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Abstract

We present an algorithm to compute exact literal-weighted
model counts of Boolean formulas in Conjunctive Normal
Form. Our algorithm employs dynamic programming and
uses Algebraic Decision Diagrams as the main data struc-
ture. We implement this technique in ADDMC, a new model
counter. We empirically evaluate various heuristics that can
be used with ADDMC. We then compare ADDMC to four state-
of-the-art weighted model counters (Cachet, c2d, d4, and
miniC2D) on 1914 standard model counting benchmarks
and show that ADDMC significantly improves the virtual best
solver.

1 Introduction

Model counting is a fundamental problem in artificial intel-
ligence, with applications in machine learning, probabilistic
reasoning, and verification (Domshlak and Hoffmann 2007;
Biere, Heule, and van Maaren 2009; Naveh et al. 2007).
Given an input set of constraints, with the focus in this paper
on Boolean constraints, the model counting problem is to
count the number of satisfying assignments. Although this
problem is #P-Complete (Valiant 1979), a variety of tools
exist that can handle industrial sets of constraints, cf. (Sang
et al. 2004; Oztok and Darwiche 2015).

Dynamic programming is a powerful technique that has
been applied across computer science (Howard 1966), in-
cluding to model counting (Bacchus, Dalmao, and Pitassi
2009; Samer and Szeider 2010). The key idea is to solve
a large problem by solving a sequence of smaller subprob-
lems and then incrementally combining these solutions into
the final result. Dynamic programming provides a natural
framework to solve a variety of problems defined on sets
of constraints: subproblems can be formed by partitioning
the constraints into sets, called clusters. This framework has
also been instantiated into algorithms for database-query op-
timization (McMahan et al. 2004) and SAT-solving (Uribe
and Stickel 1994; Aguirre and Vardi 2001; Pan and Vardi
2004). Techniques for local computation can also be seen as
a variant of this framework, e.g., in theorem proving (Wil-
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son and Mengin 1999) or probabilistic inference (Shenoy
and Shafer 2008).

In this work, we study two algorithms that follow this
dynamic-programming framework and can be adapted for
model counting: bucket elimination (Dechter 1999) and
Bouquet’s Method (Bouquet 1999). Bucket elimination aims
to minimize the amount of information needed to be car-
ried between subproblems. When this information must be
stored in an uncompressed table, bucket elimination will,
with some carefully chosen sequence of clusters, require the
minimum possible amount of intermediate data, as governed
by the treewidth of the input formula (Bacchus, Dalmao, and
Pitassi 2009). Intermediate data, however, need not be stored
uncompressed. Several works have shown that using com-
pact representations of intermediate data can dramatically
improve bucket elimination for Bayesian inference (Poole
and Zhang 2003; Sanner and McAllester 2005; Chavira and
Darwiche 2007). Moreover, it has been observed that using
compact representations — in particular, Binary Decision
Diagrams (BDDs) — can allow Bouquet’s Method to out-
perform bucket elimination for SAT-solving (Pan and Vardi
2004). Compact representations are therefore promising to
improve existing dynamic-programming-based algorithms
for model counting (Bacchus, Dalmao, and Pitassi 2009;
Samer and Szeider 2010).

In particular, we consider the use of Algebraic Decision
Diagrams (ADDs) (Bahar et al. 1997) for model counting
in a dynamic-programming framework. An ADD is a com-
pact representation of a real-valued function as a directed
acyclic graph. For functions with logical structure, an ADD
representation can be exponentially smaller than the ex-
plicit representation. ADDs have been successfully used as
part of dynamic-programming frameworks for Bayesian in-
ference (Chavira and Darwiche 2007; Gogate and Domin-
gos 2012) and stochastic planning (Hoey et al. 1999). Al-
though ADDs have been used for model counting outside
of a dynamic-programming framework (Fargier et al. 2014),
no prior work uses ADDs for model counting as part of a
dynamic-programming framework.

The construction and resultant size of an ADD depend
heavily on the choice of an order on the variables of the
ADD, called a diagram variable order. Some variable or-
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ders may produce ADDs that are exponentially smaller than
others for the same real-valued function. A variety of tech-
niques exist in prior work to heuristically find diagram vari-
able orders (Tarjan and Yannakakis 1984; Koster, Bodlaen-
der, and Van Hoesel 2001). In addition to the diagram vari-
able order, both bucket elimination and Bouquet’s Method
require another order on the variables to build and arrange
the clusters of input constraints; we call this a cluster vari-
able order. We show that the choice of heuristics to find
cluster variable orders has a significant impact on the run-
time performance of both bucket elimination and Bouquet’s
Method.

