
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Modelling Diversity of Solutions

Linnea Ingmar,1 Maria Garcia de la Banda,2 Peter J. Stuckey,2 Guido Tack2

1KTH Royal Institute of Technology, Sweden
2Monash University, Melbourne, Australia

lingmar@kth.se, {maria.garciadelabanda, peter.stuckey, guido.tack}@monash.edu

Abstract

For many combinatorial problems, finding a single solution
is not enough. This is clearly the case for multi-objective op-
timization problems, as they have no single “best solution”
and, thus, it is useful to find a representation of the non-
dominated solutions (the Pareto frontier). However, it also
applies to single objective optimization problems, where one
may be interested in finding several (close to) optimal solu-
tions that illustrate some form of diversity. The same applies
to satisfaction problems. This is because models usually ide-
alize the problem in some way, and a diverse pool of solutions
may provide a better choice with respect to considerations
that are omitted or simplified in the model. This paper de-
scribes a general framework for finding k diverse solutions to
a combinatorial problem (be it satisfaction, single-objective
or multi-objective), various approaches to solve problems in
the framework, their implementations, and an experimental
evaluation of their practicality.

Introduction

The vast majority of the literature on optimization focuses
on finding a single optimal solution to a given optimization
problem. However, many optimization models only approx-
imate the complex real-word problem they are modelling,
and they cannot capture all of the problem details. Hence, the
single “best” solution presented to the problem owner may
be far from being the best alternative in practice. The same
applies to satisfaction problems, which can be seen as opti-
mization problems with a single, constant optimization func-
tion. Ideally, the problem owner would be presented with a
set of optimal solutions, to either choose one based on pref-
erences that were not modelled, or to at least get an overview
of the range of possible optimal solutions.

To overcome this issue one cannot simply provide the
problem owner with all optimal solutions to the problem,
since that would often be overwhelming and computation-
ally impractical. Similarly, one cannot simply provide a
small number of arbitrary optimal solutions, since there is
nothing preventing them from being almost identical (e.g.,
identical except for a single decision that has no impact on

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the objective value). Instead, one should provide a reason-
ably small number of diverse solutions that are optimal or
close to optimal. This immediately raises the question: what
does it mean for solutions to be diverse?

A common case for diversity appears in multi-objective
optimization problems, where we are presented with several
objectives (rather than a single one) to maximize. This nat-
urally gives rise to diversity issues since, while the ideal an-
swer to a multi-objective problem is the entire Pareto fron-
tier or efficient set of solutions, in practice this set is often
extremely large. Instead, we aim to find k solutions that are
diverse with respect to the different objectives.
Example 1. Consider the problem of designing the physical
layout of a complex chemical plant. The aim is to allocate
the position of all equipment and to route the connecting
pipes, while ensuring the solutions satisfy different safety
and operational constraints, and minimize three cost objec-
tives: footprint, pipes and supports. While the problem re-
lies on uniformly modelling these costs using present values,
they are estimations that depend on future unknowns, and
might vary independently of each other. If we present a sin-
gle “optimal design” to the plant engineers, they are locked
into estimations that might be substantially different to what
is finally used. Hence, a better approach is to present them
with k diverse designs that are optimal (or near-optimal) in
terms of estimated cost, but are substantially different in how
those costs are spread among the three objectives. This gives
decisions makers the ability to choose a robust solution with
respect to their understanding of the relative costs of each
component.

While multi-objective problems give rise to a natural no-
tion of diversity, the diversity of solutions may also depend
on factors not captured by the objective. Such a notion of di-
versity is important to all combinatorial problems, including
satisfaction and single-objective problems.
Example 2. Consider the plant layout problem introduced
in Example 1. It is common for plants to have a special piece
of equipment (the pipe rack) that traverses the entire plant.
The relative position of equipment to this rack is a decision
that is often not subject to operational constraints and is thus
not captured by any of the objectives. However, some rel-
ative positions may be more suitable than others, as they

1528

might affect maintenance access, footprint shape and con-
struction capabilities. Hence, for any given combination of
objective values, it makes sense for the plant engineer to
explore solutions that differ on the relative position of the
equipment. This notion of “diversity” is not captured by the
model’s objective function.

The above example shows that measures of diversity are
often intimately tied to the model of the problem. Solution
diversity in optimization has been studied extensively (see
the discussion of related work at the end of this paper).
However, current constraint modelling languages do not let
modellers directly specify diversity in the model. This paper
shows how to extend a solver-independent modelling lan-
guage to express a very general form of diversity problem.
It then defines a number of approaches to solving this diver-
sity problem, and provides an experimental evaluation of an
implementation of the framework that demonstrates the ver-
satility of the diversity problem we define, and compares the
different solving approaches. In particular, the contributions
of this paper are:

• A generic framework to specify diverse solution prob-
lems.

• Generic solving approaches to solve the diverse solution
problem.

• A practical implementation of the diverse solution prob-
lem specification and their solving approaches in the
MiniZinc (Nethercote et al. 2007) system.

• Experimental results showing

– The practicality of the framework.
– The relative strengths and weaknesses of the different

solving approaches.
– Its use on a large real-world optimization problem

where diversity has been requested by the industrial
clients.

