
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Accelerating Primal Solution Findings for
Mixed Integer Programs Based on Solution Prediction

Jian-Ya Ding,1 Chao Zhang,1 Lei Shen,1 Shengyin Li,1 Bing Wang,1∗ Yinghui Xu,1 Le Song2,3

1Artificial Intelligence Department, Zhejiang Cainiao Supply Chain Management Co., Ltd, Hangzhou, China
2Ant Financial Services Group, Hangzhou, China

3Georgia Institute of Technology, GA, USA
{jianya.djy, chao.zc, kenny.sl, shengyin.lsy, lingfeng.wb}@cainiao.com, renji.xyh@alibaba-inc.com, le.song@antfin.com

Abstract

Mixed Integer Programming (MIP) is one of the most widely
used modeling techniques for combinatorial optimization prob-
lems. In many applications, a similar MIP model is solved on
a regular basis, maintaining remarkable similarities in model
structures and solution appearances but differing in formu-
lation coefficients. This offers the opportunity for machine
learning methods to explore the correlations between model
structures and the resulting solution values. To address this
issue, we propose to represent a MIP instance using a tripartite
graph, based on which a Graph Convolutional Network (GCN)
is constructed to predict solution values for binary variables.
The predicted solutions are used to generate a local branching
type cut which can be either treated as a global (invalid) in-
equality in the formulation resulting in a heuristic approach
to solve the MIP, or as a root branching rule resulting in an
exact approach. Computational evaluations on 8 distinct types
of MIP problems show that the proposed framework improves
the primal solution finding performance significantly on a
state-of-the-art open-source MIP solver.

Introduction

Mixed Integer Programming (MIP) is widely used to solve
combinatorial optimization (CO) problems in the field of Op-
erations Research (OR). The existence of integer variables
endows MIP formulations with the ability to capture the dis-
crete nature of many real-world decisions. Applications of
MIP include production scheduling (Chen 2010), vehicle rout-
ing (Laporte 2009), facility location (Farahani and Hekmatfar
2009), to mention only a few. In many real-world settings,
homogeneous MIP instances with similar scales and com-
binatorial structures are optimized repeatedly but treated as
completely new tasks. These instances share remarkable sim-
ilarities in model structures and solution appearances, which
motivates us to integrate Machine Learning (ML) methods
to explore correlations between a MIP model’s structure and
its solution values to improve the solver’s performance.

Identifying correlations between problem structures and
solution values is not new, and is widely used as guidelines

∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for heuristics design for CO problems. These heuristic meth-
ods are usually human-designed priority rules to guide the
search directions to promising regions in solution space. For
example, the nearest neighbor algorithm (Cook 2011) for the
traveling salesman problem (TSP) constructs a solution by
choosing the nearest unvisited node as the salesman’s next
move, based on the observation that two distantly distributed
nodes are unlikely to appear consecutively in the optimal
route. Similar examples include the shortest processing time
first heuristic for flow shop scheduling (Pinedo 2012), the
first fit algorithm for bin packing (Dósa and Sgall 2013),
among many others. A major drawback of human-designed
heuristics is the lack of generalization to other problems,
where new domain knowledge has to be re-identified.

MIP models can describe CO problems of various types us-
ing a standard formulation strategy z = minAx≤b,x∈X cTx,
differing only in model coefficients A, b and c and integrality
constraints X . This makes it possible to explore connections
between problem structures and the resulting solution values
without prior domain knowledge. Notice that most MIP mod-
els are binary variables intensive1, a natural way to explore
hidden information in the model is to treat solution value
prediction of binary variables as binary classification tasks.
Major challenges in solution prediction lie in the implicit cor-
relations among decision variables, since a feasible solution
x is restricted by constraints in MIP, i.e., Ax ≤ b. Rather
than predicting each decision variable value isolatedly, we
propose a tripartite graph representation of MIP, where each
MIP instance is encoded as an undirected graph with three
types of nodes: decision variables nodes, constraints nodes
and the objective node. Correlations among variables are
reflected in embeddings of the trigraph where each vertex
maintains aggregate feature information from its neighbors.

Incorporating solution prediction results in MIP solving
process is not trivial. Fixing a single false-predicted deci-
sion variable can sometimes lead to the infeasibility of the
entire problem. Instead of utilizing the predicted solutions

1Take the benchmark set of MIPLIB 2017 (miplib2017 2018) as
an example, among all 240 MIP benchmark instances, 164 of them
are Binary Integer Linear Programming (BILP) problems, and 44
out of the 76 remainings are imbalanced in the sense that binary
variables account for more than 90% of all integer variables.

1452

directly, we identify “predictable” decision variables and use
this information to guide the Branch and Bound (B&B) tree
search to focus on “unpredictable” ones to accelerate conver-
gence. This is achieved by a novel labeling mechanism on the
training instances, where a sequence of feasible solutions is
generated by an iterated proximity search method (Fischetti
and Monaci 2014). Stable decision variables, of which the
value remain unchanged across these solutions, are recorded.
It is noticeable that although obtaining optimal solutions is
sometimes a difficult task, the stable variables can be viewed
as an easy-to-predict part that reflects the MIP’s local op-
timality structure. This labeling mechanism is very helpful
especially for difficult MIP instances when solving them to
optimality is almost impossible.