The primary contribution of this work is a dynamic-
programming framework for weighted model counting that
utilizes ADDs as a compact data structure. In particular:

1. We lift the BDD-based approach for Boolean satisfiabil-
ity of (Pan and Vardi 2004) to an ADD-based approach
for weighted model counting.

2. We implement this algorithm using ADDs and a variety
of existing heuristics to produce ADDMC, a new weighted
model counter.

3. We perform an experimental comparison of these heuris-
tic techniques in the context of weighted model counting.

4. We perform an experimental comparison of ADDMC to
four state-of-the-art weighted model counters (Cachet,
c2d, d4, and miniC2D) and show that ADDMC improves
the virtual best solver on 763 of 1914 benchmarks.

2 Preliminaries

In this section, we introduce weighted model counting, the
central problem of this work, and Algebraic Decision Dia-
grams, the primary data structure we use to solve weighted
model counting.

2.1 Weighted Model Counting

The central problem of this work is to compute the weighted
model count of a Boolean formula, which we now define.

Definition 1. Let ϕ : 2X → {0, 1} be a Boolean function
over a set X of variables, and let W : 2X → R be an ar-
bitrary function. The weighted model count of ϕ w.r.t. W
is

W (ϕ) =
∑
τ∈2X

ϕ(τ) ·W (τ).

The function W : 2X → R is called a weight func-
tion. In this work, we focus on so-called literal-weight func-
tions, where the weight of a model can be expressed as the
product of weights associated with all satisfied literals. That
is, where the weight function W can be expressed, for all
τ ∈ 2X , as

W (τ) =
∏
x∈τ

W+(x) ·
∏

x∈X\τ
W−(x)

for some functions W+(x),W−(x) : X → R. One can in-
terpret these literal-weight functions W as assigning a real-
valued weight to each literal: W+(x) to x and W−(x) to

¬x. It is common to restrict attention to weight functions
whose range is R or just the interval [0, 1].

When the formula ϕ is given in Conjunctive Normal Form
(CNF), computing the literal-weighted model count is #P-
Complete (Valiant 1979). Several algorithms and tools for
weighted model counting directly reason about the CNF rep-
resentation. For example, Cachet uses DPLL search com-
bined with component caching and clause learning to per-
form weighted model counting (Sang et al. 2004).

If ϕ is given in a compact representation — e.g., as a Bi-
nary Decision Diagram (BDD) (Bryant 1986) or as a Sen-
tential Decision Diagram (SDD) (Darwiche 2011) — com-
puting the literal-weighted model count can be done in time
polynomial in the size of the representation. One recent tool
for weighted model counting that exploits this is miniC2D,
which compiles the input CNF formula into an SDD and
then performs a polynomial-time count on the SDD (Oztok
and Darwiche 2015). Although usually more succinct than
a truth table, such compact representations may still be ex-
ponential in the size of the CNF formula in the worst case
(Bova et al. 2016).

2.2 Algebraic Decision Diagrams

The central data structure we use in this work is Algebraic
Decision Diagram (ADD) (Bahar et al. 1997), a compact
representation of a function as a directed acyclic graph. For-
mally, an ADD is a tuple (X,S, π,G), where X is a set of
Boolean variables, S is an arbitrary set (called the carrier
set), π : X → Z

+ is an injection (called the diagram vari-
able order), and G is a rooted directed acyclic graph satisfy-
ing the following three properties. First, every terminal node
of G is labeled with an element of S. Second, every non-
terminal node of G is labeled with an element of X and has
two outgoing edges labeled 0 and 1. Finally, for every path
inG, the labels of the visited non-terminal nodes must occur
in increasing order under π. ADDs were originally designed
for matrix multiplication and shortest path algorithms (Ba-
har et al. 1997). ADDs have also been used for stochastic
model checking (Kwiatkowska, Norman, and Parker 2007)
and stochastic planning (Hoey et al. 1999). In this work, we
do not need arbitrary carrier sets; it is sufficient to consider
ADDs with S = R.

An ADD (X,S, π,G) is a compact representation of a
function f : 2X → S. Although there are many ADDs rep-
resenting each such function f , for each injection π : X →
Z
+, there is a unique minimal ADD that represents f with

π as the diagram variable order, called the canonical ADD.
ADDs can be minimized in polynomial time, so it is typical
to only work with canonical ADDs. Given two ADDs repre-
senting functions f and g, the ADDs representing f + g and
f · g can also be computed in polynomial time.

The choice of diagram variable order can have a dramatic
impact on the size of the ADD. A variety of techniques ex-
ist to heuristically find diagram variable orders. Moreover,
since Binary Decision Diagrams (BDDs) (Bryant 1986) can
be seen as ADDs with carrier set S = {0, 1}, there is signif-
icant overlap with the techniques to find variable orders for
BDDs.
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Several packages exist for efficiently manipulating ADDs.
Here we use the package CUDD (Somenzi 2015), which sup-
ports carrier sets S = {0, 1} and (using floating-point arith-
metic) S = R. CUDD implements several ADD operations,
such as addition, multiplication, and projection.