Preliminaries

Given a universe of variables V and a set of values D, a
valuation θ is a mapping from v ∈ V to θ(v) ∈ D. Given
a set Σ of functions f mapping D × · · · × D → D, we
extend θ to map terms over Σ ∪ V in the obvious manner
θ(f(t1, . . . , tn)) = f(θ(t1), . . . θ(tn)). Similarly, given a
set Π of predicates in D × · · · × D, we extend θ to map
atoms of Π over terms in Σ ∪ V as θ(p(t1, . . . , tn)) = true
iff (θ(t1), . . . , θ(tn)) ∈ p.

A constraint satisfaction problem (CSP) P = (V,D,C)
consists of a set of variables V , an initial (finite) domain
D which maps each variable v ∈ V to its set of possible
values D(v), and a set of constraints C over variables V . A
valuation θ is a solution of P iff θ(v) ∈ D(v), v ∈ V and
θ(c) is true for all c ∈ C.

A constraint optimization problem (COP) P =
(V,D,C,O) consists of a CSP (V,D,C) and an objective
function O defined on variables V to be maximized (without
loss of generality). An optimal solution of P is a solution θ
of (V,D,C) such that for all other solutions θ′ of (V,D,C),
θ(O) ≥ θ′(O).

A multi-objective constraint optimization problem
(MCOP) P = (V,D,C,O) is a COP, where the objective O
is replaced by a set of objectives O. Solution θ1 of P dom-
inates solution θ2 if for each O ∈ O, θ1(O) ≥ θ2(O), and
for at least one O ∈ O, θ1(O) > θ2(O). A non-dominated
solution θ of P is a solution of P that is not dominated by
any other solution of P . The Pareto frontier PF(P) of an
MCOP P is the set of all non-dominated solutions of P , and
provides a picture of the whole space of best solutions. This
is useful for problem owners, as it allows them to choose
the best tradeoff between the objectives. Since for many
MCOPs the Pareto frontier may be too large to compute,
we are interested in approximating it by a (small) subset
R ⊆ PF(P).

There are different ways to measure how well a Pareto
frontier is approximated by subset R. One of the simplest
measures is given by the hypervolume of the dominated ob-
jective space (Zitzler et al. 2003). Given bounds lO..uO for
each objective O ∈ O, the hypervolume (HV) measures how
many valuations in the hypercube defined over the objec-
tives, are dominated by the solutions in R.

HV = |{(x1, . . . , xn) | xi ∈ lOi
..uOi

,

∃θ ∈ R : ∀i ∈ 1..n : θ(Oi) ≥ xi}|
This definition of HV assumes discrete objectives; a similar
definition using integration exists for continuous domains.

Modelling Diversity

This section first introduces the various components that
make up our diversity framework, and then formally defines
the general diversity problem.

Distance Measures

Central to the modelling of solution diversity is a model-
specific notion of distance between solutions. A distance
function δ(θ1, θ2) returns the distance from valuation θ1 to
valuation θ2. Note that such a distance function is directional
and, thus, may not be symmetric (δ(θ1, θ2) 	= δ(θ2, θ1)), al-
though symmetry often holds.
Example 3. Consider a model M of the plant layout prob-
lem introduced in Example 1 expressed in the MiniZinc
modelling language. We can add to M the notion of diversity
introduced in Example 2 as follows:
enum POS = OVERLAP, NORTH, SOUTH ;
array[EQUIPMENT] of var POS: rel_pos_rack;

where POS is an enumerated type representing whether
equipment overlaps with the rack or is located north or south
of it, EQUIPMENT was defined in M as the set of equip-
ment we are trying to position, and rel pos rack is an
array of auxiliary decision variables that map every piece of
equipment to its relative position with the rack. Note that the
above definitions are added to the model M only to measure
solution diversity; they play no role in solving the problem.

We can now add to M a distance function (swaps),
which given the array of relative positions for two solutions
(rpr1 and rpr2), returns the total number (sum) of non-
rack equipment (e != rack idx) that swap their relative
position from north to south, or from south to north:

1529

var int: swaps(array[int] of var POS: rpr1,
array[int] of var POS: rpr2)

= sum (e in EQUIPMENT where e != rack_idx)
(rpr1[e]!=OVERLAP / rpr2[e]!=OVERLAP
/ rpr1[e]!=rpr2[e]);

Note that this particular distance function is symmetric.

Combining Distances into a Single Diversity
Measure

There is often more than one single distance function to
measure the diversity of solutions. This is common, for ex-
ample, in multi-objective problems, as each objective pro-
vides a diversity measure.
Example 4. Consider a radiation scheduling problem with
two objectives: minimizing the beamtime of each radiation
beam shot, and minimizing the number K of beam shots.
These objectives can be expressed in MiniZinc (using max-
imization to comply with the framework) as:
solve maximize -Beamtime;
solve maximize -K; % number of shots

The following distance measures can be automati-
cally derived from these objectives: δbeamtime(θ1, θ2) =
θ1(−Beamtime) − θ2(−Beamtime) and δshots(θ1, θ2) =
θ1(−K)−θ2(−K). Note that these are asymmetrical distance
functions: a positive distance δO(θ1, θ2) reflects that θ1 is
better than θ2 in objective O.

