim (i) we assume that all variables in S− are
assigned and consider the set of Zj variables. If all variables
are set to 0, then we have that Tsj�Zj=0 is an unsatisfiable
formula over X variables, all of which are assigned, hence
at least one clause of Tsj is falsified. Thus we can assume
that some variable z ∈ Zj is set to 1. If y = 1 then we
reach a conflict with one of the clauses of the tail gadget
Δ(y, z), possibly after propagating a1 = 1 and a2 = 1,
hence we can assume that y = 0. If any Pj variable is set to
1 then a variable y′ gets propagated to 1 by the pitfall gadget
Ψ(y, y′) and we reach a conflict with the gadget Δ(y′, z).
Therefore we can assume that all Pj variables are set to 0,
except possibly for pj,1, which may be unassigned. Let C
be the first clause in Π(y) that is not satisfied, which exists
because z = 1. If pj,1 = 0 then C is falsified, otherwise C
propagates pj,1 = 1 and we argue as with other P variables.

To prove claim (ii) observe that only easy clauses share
variables across blocks, hence setting all the variables in the
j-th block does not affect a gadget with variables in the j′-th
block. Easy clauses do not unit propagate since at most one
variable out of each Yj′ set of variables is assigned, so at
least k− 1 variables in each easy clause remain unassigned.
As for gadgets with variables in the j′-th block, since all as-
signed j′ variables are set to 0 by the phase saving heuristic,
we reuse the analysis of Lemma 3.7 for (a) states.

4 Experimental Evaluation

We ran experiments on pitfall formulas using the CaDi-
CaL 1.0.3 (Biere 2017), Glucose 4.1 (Audemard and Simon
2009), and MapleCOMSPS (Liang et al. 2016c) solvers, rep-
resenting the VMTF, VSIDS, and CHB and LRB heuristics
respectively. We also employed an instrumented version of
Glucose that allows choosing a static variable order (Elffers
et al. 2018).

In order to work with smaller instances we slightly mod-
ify the formula description to allow different numbers of Y
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Table 1: Mean CPU time to solve (s)
Formula Cadical Glucose CHB LRB Fix
Ts(45) 3331 754 621 424 3600
Φ(45, 6) 2228 1917 600 2598 < 1
Φ(45, 8) 1963 2273 607 2650 < 1
Ts(50) 3600 3600 3600 3600 3600
Φ(50, 6) 3600 3600 3600 3600 < 1
Φ(50, 8) 3600 3600 3600 3600 < 1

and Z variables. As the base graph for the Tseitin gadget
we use a random regular graph of degree 4 and either 45 or
50 vertices. The graphs are chosen so that the Tseitin for-
mula of the smaller graph is solved in a few hundred sec-
onds, while the Tseitin formula of the larger graph cannot
be solved in less than one hour. We set the block size of Y
and Z variables to 30 and 5 respectively, which we exper-
imentally found to be large enough to make the formulas
hard, and use 4, 6, 8, and 10 blocks but focus on 6 and 8
since these yield formulas that are hard but not impossible.

We ran the solvers with their default parameters, except
that we disabled pre- and inprocessing since these turn out
to be counterproductive and experimentally lead to worse
runtimes. We turned on VMTF and the unsat option in Ca-
DiCaL, and we disabled the adaptive strategies of Glucose
to obtain more consistent results. We chose the pure versions
of MapleCOMSPS to avoid interference from other heuris-
tics. The static order decides on Y , X , Z, P , and A variables
in this order.

To account for different ways to initialize the variable or-
der we shuffled the variables and clauses (but not the polari-
ties) with 32 different seeds and report the aggregated result,
assigning a time of 3600 s to unsolved instances. We do not
do any shuffling when running with a fixed order.

We can observe in Table 1 that, as predicted, solvers do
not do better than if they had to solve a standalone Tseitin
formula, while a fixed variable order is faster by several or-
ders of magnitude.

We also tested the effect of mixing VSIDS with random
decisions by running Glucose with a probability of choosing
a random variable ranging from 0 to 1. We find that inter-
leaving a moderate amount of random decisions, say with
probability 0.2, is helpful, but as a side effect the runtime
variance increases. Random decisions decrease the average
runtime and for instance the hardest formulas Φ(50, 6) and
Φ(50, 8) become (barely) solvable.

Finally, we briefly investigate how important the assump-
tion that phases are initialized to 0 is by randomizing the
variable polarities. The results are mixed: while Cadical and
Glucose tend to perform even worse, some of the harder in-
stances become occasionally solvable within the time limit,
and MapleSAT with LRB becomes significantly better.

A formula generator is available as a CNFgen mod-
ule (Lauria et al. 2017) at doi.org/10.5281/zenodo.3544727,
and the full data at doi.org/10.5281/zenodo.3544731.

5 Concluding Remarks

We proved that CDCL with conflict-rewarding heuristics
does not polynomially simulate resolution. This does not
mean we should throw away these heuristics, but it does
imply that there is room for improvement. Since random
choices help, perhaps one could go a step further and ac-
tively choose variables that have been long unused.

Speaking of randomness, it would be interesting to deter-
mine whether our formula has short proofs using a random
decision heuristic. Note that this does not follow immedi-
ately from the result of Atserias, Fichte, and Thurley (2011)
because the formula contains long clauses.

Two annoyances of our result are that we need to assume
a static initial phase, and in some cases we need to assume
a stable data structure. It seems plausible that improving
our construction and/or analysis would make the proof work
with a random initial phase as well, but to get rid of the
stability assumption it appears necessary to ensure that the
scores of all variables in the hard part of the formula are
periodically refreshed, which would require new ideas.

It would also be interesting to find smaller formulas that
exhibit the same properties, so that size does not become a
factor that can influence experiments.
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