3 Using ADDs for Weighted Model Counting

with Early Projection

An ADD with carrier set R can be used to represent both a
Boolean formula ϕ : 2X → {0, 1} and a weight function
W : 2X → R. ADDs are thus a natural candidate as a data
structure for weighted model counting algorithms.

In this section, we outline theoretical foundations for per-
forming weighted model counting with ADDs. We consider
first the general case of weighted model counting. We then
specialize to literal-weighted model counting of CNF for-
mulas and show how the technique of early projection can
take advantage of such factored representations of Boolean
formulas ϕ and weight functions W .

3.1 General Weighted Model Counting

We assume that the Boolean formula ϕ and the weight func-
tion W are represented as ADDs. The goal is to compute
W (ϕ), the weighted model count of ϕ w.r.t. W . To do this,
we define two operations on functions 2X → R that can be
efficiently computed using the ADD representation: product
and projection. These operations are combined in Theorem
1 to perform weighted model counting.

First, we define the product of two functions.

Definition 2. Let X and Y be sets of variables. The product
of functions A : 2X → R and B : 2Y → R is the function
A ·B : 2X∪Y → R defined for all τ ∈ 2X∪Y by

(A ·B)(τ) = A(τ ∩X) ·B(τ ∩ Y ).

Note that the operator · is commutative and associative,
and it has the identity element 1 : 2∅ → R (that maps ∅ to
1). If ϕ : 2X → {0, 1} and ψ : 2Y → {0, 1} are Boolean
formulas, the product ϕ · ψ is the Boolean function corre-
sponding to the conjunction ϕ ∧ ψ.

Second, we define the projection of a Boolean variable
x in a real-valued function A, which reduces the number
of variables in A by “summing out” x. Variable projection
in real-valued functions is similar to variable elimination in
Bayesian networks (Zhang and Poole 1994).

Definition 3. Let X be a set of variables and x ∈ X . The
projection of A : 2X → R w.r.t. x is the function ∃xA :
2X\{x} → R defined for all τ ∈ 2X\{x} by

(∃xA)(τ) = A(τ) +A(τ ∪ {x}).
One can check that projection is commutative, i.e., that
∃x∃yA = ∃y∃xA for all variables x, y ∈ X and functions
A : 2X → R. If X = {x1, x2, . . . , xn}, define

∃XA = ∃x1∃x2 . . . ∃xnA.

We are now ready to use product and projection to do
weighted model counting, through the following theorem.

Theorem 1. Let ϕ : 2X → {0, 1} be a Boolean formula
over a set X of variables, and let W : 2X → R be an arbi-
trary weight function. Then

W (ϕ) = (∃X(ϕ ·W ))(∅).

Theorem 1 suggests that W (ϕ) can be computed by con-
structing an ADD for ϕ and another for W , computing the
ADD for their product ϕ · W , and performing a sequence
of projections to obtain the final weighted model count. Un-
fortunately, this “monolithic” approach is infeasible in most
interesting cases: the ADD representation of ϕ ·W is often
too large, even with the best possible diagram variable order.

Instead, we next show a technique for avoiding the con-
struction of an ADD for ϕ ·W by rearranging the products
and projections.

3.2 Early Projection

A key technique in symbolic computation is early projec-
tion: when performing a product followed by a projection
(as in Theorem 1), it is sometimes possible and advanta-
geous to perform the projection first. Early projection is pos-
sible when one component of the product does not depend
on the projected variable. Early projection has been used in
a variety of settings, including database-query optimization
(Kolaitis and Vardi 2000), symbolic model checking (Burch,
Clarke, and Long 1991), and satisfiability solving (Pan and
Vardi 2005). The formal statement is as follows.
Theorem 2 (Early Projection). Let X and Y be sets of vari-
ables, A : 2X → R, and B : 2Y → R. For all x ∈ X \ Y ,

∃x(A ·B) = (∃xA) ·B.
As a corollary, for all X ′ ⊆ X \ Y ,

∃X′(A ·B) = (∃X′A) ·B.
The use of early projection in Theorem 1 is quite lim-

ited when ϕ andW have already been represented as ADDs,
since on many benchmarks both ϕ and W depend on most
of the variables. If ϕ is a CNF formula and W is a literal-
weight function, however, both ϕ and W can be rewritten as
products of smaller functions. This can significantly increase
the applicability of early projection.