When multiple distance measures Δ = [δ1, . . . , δn] exist,
modellers must combine them to create a single diversity
measure. Obvious choices for this include using:
• max: the maximum of the distance measures;
• ∑

: summing up the distance measures;
• min: the least distance measure, which is useful for en-

suring a minimum level of diversity across all measures;
• lex: a lexicographic order on some ordering of the dis-

tance measures, which is useful to make each measure
more important than those later in the order.

In addition, there might also be problem-specific ways to
combine the measures. In general, given a combinator func-
tion C : range(δ1) × · · · × range(δn) → X defined by
the modeller to map distances Δ = [δ1, . . . , δn] to some or-
dered set X , our framework defines the diversity measure as
H(θ1, θ2) = C(δ1(θ1, θ2), . . . , δn(θ1, θ2)).
Example 5. For multi-objective problems, a useful way of
combining (maximization) distance measures is C = max.
This has the property that H(θ1, θ2) > 0 implies there is
some distance measure where θ1 is better than θ2 and, hence,
θ1 is not dominated by θ2. Similarly, H(θ1, θ2) < 0 implies
that θ1 is dominated by θ2.

Intra-diversity Constraints

For optimization problems, it is often useful to find a diverse
set of solutions that are near optimal, since this will elimi-
nate diverse solutions that are not interesting to the problem
owner (too far from optimal). The definition of how near a
solution must be to the optimal value to be acceptable is usu-
ally problem-specific and, hence, should be specified in the

model. Given an optimal or best known solution to a COP
with objective value o, our framework requires the definition
in the model of an intra-diversity constraint q(o,O), which
constrains the objective O to be near the optimal value o.

Example 6. A common intra-diversity constraint for a COP
is to allow solutions within x% of optimal, e.g. q(o,O) =
100O ≥ (100− x)o.

A similar intra-diversity constraint q(o,O) can be defined
for multi-objective problems, where o contains the optimal
value oi for each objective Oi in the multi-objective O.

Example 7. A typical intra-diversity constraint for a multi-
objective problem would be to allow solutions within
x% of optimal in at least one measure, e.g. q(o,O) =
∃Oi∈O100Oi ≥ (100− x)oi.

Inter-diversity Constraints

When searching for a set of k diverse solutions, there
may be a priori restrictions on how different the solu-
tions need to be. Typically, these constraints make use of
some distance measure in order to separate the solutions.
Hence, the framework includes an inter-diversity constraint
p(δ1(θ1, θ2), . . . , δn(θ1, θ2)), which can impose constraints
on the various distance measures between solutions.

Example 8. Consider the radiation scheduling problem of
Example 4, with the distance measures δbeamtime and δshots. In
order to make the solutions noticeably different, modellers
may require δbeamtime to be at least 5 minutes, since otherwise
the two solutions may not really be different from a patient’s
perspective. Thus, we define p(db, ds) as db ≥ 300, forcing
the beamtimes to differ by at least 300 seconds.

Aggregation of Diversity

In order to select the most diverse k solutions for a problem,
our framework uses an aggregator functionA to combine the
pairwise diversity measures resulting from each pair of solu-
tions, into an overall measure of diversity for the k solutions.
Two common definitions for A are:

∑
, summing up the

pairwise diversity measures; and min, taking the minimum
over all pairs of the diversity measure. For multi-objective
problems, the automatically derived aggregator A is min.

The General Diversity Problem

Let us now specify a general framework for defining diver-
sity problems.

Definition 1 (General Diversity Problem). Given COP P =
(V,D,C,O) or MCOP P = (V,D,C,O), a set of pair-
wise distance functions Δ = {δ1, . . . , δm}, a combinator
function C, an aggregator functionA, an inter-diversity con-
straint p and an intra-diversity constraint q, the general di-
versity problem Q = (P,Δ, C,A, p, q) for non-negative in-
teger k, is to find a set Θ such that:

• |Θ| = k;
• ∀θ ∈ Θ: θ is a solution to the corresponding CSP
(V,D,C);

1530

• ∀θ ∈ Θ: either q(o, θ(O)) or q(o, θ(O)) holds, where o
is the value of the best known solution for COP P , and o
contains the values oi of the best known solution for each
objective Oi ∈ O of MCOP P ;

• ∀θ1, θ2 ∈ Θ, θ1 	= θ2: p(δ1(θ1, θ2), . . . , δm(θ1, θ2))
holds; and
• A({C(δ1(θ1, θ2), . . . , δm(θ1, θ2))|θ1, θ2 ∈ Θ, θ1 	= θ2})

is maximized.
Note that not all these features need to be used. For ex-

ample, if the original problem is a satisfaction problem, then
modellers can simply set O = 0 to make it a COP. If they do
not want to restrict solutions to be near optimal, they can de-
fine q to be true. Similarly, if they have no a priori distance
requirements between solutions, they can define p to be true.

Solving Diversity Problems

This section discusses four approaches to solving the general
diversity problem Q = (P,Δ, C,A, p, q) for size k, where
P = (V,D,C,O), as per Definition 1.