Assume that ϕ : 2X → {0, 1} is a CNF formula, i.e.,
given as a set of clauses. For every clause γ ∈ ϕ, observe
that γ is a Boolean formula γ : 2Xγ → {0, 1} where Xγ ⊆
X is the set of variables appearing in γ. One can check using
Definition 2 that ϕ =

∏
γ∈ϕ γ.

Similarly, assume that W : 2X → R is a literal-weight
function. For every x ∈ X , define Wx : 2{x} → R to be the
function that maps ∅ to W−(x) and {x} to W+(x). One
can check using Definition 2 that W =

∏
x∈X Wx.

When ϕ is a CNF formula and W is a literal-weight func-
tion, we can rewrite Theorem 1 as

W (ϕ) =

(
∃X
(∏

γ∈ϕ

γ ·
∏
x∈X

Wx

))
(∅). (1)

By taking advantage of the associative and commutative
properties of multiplication as well as the commutative prop-
erty of projection, it is possible to rearrange Equation 1 in
order to apply early projection. We present an algorithm to
perform this rearrangement in the following section.
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Algorithm 1: ADD Literal-Weighted CNF Model Counting
Input: X: set of Boolean variables
Input: ϕ: nonempty CNF formula over X
Input: W : literal-weight function over X
Output: W (ϕ): weighted model count of ϕ w.r.t. W

1 π ← get-diagram-var-order(ϕ) /* injection π : X → Z
+ */

2 ρ← get-cluster-var-order(ϕ) /* injection ρ : X → Z
+ */

3 m← maxx∈X ρ(x)
4 for i = m,m− 1, . . . , 1
5 Γi ← {γ ∈ ϕ : get-clause-rank(γ, ρ) = i} /* collecting clauses γ with rank i */
6 κi ← {get-clause-ADD(γ, π) : γ ∈ Γi} /* cluster κi contains ADDs of clauses γ with rank i */
7 Xi ← Vars(κi) \

⋃m
p=i+1 Vars(κp) /* variables already placed in Xi will not be placed in X1, X2, . . . , Xi−1 */

8 for i = 1, 2, . . . ,m
9 if κi 
= ∅

10 Ai ←
∏

D∈κi
D /* product of all ADDs D in cluster κi */

11 for x ∈ Xi

12 Ai ← ∃x (Ai ·Wx) /* Wx : 2{x} → R, represented by an ADD */
13 if i < m
14 j ← choose-cluster(Ai, i) /* i < j ≤ m */
15 κj ← κj ∪ {Ai}
16 return Am(∅) /* Am : 2∅ → R */

4 Dynamic Programming for Model

Counting

In this section, we discuss an algorithm for performing
literal-weighted model counting of CNF formulas using
ADDs through dynamic-programming techniques.

Our algorithm is presented as Algorithm 1. Broadly, our
algorithm partitions the clauses of a formula ϕ into clusters.
For each cluster, we construct the ADD corresponding to the
conjunction of its clauses. These ADDs are then incremen-
tally combined via the multiplication operator. Throughout,
each variable of the ADD is projected as early as Theorem
2 allows (Xi is the set of variables that can be projected in
each iteration i of the second loop). At the end of the al-
gorithm, all variables have been projected, and the result-
ing ADD has a single node representing the weighted model
count. This algorithm can be seen as rearranging the terms
of Equation 1 (according to the clusters) in order to perform
the projections indicated by Xi at each step i.

The function get-clause-ADD(γ, π) constructs the
ADD representing the clause γ using the diagram vari-
able order π. The remaining functions that appear through-
out Algorithm 1, namely get-diagram-var-order,
get-cluster-var-order, get-clause-rank, and
choose-cluster, represent heuristics that can be used to
tune the specifics of the algorithm.

Before discussing the various heuristics, we assert the cor-
rectness of Algorithm 1 in the following theorem.

Theorem 3. Let X be a set of variables, ϕ be a nonempty
CNF formula over X , and W be a literal-weight func-
tion over X . Assume that get-diagram-var-order
and get-cluster-var-order return injections X →
Z
+. Furthermore, assume that all get-clause-rank and

choose-cluster calls satisfy the following conditions:

1. 1 ≤ get-clause-rank(γ, ρ) ≤ m,
2. i < choose-cluster(Ai, i) ≤ m, and
3. Xs ∩ Vars(Ai) = ∅ for all integers s such that i < s <

choose-cluster(Ai, i).
Then Algorithm 1 returns W (ϕ).

By Condition 1, we know the set {Γ1,Γ2, . . . ,Γm} forms
a partition of the clauses in ϕ. Condition 2 ensures that lines
14-15 place Ai in a cluster that has not yet been processed.
Also on lines 14-15, Condition 3 prevents Ai from skipping
a cluster κs which shares some variable y with Ai, as y will
be projected at step s. These three invariants are sufficient to
prove that Algorithm 1 indeed computes the weighted model
count of ϕ w.r.t. W . All heuristics we describe in this paper
satisfy the conditions of Theorem 3.