Exact Solution Method

The most straightforward solving approach is to treat the
general diversity problem as a COP and obtain an exact so-
lution. To do this we first create k copies of its variables
and constraints, k copies of its intra-diversity constraint q,
and k(k − 1)/2 copies of its inter-diversity constraint p.
We then construct the objective function, which is of size
|Δ|k(k − 1)/2, and solve it using any available constraint
optimization solver.

The exact solution method, which we denote as EX(k), is
the only method we will explore that has the capability of
finding an optimal solution to Q for k. While the problem
size of the such COP explodes by at least a factor k, and
possibly k2, it can be useful as a component in hybrid and
post hoc approaches (see below).

Greedy Solution Method

To overcome the size explosion of EX(k), we use a greedy
approach that finds one solution at a time, making use of the
components in Q to drive towards diverse solutions. While
this greedy method may not find optimal solutions to the
general diversity problem, it can be much faster in practice,
while still producing good diversity.

The greedy approximation method GR(k) is shown in Al-
gorithm 1, which iteratively builds a set of solutions Θ as
follows. Initially, Θ consists of an arbitrary first optimal so-
lution θ1. Then, in each iteration of the loop, a modified ver-
sion of the base problem is solved: the set V ′ of variables for
the pairwise distances between solutions with their respec-
tive domains is joined with V ; the domain D′ mapping each
variable v′ ∈ V ′ is added to D; the set C ′ of constraints on
the pairwise distances are added; and the objective is to lex-
icographically maximize first the aggregated distance, and
then the original objective O. In other words, in each itera-
tion the most diverse solution is found so that its objective
value is at least as good as any other solution with the same
diversity. If the original problem P is multi-objective, we
create a single objective O =

∑
Oi∈O wiOi by weighting

the components with some positive weights wi. In this case,
the second component will eliminate dominated solutions.

Algorithm 1 A greedy algorithm for the general diversity
problem

1: procedure GR(k)
2: Input

• General diversity problem Q = ((V,D,C,O),Δ =
{δ1, . . . , δm},A, C, p, q)
• Non-negative integer k

3: θ1 ← solution to (V,D,C) that maximizes O
4: o← θ1(O)
5: Θ← {θ1}
6: while |Θ| ≤ k do
7: let ∀θ ∈ Θ, ∀δ ∈ Δ : dθδ ← δ(V, θ(V))
8: V ′ ← {dθδ |θ ∈ Θ, δ ∈ Δ}
9: C ′ ← ⋃

θ∈Θ{p(dθδ1 , . . . , dθδm)} ∪ {q(o,O)}
10: θ ← solution to (V ∪ V ′, D ∪D′, C ∪ C ′) lex-

icographically maximizing [A({C(dθδ1 , . . . , dθδm) | θ ∈
Θ}, O]

11: Θ← Θ ∪ {θ}
return Θ

The role of the lexicographic optimization is to ensure that
the solutions we return are the best of those with the same
diversity measure. Consider Example 6, which defines an
intra-diversity constraint requiring solutions to be no more
than x% away from the optimal. Without lexicographic opti-
mization, the greedy algorithm could always return solutions
that are exactly x% non-optimal, even if optimal solutions
with the same measure of diversity exist.
Example 9. When solving the radiation scheduling prob-
lem of Example 4 using GR(k), the automatically derived
aggregated diversity measure in line 10 of Algorithm 1 is:
min({max(δbeamtime(V, θ), δshots(V, θ)) | θ ∈ Θ}). By maxi-
mizing this measure, the algorithm is guaranteed to find the
worst represented point (Masin and Bukchin 2008) on the
Pareto frontier in each iteration.

Hybrid Diversity Solving

The GR(k) method is blind to the overall space of solu-
tions. Hence, it can have difficulty finding good solutions.
In contrast, the EX(k) method finds optimal solutions but
is inefficient as k grows large (as we will see in the exper-
iments, it is not too bad for a small k). This gives us the
impetus to develop a hybrid solving method that combines
these two. We can straightforwardly achieve this by defining
a HY(l, k), l ≤ k method that first solves EX(l) to gener-
ate the most diverse l solutions, and then uses the greedy
method to find the next k − l solutions, by simply replacing
Θ at line 5 of GR(k − l) by the result of EX(l).

Post hoc Diversity Solving

Previous methods compute exactly k solutions. A differ-
ent approach to tackling the diversity problem is to com-
pute many more solutions (hopefully, very quickly) and se-
lect k diverse solutions from them. More formally, the post

1531

1 % Define a pairwise distance function on x
2 annotation diverse(array[int] of var $T: x,
3 ann: dist_fun);
4 % Define the combinator function
5 annotation div combinator(ann: comb_fun);
6 % Define the aggregator function
7 annotation div aggregator(ann: agg_fun);
8 % Post the intra diversity constraint p
9 annotation intra div constraint(ann: pred);

10 % Post the inter diversity constraint q
11 annotation inter div constraint(ann: pred);

Figure 1: MiniZinc annotations for diversity.

hoc solving method PH(U,K, k) first finds u > k solu-
tions S, using method U , to CSP (V,D,C ∪ {q(o,O)}),
and then solves the general diversity problem with the re-
striction that Θ ⊆ S, using method K. Note that we can
precompute δ(θ1, θ2), δ ∈ Δ, θ1, θ2 ∈ S, θ1 	= θ2 and
p(δ1(θ1, θ2), . . . , δm(θ1, θ2)), θ1, θ2 ∈ S, θ1 	= θ2, where
Δ = {δ1, . . . , δm}. Hence, the problem becomes one of se-
lecting k out of u elements of a set, subject to some pairwise
constraints and an objective. We can use any approach U
to generate the u initial solutions, and any solving method
K for selecting k solutions. Obvious choices are random or
greedy methods for U , and exact or greedy ones for K.