In the remainder of this section, we discuss a vari-
ety of existing heuristics that can be used as a part of
Algorithm 1 to implement get-diagram-var-order,
get-cluster-var-order, get-clause-rank, and
choose-cluster.

4.1 Heuristics for get-diagram-var-order
and get-cluster-var-order

The heuristic chosen for get-diagram-var-order in-
dicates the variable order that is used as the diagram variable
order in every ADD constructed by Algorithm 1. The heuris-
tic chosen for get-cluster-var-order indicates the
variable order which, when combined with the heuristic for
get-clause-rank, is used to order the clauses of ϕ. (BE
orders clauses by the smallest variable that appears in each
clause, while BM orders clauses by the largest variable.) In
this work, we consider seven possible heuristics for each
variable order: Random, MCS, LexP, LexM, InvMCS, In-
vLexP, and InvLexM.
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One simple heuristic for get-diagram-var-order
and get-cluster-var-order is to randomly order the
variables, i.e., for a formula over some set X of variables,
sample an injection X → {1, 2, . . . , |X|} uniformly at ran-
dom. We call this the Random heuristic. Random is a base-
line for comparison of the other variable order heuristics.

For the remaining heuristics, we must define the Gaifman
graph Gϕ of a formula ϕ. The Gaifman graph of ϕ has a
vertex for every variable in ϕ. Two vertices are connected
by an edge if and only if the corresponding variables appear
in the same clause of ϕ.

One such heuristic is called Maximum-Cardinality Search
(Tarjan and Yannakakis 1984). At each step of the heuristic,
the next variable chosen is the variable adjacent in Gϕ to
the greatest number of previously chosen variables (break-
ing ties arbitrarily). We call this the MCS heuristic for vari-
able order.

Another such heuristic is called Lexicographic search for
perfect orders (Koster, Bodlaender, and Van Hoesel 2001).
Each vertex of Gϕ is assigned an initially-empty set of ver-
tices (called the label). At each step of the heuristic, the next
variable chosen is the variable x whose label is lexicograph-
ically smallest among the unchosen variables (breaking ties
arbitrarily). Then x is added to the label of its neighbors in
Gϕ. We call this the LexP heuristic for variable order.

A similar heuristic is called Lexicographic search for min-
imal orders (Koster, Bodlaender, and Van Hoesel 2001). As
before, each vertex of Gϕ is assigned an initially-empty la-
bel. At each step of the heuristic, the next variable cho-
sen is again the variable x whose label is lexicographi-
cally smallest (breaking ties arbitrarily). In this case, x is
added to the label of every variable y where there is a path
x, z1, z2, . . . , zk, y in Gϕ such that every zi is unchosen and
the label of zi is lexicographically smaller than the label of
y. We call this the LexM heuristic for variable order.

Additionally, the variable orders produced by each of the
heuristics MCS, LexP, and LexM can be inverted. We call
these new heuristics InvMCS, InvLexP, and InvLexM.

4.2 Heuristics for get-clause-rank
The heuristic chosen for get-clause-rank indicates
the strategy used for clustering the clauses of ϕ. In this
work, we consider three possible heuristics to be chosen for
get-clause-rank that satisfy the conditions of Theo-
rem 3: Mono, BE, and BM.

One simple case is when the rank of each clause is con-
stant, e.g., when get-clause-rank(γ, ρ) = m for all
γ ∈ ϕ. In this case, all clauses of ϕ are placed in Γm,
so Algorithm 1 combines all clauses of ϕ into a single
ADD before performing projections. This corresponds to
the monolithic approach we mentioned earlier. We thus call
this the Mono heuristic for get-clause-rank. Notice
that the performance of Algorithm 1 with Mono does not
depend on the heuristic for get-cluster-var-order
or choose-cluster. This heuristic has previously been
applied to ADDs in the context of knowledge compilation
(Fargier et al. 2014).

Another, more complex heuristic assigns the rank of each
clause to be the smallest ρ-rank of the variables that ap-

pear in the clause. That is, get-clause-rank(γ, ρ) =
minx∈Vars(γ) ρ(x). This heuristic corresponds to bucket
elimination (Dechter 1999), so we call this the BE heuris-
tic. In this case, notice that every clause containing x ∈ X
can only appear in Γi with i ≤ ρ(x). It follows that x has al-
ways been projected from all clauses by the end of iteration
ρ(x) in the second loop of Algorithm 1 using BE.