Implementation in MiniZinc

MiniZinc (Nethercote et al. 2007) is a very expressive solver
independent modelling language. Therefore, it is not diffi-
cult to extend MiniZinc to define our general diversity prob-
lem. We do so by adding annotations to the model in such a
way that, if the annotations are ignored, the model specifies
the original COP or MCOP. Figure 1 presents the MiniZ-
inc annotations added to the MiniZinc annotation library
for modelling the general diversity problem of Definition 1.
Note that we do not need to explicitly model the number of
solutions k, as MiniZinc already supports the setting of a
desired number of solutions.

Given a model M of a COP or MCOP problem, modellers
use MiniZinc functions (Stuckey and Tack 2013) to define
different distance measures in M . Then, they add to M a
diverse annotation (lines 2–3) for each distance measure,
where the second argument is the name of the function, and
the first is the argument to the function (assumed here to
be a single array x of variables, all of type T). Modellers
also use MiniZinc functions to define combinator and ag-
gregator functions in M , and then add div combinator
and div aggregator annotations (lines 5 and 7) for
these functions. Modellers can then use MiniZinc pred-
icates to define the intra- and inter-diversity constraints
of the problem, and add intra div constraint and
inter div constraint annotations (lines 9 and 11) for
them.

The implementation builds an appropriate MiniZinc
model for the chosen solution approach. For the exact ap-
proach it builds one large model. For the greedy and hybrid
approaches it builds a new model for each loop iteration.

For the post hoc approach it builds a set selection model,
precomputing as much as possible.

Experimental Evaluation

Single Distance Measure

Consider the Bulk Water Management Problem, which mod-
els water reservoirs and bulk transfers over a certain time
horizon of multiple years, deployed for a major metropoli-
tan area. Part of the problem is deciding how much water
is stored in each reservoir r on each month m: this value is
modelled by the two dimensional array of decision variables
vol stored. While the total volume stored in all of the
reservoirs is close to constant at any given point in time, the
stored volume for a given reservoir might vary over time. To
model for diversity in volume difference, we introduce an
array vol diff of auxiliary decision variables modelling
the maximal difference in stored volume for each reservoir:
array[SOURCES] of var 0.0..max_vol: vol_diff

= [max(vol_stored[r,..]) -
min(vol_stored[r,..])

| r in SOURCES];

We use the following diversity annotations:
:: diverse(vol_diff, manhattan);
:: div aggregator(min);
:: intra div constraint(gap);
predicate gap(float: optimal_value) =
Obj <= optimal_value + 0.1;

where manhattan is a distance function for the Manhattan
distance of two arrays of variables, and gap constrains the
objective to be equal to the optimal value, using a floating
point precision of 0.1.

Table 1 shows runtime and minimum distance between
any two solutions of the Bulk Water Management Problem
for five different solving approaches: greedy; exact; hybrid
HY(2, k); and two post hoc approaches. Post hoc approach
PH(GR, EX, k) (column 4) spends 29 minutes generating a
pool Sgreedy of solutions using the greedy approach, and then
uses the exact approach to select the k most diverse solutions
out of Sgreedy. The post hoc approach PH(RD, GR, k) (col-
umn 5) spends 29 minutes generating a set Srandom of random
solutions to the problem, and then uses the greedy approach
to select k solutions from Srandom. We use the greedy ap-
proach in the selection phase, as the exact approach runs out
of memory due to the size of Srandom. As the results for the
greedy and post hoc approaches depend on the first solution,
the table shows the mean and standard deviation of diversity
over 10 runs using different random start solutions for them.

The Bulk Water Management Problem is linear and, thus,
it is most efficiently solved by a MIP solver; we choose
Gurobi. However, for the selection phase of PH(GR, EX, k)
we use a CP solver (Gecode), as the selection problem does
not linearize well. We produce random solutions in Gurobi
by passing a different random seed in each invocation of the
solver. Note that while this does not guarantee that solutions
are uniformly distributed, it is often the only method of ran-
domisation available in black-box solvers such as Gurobi.

As expected, the fastest approach is the greedy one. The
exact approach cannot prove optimality within the given

1532

Table 1: Runtime in seconds and solution diversity for the
Bulk Water Management Problem using five solving ap-
proaches for finding k diverse solutions. Symbol — indi-
cates the timeout (30 minutes) is reached and the best found
diversity before timing out is reported.