A related heuristic assigns the rank of each clause to be
the largest ρ-rank of the variables that appear in the clause.
That is, get-clause-rank(γ, ρ) = maxx∈Vars(γ) ρ(x).
This heuristic corresponds to Bouquet’s Method (Bouquet
1999), so we call this the BM heuristic. Unlike the BE case,
we can make no guarantee about when each variable is pro-
jected in Algorithm 1 using BM.

4.3 Heuristics for choose-cluster
The heuristic chosen for choose-cluster indicates the
strategy for combining the ADDs produced from each clus-
ter. In this work, we consider two possible heuristics to use
for choose-cluster that satisfy the conditions of Theo-
rem 3: List and Tree.

One heuristic is when choose-cluster selects to
place Ai in the closest cluster that satisfies the conditions
of Theorem 3, namely the next cluster to be processed. That
is, choose-cluster(Ai, i) = i+1. Under this heuristic,
Algorithm 1 equivalently builds an ADD for each cluster and
then combines the ADDs in a one-by-one, in-order fashion,
projecting variables as early as possible. In every iteration,
there is a single intermediate ADD representing the combi-
nation of previous clusters. We call this the List heuristic.

Another heuristic is when choose-cluster selects to
placeAi in the furthest cluster that satisfies the conditions of
Theorem 3. That is, choose-cluster(Ai, i) returns the
smallest j > i such that Xj ∩ Vars(Ai) 
= ∅ (or returns
m, if Vars(Ai) = ∅). In every iteration, there may be mul-
tiple intermediate ADDs representing the combinations of
previous clusters. We call this the Tree heuristic.

Notice that the computational structure of Algorithm 1
can be represented by a tree of clusters, where cluster κi
is a child of cluster κj whenever the ADD produced from
κi is placed in κj (lines 14-15). These trees are always left-
deep under the List heuristic, but they can be more complex
under the Tree heuristic.

We can combine get-clause-rank heuristics and (if
applicable) choose-cluster heuristics to form cluster-
ing heuristics: Mono, BE − List, BE − Tree, BM − List,
and BM− Tree.

5 Empirical Evaluation

We implement Algorithm 1 using the ADD package CUDD
to produce ADDMC, a new weighted model counter. ADDMC
supports all heuristics described in Section 4. The ADDMC
source code and experimental data can be obtained from a
public repository (https://github.com/vardigroup/ADDMC).

We aim to: (1) find good heuristic configurations for our
tool ADDMC, and (2) compare ADDMC against four state-
of-the-art weighted model counters: Cachet (Sang et al.
2004), c2d (Darwiche 2004), d4 (Lagniez and Marquis
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Table 1: The numbers of benchmarks solved (of 1914) in 10
seconds by the best, second-best, median, and worst ADDMC
heuristic configurations.

Clustering Clus. var. Diag. var. Solved Name
BM-Tree LexP MCS 1202 Best1
BE-Tree InvLexP MCS 1200 Best2
BE-List LexP LexP 504 Median
BE-List Random Random 53 Worst

2017), and miniC2D (Oztok and Darwiche 2015). To ac-
complish this, we use a set of 1914 CNF literal-weighted
model counting benchmarks, which were gathered from two
sources.

First, the Bayes class1 contains 1091 benchmarks. The ap-
plication domain is Bayesian inference (Sang, Beame, and
Kautz 2005). The accompanied literal weights are in the in-
terval [0, 1].

Second, the Non-Bayes class2 contains 823 benchmarks.
This benchmark class is subdivided into eight families:
Bounded Model Checking (BMC), Circuit, Configuration,
Handmade, Planning, Quantitative Information Flow (QIF),
Random, and Scheduling (Clarke et al. 2001; Sinz, Kaiser,
and Küchlin 2003; Palacios and Geffner 2009; Klebanov,
Manthey, and Muise 2013). All of these benchmarks are
originally unweighted. As we focus in this work on weighted
model counting, we generate weights by, for each variable
x, randomly assigning: either weights W+(x) = 0.5 and
W−(x) = 1.5, or W+(x) = 1.5 and W−(x) = 0.5.3 Gen-
erating weights in this particular fashion results in a reason-
ably low amount of floating-point underflow and overflow
for all model counters.

5.1 Experiment 1: Comparing ADDMC Heuristics

ADDMC heuristic configurations are constructed from five
clustering heuristics (Mono, BE-List, BE-Tree, BM-List,
and BM-Tree) together with seven variable order heuristics
(Random, MCS, InvMCS, LexP, InvLexP, LexM, and In-
vLexM). Using one variable order heuristic for the cluster
variable order and another for the diagram variable order
gives us 245 configurations in total. We compare these con-
figurations to find the best combination of heuristics.

On a Linux cluster with Xeon E5-2650v2 CPUs (2.60-
GHz), we run each combination of heuristics on each bench-
mark using a single core, 24 GB of memory, and a 10-second
timeout.