GR(k) EX(k) HY(2, k)
k time div time div time div

2 3.2 202K±3K 106.7 260K 106.0 260K
3 5.0 157K±4K — 189K 113.7 140K
4 9.7 122K±2K — 156K 118.7 139K
5 12.8 116K±4K — 137K 118.3 130K
6 15.6 112K±4K — 115K 121.4 116K
7 20.5 102K±3K — 93K 132.5 97K
8 27.4 96K±4K — 99K 138.5 90K
9 31.9 90K±2K — 74K 146.4 90K

10 40.6 84K±2K — 60K 155.3 90K
11 45.3 82K±2K — 64K 159.2 82K
12 60.4 79K±2K — 57K 173.0 80K

PH(GR, EX, k) PH(RD, GR, k)
k time div time div

2 1740.3 236K±7K 1740.0 86K±5K
3 1740.3 160K±6K 1740.0 60K±6K
4 1740.3 129K±3K 1740.0 55K±5K
5 1740.3 118K±3K 1740.1 43K±3K
6 1740.3 114K±3K 1740.1 40K±3K
7 1740.3 105K±3K 1740.1 37K±2K
8 1740.4 97K±2K 1740.1 35K±2K
9 1740.4 91K±2K 1740.2 34K±2K

10 1740.4 85K±2K 1740.2 31K±3K
11 1740.4 81K±3K 1740.2 30K±3K
12 1740.4 78K±3K 1740.3 27K±2K

timeout for k ≥ 2, but finds the highest solution diver-
sity for k ≤ 5 and k = 8. HY(2, k) and PH(GR, EX, k)
sometimes find solutions of higher diversity than the greedy
approach, but have worse runtime. The diversity found
by PH(RD, GR, k) is consistently less than half the diversity
of the other approaches.

Multiple Distance Measures

Consider the Resource-Constrained Project Scheduling
Problem with Weighted Earliness/Tardiness objective
(RCPSP/WET) (Vanhoucke, Demeulemeester, and Herroe-
len 2001) as a MCOP problem, where the two objectives
are minimizing the earliness and the tardiness of the
tasks. The diversity measure is automatically derived (see
Example 4) from the two objectives: maximize −earliness;
and maximize −tardiness . Furthermore, the combinator C
is min and aggregator A is max (automatically derived).

Table 2 shows runtime and hypervolume for the
RCPSP/WET problem using three solving approaches for
the general diversity problem: the greedy approach and two
post hoc approaches. The post hoc approaches use all Pareto
optimal solutions S found within 29 minutes by (a) the
greedy approach, and (b) random search, and then select
the k most diverse solutions from S. The “random” search

Table 2: Runtime in seconds and hypervolume for the
RCPSP/WET problem using four solving approaches for
finding k diverse solutions. Symbol — indicates the time-
out (30 minutes) is reached and the best found hypervolume
before timing out is reported.

GR(k) PH(GR, EX, k)
k time HV time HV

3 10.6 13.69K 1740.9 13.90K
4 16.9 17.23K 1741.1 17.39K
5 20.5 18.78K 1741.1 19.02K
6 32.2 19.77K 1741.1 19.98K
7 37.2 20.56K 1741.2 20.59K
8 41.6 20.96K 1741.3 21.00K
9 52.2 21.26K 1741.6 21.29K
10 65.9 21.49K 1741.5 21.61K

PH(RD, EX, k) Max HV
k time HV time HV

3 1740.3 13.90K 273.4 13.94K
4 1740.3 17.40K — 17.33K
5 1740.4 19.14K — 18.61K
6 1740.4 19.81K — 16.61K
7 1740.4 20.58K — 13.83K
8 1740.4 21.08K — 16.17K
9 1740.4 21.22K — 9.15K
10 1740.4 21.71K — 0.83K

is done by repeatedly minimizing the weighted sum of the
objectives using random positive weights.

Note that while the greedy approach guarantees all so-
lutions found so far are Pareto optimal (Masin and Bukchin
2008), the same does not hold for the exact solving approach
EX(k). The inter-diversity constraint q would need to be “the
solution is Pareto optimal”, which is not possible to express
in a constraint. Therefore, we also compare with a direct ap-
proach, named Max HV, which is not part of our framework
and finds k solutions such that the hypervolume measure is
maximized. By construction, an optimal solution is guaran-
teed to consist of a set of Pareto optimal solutions. All ap-
proaches are given the two extreme points as start solutions.
We use Chuffed as backend solver.

Clearly the greedy approach can effectively find good rep-
resentatives of the Pareto frontier quickly. The post hoc ap-
proaches find in general somewhat better solutions, using
more time. The direct approach is competitive with the other
approaches in terms of hypervolume for k ≤ 5, but does not
scale to higher values of k.