Performance Analysis Table 1 reports the numbers of
benchmarks solved by four ADDMC heuristic configurations:
best, second-best, median, and worst (of 245 configurations
in total). Bouquet’s Method (BM) and bucket elimination
(BE) have similar-performing top configurations: Best1 and

1https://www.cs.rochester.edu/u/kautz/Cachet/
2http://www.cril.univ-artois.fr/KC/benchmarks.html
3For each variable x, Cachet requires W+(x)+W−(x) = 1

unless W+(x) = W−(x) = 1. So we use weights 0.25 and 0.75
for Cachet and multiply the model count produced by Cachet
on a formula ϕ by 2|Vars(ϕ)| as a postprocessing step.
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Figure 1: A cactus plot of the numbers of benchmarks solved
by the best, second-best, median, and worst ADDMC heuristic
configurations.

Best2. This shows that Bouquet’s Method is competitive
with bucket elimination.

See Figure 1 for a more detailed analysis of the runtime of
these four heuristic configurations. Evidently, some configu-
rations perform quite well while others perform quite poorly.
The wide range of performance indicates that the choice of
heuristics is essential to the competitiveness of ADDMC.

We choose Best1 (BM-Tree clustering with LexP clus-
ter variable order and MCS diagram variable order), which
was the heuristic configuration able to solve the most bench-
marks within 10 seconds, as the representative ADDMC con-
figuration for Experiment 2.

5.2 Experiment 2: Comparing Weighted Model
Counters

In the previous experiment, the ADDMC heuristic configura-
tion able to solve the most benchmarks is Best1 (BM-Tree
clustering with LexP cluster variable order and MCS dia-
gram variable order). Using this configuration, we now com-
pare ADDMC to four state-of-the-art weighted model coun-
ters: Cachet, c2d4, d4, and miniC2D. (We note that
Cachet uses long double precision, whereas all other
model counters use double precision.)

On a Linux cluster with Xeon E5-2650v2 CPUs (2.60-
GHz), we run each counter on each benchmark using a sin-
gle core, 24 GB of memory and a 1000-second timeout.

Correctness Analysis To compare answers computed by
different weighted model counters (in the presence of im-
precision from floating-point arithmetic), we consider non-
negative real numbers a ≤ b equal when: b − a ≤ 10−3 if
a = 0 or b ≤ 1, and b/a ≤ 1 + 10−3 otherwise.

Even with this equality tolerance, weighted model coun-
ters still sometimes produce different answers for the same

4c2d does not natively support weighted model counting. To
compare c2d to weighted model counters, we use c2d to com-
pile CNF into d-DNNF then use d-DNNF-reasoner (http://
www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html) to compute the
weighted model count. On average, c2d’s compilation time is
81.65% of the total time.
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Table 2: The numbers of benchmarks solved (of 1914) in
1000 seconds — uniquely (i.e., benchmarks solved by no
other solver), fastest, and in total — by five weighted model
counters and two virtual best solvers (VBS1 and VBS0).

Solvers Benchmarks solved
Unique Fastest Total

VBS1 (with ADDMC) – – 1771
VBS0 (without ADDMC) – – 1647
d4 12 283 1587
c2d 0 13 1417
miniC2D 8 61 1407
ADDMC 124 763 1404
Cachet 14 651 1383
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Figure 2: A cactus plot of the numbers of benchmarks solved
by five weighted model counters and two virtual best solvers
(VBS1, with ADDMC, and VBS0, without ADDMC).

benchmark due to floating-point effects. In particular, of
1008 benchmarks that are solved by all five model coun-
ters, ADDMC produces 7 model counts that differ from the
output of all four other tools. For Cachet, c2d, d4, and
miniC2D, the numbers are respectively 55, 0, 42, and 0. To
improve ADDMC’s precision, we plan as future work to inte-
grate a new decision diagram package, Sylvan (van Dijk
and van de Pol 2015), into ADDMC. Sylvan can interface
with the GNU Multiple Precision library to support ADDs
with higher-precision numbers.

Performance Analysis Table 2 summarizes the perfor-
mance of five weighted model counters (Cachet, ADDMC,
miniC2D, c2d, and d4) as well as two virtual best solvers
(VBS). For each benchmark, the solving time of VBS1 is
the shortest solving time among all five actual solvers. Sim-
ilarly, the time of VBS0 is the shortest time among four ac-
tual solvers, excluding ADDMC. Note that ADDMC uniquely
solves 124 benchmarks (that are solved by no other tool).
Additionally, ADDMC is the fastest solver on 639 other
benchmarks. So ADDMC improves the solving time of VBS1
on 763 benchmarks in total.