Case Study: Process Plant Layout Optimization

Consider again the plant layout problem introduced in Ex-
ample 1, modelled using (a) the state-of-the-art model of the
problem defined by Belov et al. (2018), and (b) the defini-
tion of diversity based on the relative positions of the rack
as discussed in Example 3. The diversity annotations are:
:: diverse(rel_pos_rack, swaps);
:: div aggregator(min);
:: intra div constraint(within_five_percent);

1533

Figure 2: Three diverse solutions to the process plant layout
problem.

where within five percent constrains the objective
to be within five percent of the optimal value. For demon-
stration purposes, we use a subset of a real world instance
with 20 (out of more than 200 in total) pieces of equip-
ment. While the full instance cannot be solved to optimality
even within 2 weeks, our small instance takes less than one
minute to solve to optimality using Gurobi on 4 threads. Fig-
ure 2 shows a top-down view of three plant designs, where
the large dark grey area in each solution is the pipe rack, and
the smaller rectangles are other pieces of equipment. All so-
lutions are generated with the greedy approach, using the
above diversity annotations. Clearly, the user is presented
with three very different designs.

Related Work and Conclusion

The diversity of solutions has been studied in the context
of constraint programming (CP) (Hebrard et al. 2005; He-
brard, O’Sullivan, and Walsh 2007; Petit and Trapp 2015),
mixed integer programming (MIP) (Glover, Løkketangen,
and Woodruff 2000), Boolean satisfiability (SAT) (Nadel
2011) and answer set programming (ASP) (Eiter et al. 2009),
among others. The key design principle of our work is to
separate modelling of diversity problems from how they
are solved, while in most previous work modelling and
solving are conflated. An exception is work by Hebrard et
al. (2005), which introduces several classes of diversity (and
similarity) problems for constraint satisfaction, as well as
two generic ways of solving such problems. Perhaps their
most important problem class is MAXDIVERSEkSET, which
aims to find k solutions, such that the minimum distance be-
tween any two solutions is maximized, for a given distance
measure. The general diversity problem from Definition 1
is a generalization of MAXDIVERSEkSET, as we consider
(multi-objective) optimization problems, support the defini-
tion and combination of different distance measures, and
of constraint solutions with user-defined intra- and inter-
diversity constrains. Similarly, the two solving algorithms
proposed by Hebrard et al. (2005) are special cases of the
greedy and exact approaches discussed in this paper. The
work by Petit and Trapp (2015) generalizes Hebrard et al.’s
greedy algorithm to single objective problems. To find so-
lutions that are diverse as well as near optimal, the ratio of
diversity and loss in optimality is maximized in each iter-

ation. Their algorithm allows threshold values on optimal-
ity and diversity to be specified, which is similar in idea to
our intra- and inter-diversity constraints. Their algorithm is,
however, implemented directly into a solver without a clear
separation between modelling and solving. Our work clearly
distinguishes itself from this work, and all the other ones we
are aware of, by providing an easy-to-use modelling frame-
work where various diversity components can be defined in
an expressive modelling language directly in the model, in-
dependently of how the problem is solved.

Work has been done for finding diverse solutions in spe-
cific solving technologies. This includes, for example, pa-
pers by Hebrard et al. (2005) and Hebrard, O’Sullivan, and
Walsh (2007), which introduce global constraints and propa-
gation algorithms for CP, and work by Glover, Løkketangen,
and Woodruff (2000), which is specific for MIP. Although
the aim of our work is to be solver-independent, future work
should include how these methods can be utilized by our
framework when using a certain solving technology.

In population based methods, such as evolutionary al-
gorithms, maintaining diversity in the population pool is
needed to prevent premature convergence to a sub-optimal
solution, and can be achieved by so called niching meth-
ods (Li et al. 2017). Niching can also be used for finding
several diverse solutions (see e.g. Kruisselbrink et al. 2009).
Whether ideas from niching methods can be reused in our
framework, is an interesting research direction.

To the best of our knowledge, there is no previous work
that combines Pareto optimality with solution diversity.
However, there are many algorithms in the literature for
solving MCOPs in general. Many such algorithms are de-
signed for enumerating the complete Pareto frontier, such as
the widely studied ε-constraint method (Y. Haimes, Lasdon,
and A. Wismer 1971) and a recently proposed decision dia-
gram method (Bergman and Ciré 2016). More related to our
focus on diversity is previous work on finding representa-
tive subsets of the Pareto frontier. An overview of such al-
gorithms for continuous optimization problems was recently
done (Burachik, Kaya, and Rizvi 2019), and whether any of
them can be used in our framework should be investigated in
future work. Two studies that focus on discrete problems are
by Schwind et al. (2016) and by Masin and Bukchin (2008).
The former considers the problem of finding a subset of a
given size k of the Pareto frontier, such that a measure of rep-
resentativity is maximized, and prove the decision version of
the problem to be ΣP

2-complete. The latter finds a represen-
tative set by iteratively adding the worst represented point
on the Pareto frontier. Notably, their algorithm is a special
case of Algorithm 1.

Conclusion We define a modelling framework for solv-
ing diversity problems and a number of solving methods to
tackle these problems. This allows a modeller to add mea-
sures of diversity to their model in a straightforward way,
and to collect a diverse set of solutions. Experiments show
the approach is applicable to large real world problems. It
is the first modelling framework we are aware of to allow
diversity to be directly specified as part of the model.

1534

Acknowledgements This work was partly sponsored by
the Australian Research Council grant DP180100151. The
authors would like to thank the anonymous reviewers for
their helpful comments, and Ilankaikone Senthooran for pro-
viding instances for the case study in the experimental eval-
uation of this work.

References

Belov, G.; Czauderna, T.; de la Banda, M. G.; Klapperstück,
M.; Senthooran, I.; Smith, M.; Wybrow, M.; and Wallace,
M. 2018. Process plant layout optimization: Equipment
allocation. In Hooker, J. N., ed., Proceedings of the Twenty-
Fourth International Conference on Principles and Prac-
tice of Constraint Programming, CP 2018, volume 11008
of Lecture Notes in Computer Science, 473–489. Springer.
Bergman, D., and Ciré, A. A. 2016. Multiobjective opti-
mization by decision diagrams. In Rueher, M., ed., Proceed-
ings of the Twenty-second International Conference on Prin-
ciples and Practice of Constraint Programming, CP 2016,
volume 9892 of Lecture Notes in Computer Science, 86–95.
Springer.
Burachik, R.; Kaya, C.; and Rizvi, M. 2019. Algorithms
for generating pareto fronts of multi-objective integer and
mixed-integer programming problems. Preprint, http://arxiv.
org/abs/1903.07041.
Eiter, T.; Erdem, E.; Erdoğan, H.; and Fink, M. 2009.
Finding similar or diverse solutions in answer set program-
ming. In Hill, P. M., and Warren, D. S., eds., Proceedings of
the Twentyfifth International Conference in Logic Program-
ming, ICLP 2009, volume 5649 of Lecture Notes in Com-
puter Science, 342–356. Springer.
Glover, F.; Løkketangen, A.; and Woodruff, D. L. 2000.
Scatter search to generate diverse MIP solutions. In La-
guna, M., and Velarde, J. L. G., eds., Computing Tools for
Modeling, Optimization and Simulation: Interfaces in Com-
puter Science and Operations Research, volume 12, 299–
317. Springer.
Hebrard, E.; Hnich, B.; O’Sullivan, B.; and Walsh, T. 2005.
Finding diverse and similar solutions in constraint program-
ming. In Veloso, M. M., and Kambhampati, S., eds., Pro-
ceedings of the Twentieth AAAI Conference on Artificial In-
telligence, 372–377. AAAI Press / The MIT Press.
Hebrard, E.; O’Sullivan, B.; and Walsh, T. 2007. Distance
constraints in constraint satisfaction. In Veloso, M. M., ed.,
Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence, IJCAI 2007, 106–111.
Kruisselbrink, J. W.; Aleman, A.; Emmerich, M. T. M.; IJz-
erman, A. P.; Bender, A.; Bäck, T.; and van der Horst, E.
2009. Enhancing search space diversity in multi-objective
evolutionary drug molecule design using niching. In Roth-
lauf, F., ed., Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2009, 217–224. ACM.
Li, X.; Epitropakis, M. G.; Deb, K.; and Engelbrecht, A. P.
2017. Seeking multiple solutions: An updated survey on
niching methods and their applications. IEEE Trans. Evolu-
tionary Computation 21(4):518–538.

Masin, M., and Bukchin, Y. 2008. Diversity maximization
approach for multiobjective optimization. Operations Re-
search 56(2):411–424.
Nadel, A. 2011. Generating diverse solutions in SAT. In
Sakallah, K. A., and Simon, L., eds., Proceedings of the
Fourteenth International Conference on Theory and Appli-
cations of Satisfiability Testing, SAT 2011, volume 6695 of
Lecture Notes in Computer Science, 287–301. Springer.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. MiniZinc: Towards a standard
CP modelling language. In Bessiere, C., ed., Proceedings
of the Thirteenth International Conference on Principles
and Practice of Constraint Programming, CP 2007, vol-
ume 4741 of Lecture Notes in Computer Science, 529–543.
Springer.
Petit, T., and Trapp, A. C. 2015. Finding diverse solutions of
high quality to constraint optimization problems. In Yang,
Q., and Wooldridge, M. J., eds., Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, 260–267. AAAI Press.
Schwind, N.; Okimoto, T.; Clement, M.; and Inoue, K. 2016.
Representative solutions for multi-objective constraint op-
timization problems. In Baral, C.; Delgrande, J. P.; and
Wolter, F., eds., Proceedings of the Fifteenth International
Conference on Principles of Knowledge Representation and
Reasoning, KR 2016, 601–604. AAAI Press.
Stuckey, P. J., and Tack, G. 2013. MiniZinc with functions.
In Gomes, C. P., and Sellmann, M., eds., Proceedings of the
Tenth International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems, CPAIOR 2013, volume 7874 of Lec-
ture Notes in Computer Science, 268–283. Springer.
Vanhoucke, M.; Demeulemeester, E.; and Herroelen, W.
2001. An exact procedure for the resource-constrained
weighted earliness-tardiness project scheduling problem.
Annals OR 102(1-4):179–196.
Y. Haimes, Y.; Lasdon, L.; and A. Wismer, D. 1971. On a
bicriterion formulation of the problems of integrated system
identification and system optimization. IEEE Transactions
on Systems, Man, and Cybernetics SMC-1:296–297.
Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; and
da Fonseca, V. G. 2003. Performance assessment of mul-
tiobjective optimizers: an analysis and review. IEEE Trans.
Evolutionary Computation 7(2):117–132.

1535