See Figure 2 for a more detailed analysis of the runtime
of all solvers. Evidently, VBS1 (with ADDMC) performs sig-
nificantly better than VBS0 (without ADDMC). We conclude
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Figure 3: A cactus plot of the number of benchmarks, in
total and solved by ADDMC, for various upper bounds on
the MAVC. The MVACs of the 1404 benchmarks solved by
ADDMC within 1000 seconds range from 4 to 246.

that ADDMC is a useful addition to the portfolio of weighted
model counters.

Predicting ADDMC Performance Generally, ADDMC can
solve a benchmark quickly if all intermediate ADDs con-
structed during the model counting process are small. An
ADD is small when it achieves high compression under a
good diagram variable order; predicting this a priori is diffi-
cult and is an area of active research. However, an ADD also
tends to be small if it has few variables, which occurs when
an ADDMC heuristic configuration results in many opportuni-
ties for early projection. Moreover, the number of variables
that occur in each ADD produced by Algorithm 1 can be
computed much faster than computing the full model count
(since we do not need to actually construct the ADDs).

Formally, fix an ADDMC heuristic configuration. For a
given benchmark, define the maximum ADD variable count
(MAVC) to be the largest number of variables across all
ADDs that would be constructed when running Algorithm
1. Using the heuristic configuration of Experiment 2 (Best1),
we were able to compute the MAVCs of 1906 benchmarks
(of 1914 in total). We were unable to compute the MAVCs
of the remaining 8 benchmarks within 10000 seconds due to
the large number of variables and clauses; these benchmarks
were also not solved by ADDMC.

Figure 3 shows the number of benchmarks solved by
ADDMC in Experiment 2 for various upper bounds on the
MAVC. Generally, ADDMC performed well on benchmarks
with low MAVCs. In particular, ADDMC solved most bench-
marks (1345 of 1425) with MAVCs less than 70 but solved
solved few benchmarks (12 of 379) with MAVCs greater
than 100.

Figure 4 shows the runtime of ADDMC on the 1404 bench-
marks ADDMC was able to solve in Experiment 2. In general,
ADDMC was slower on benchmarks with higher MAVCs.

From these two observations, we conclude that the MAVC
of a benchmark (under a particular heuristic configuration)
is a good predictor of ADDMC performance.
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Figure 4: A scatter plot of the solving time of ADDMC against
the MAVC for each of the 1404 benchmarks solved by
ADDMC within 1000 seconds.

6 Discussion

In this work, we developed a dynamic-programming frame-
work for weighted model counting that captures both bucket
elimination and Bouquet’s Method. We implemented this
algorithm in ADDMC, a new weighted model counter. We
used ADDMC to compare bucket elimination and Bouquet’s
Method across a variety of variable order heuristics on 1914
standard model counting benchmarks and concluded that
Bouquet’s Method is competitive with bucket elimination.

Moreover, we demonstrated that ADDMC is competitive
with existing state-of-the-art weighted model counters on
these 1914 benchmarks. In particular, adding ADDMC allows
the virtual best solver to solve 124 more benchmarks. Thus
ADDMC is valuable as part of a portfolio of solvers, and
ADD-based approaches to model counting in general are
promising and deserve further study. One direction for fu-
ture work is to investigate how benchmark properties (e.g.,
treewidth) correlate with the performance of ADD-based ap-
proaches to model counting. Predicting the performance of
tools on CNF benchmarks is an active area of research in the
SAT solving community (Xu et al. 2008).

Bucket elimination has been well-studied theoretically,
with close connections to treewidth and tree decompositions
(Dechter 1999; Chavira and Darwiche 2007). On the other
hand, Bouquet’s Method is much less well-known. Another
direction for future work is to develop a theoretical frame-
work to explain the relative performance between bucket
elimination and Bouquet’s Method.

In this work, we focused on ADDs implemented in the
ADD package CUDD. There are other ADD packages that
may be fruitful to explore in the future. For example,
Sylvan (van Dijk and van de Pol 2015) supports multi-
core operations on ADDs, which would allow us to investi-
gate the impact of parallelism on our techniques. Moreover,
Sylvan supports arbitrary-precision arithmetic.

Several other compact representations have been used
in dynamic-programming frameworks for related problems.
For example, AND/OR Multi-Valued Decision Diagrams
(Mateescu, Dechter, and Marinescu 2008), Probabilistic

Sentential Decision Diagrams (Shen, Choi, and Darwiche
2016), and Probabilistic Decision Graphs (Jaeger 2004) have
all been used for Bayesian inference. Moreover, weighted
decision diagrams have been used for optimization (Hooker
2013), and Affine Algebraic Decision Diagrams have been
used for planning (Sanner and McAllester 2005). It would be
interesting to see if these compact representations also im-
prove dynamic-programming frameworks for model count-
ing.
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