The overall framework of solution prediction based MIP
solving can be summarized as follows:
Training data generation: For a certain type of CO
problem, generate a set of p MIP instances I = {I1, . . . , Ip}
of similar scale from the same distribution D. For each
Ii ∈ I, collect variable features, constraint features, and
edge features, and use the iterated proximity search method
to generate solution labels for each binary variable in Ii.

GCN model training: For each Ii ∈ I, generate a tripartite
graph from its MIP formulation. Train a Graph Convolutional
Network (GCN) for binary variable solution prediction based
on the collected features, labels and trigraphs.

Application of solution prediction: For a new MIP instance
I from D, collect features, build the trigraph and use the GCN
model to make solution value predictions. The predicted so-
lutions are used to generate a local branching type cut which
is treated as a global (invalid) inequality in the formulation
resulting in a heuristic approach, or as a root branching rule
resulting in an exact approach to solve I .

Related work
With similar motivation, there are some recent attempts that
consider integrating ML and OR to solve CO problems. Dai
et al. combined reinforcement learning and graph embedding
to learn greedy heuristics for several optimization problems
over graphs. Li, Chen, and Koltun trained a graph convolu-
tional network to estimate the likelihood that a vertex in a
graph appears in the optimal solution. Selsam et al. proposed
a message passing neural network to solve SAT problems via
a supervised learning framework. Pointer Networks (or its
variants) with recurrent neural network (RNN) decoder are
designed to solve permutation related optimization problems
such as TSP and Vehicle Routing Problem (VRP) (Vinyals,
Fortunato, and Jaitly 2015), (Kool, van Hoof, and Welling
2018; Kool and Welling 2018) and (Nazari et al. 2018). Dif-
ferent from their settings, the proposed framework does not
restrict to certain graph-based problems but can adapt to a
variety of CO problems using a standard MIP formulation.

Quite related to our work, there is an increasing concern in
using ML techniques to enhance MIP solving performance.
Alvarez, Louveaux, and Wehenkel, Alvarez, Wehenkel, and
Louveaux, Khalil et al. used learning-based approaches to im-
itate the behavior of the so-called strong branching method,

a node-efficient but time-consuming branching variable se-
lection method in the B&B search tree. In a very recent work
by Gasse et al., a GCN model is trained to imitate the strong
branching rule. Our model is different from theirs in terms
of both the graph and network structure as well as the appli-
cation scenario of the prediction results. Tang, Agrawal, and
Faenza designed a deep reinforcement learning framework
for intelligent selection of cutting planes. He, Daume III,
and Eisner used imitation learning to train a node selection
and a node pruning policy to speed up the tree search in
the B&B process. Khalil et al. used binary classification to
predict whether a primal heuristic will succeed at a given
node and then decide whether to run a heuristic at that node.
Kruber, Lübbecke, and Parmentier proposed a supervised
learning method to decide whether a Danzig-Wolfe reformu-
lation should be applied and which decomposition to choose
among all possibles. Interested readers can refer to Bengio,
Lodi, and Prouvost for a comprehensive survey on the use of
machine learning methods in CO.

The proposed MIP solving framework is different from
previous work in two aspects:
Generalization: Previous solution generation method for CO
usually focus on problems with certain solution structures.
For example, applications of Pointer Networks (Vinyals, For-
tunato, and Jaitly 2015; Kool and Welling 2018) are only
suited for sequence-based solution encoding, and reinforce-
ment learning (Dai et al. 2017; Li, Chen, and Koltun 2018)
type decision making is based on the assumption that a fea-
sible solution can be obtained by sequential decisions. In
contrast, the proposed framework does not limit to problems
of certain types but applies to most CO problems that can be
modeled as MIPs. This greatly enlarges the applicable area
of the proposed framework.
Representation: Previous applications of ML techniques to
enhance MIP solving performance mainly use hand-crafted
features, and make predictions on each variable indepen-
dently. Notice that the solution value of a variable is strongly
correlated to the objective function and the constraints it
participates in, we build a tripartite graph representation for
MIP, based on which graph embedding technique is applied
to extract correlations among variables, constraints and the
objective function without human intervention.

The Solution Framework

Consider a MIP problem instance I of the general form:

min cTx (1)
s.t. Ax ≤ b, (2)

xj ∈ {0, 1}, ∀j ∈ B, (3)
xj ∈ Z, ∀j ∈ Q, xj ≥ 0, ∀j ∈ P, (4)

where the index set of decision variables U := {1, . . . , n} is
partitioned into (B,Q,P), and B,Q,P are the index set of
binary, general integer and continuous variables, respectively.
The main task here is to predict the probability that a binary
variable xj , j ∈ B takes value 1 (or zero) in the optimal
solution. Next, we describe in detail the tripartite graph repre-
sentation of MIP, the GCN model structure, and how solution
prediction results are incorporated to accelerate MIP solving.

1453

Graph Representation for MIP

Our main idea is to use a tripartite graph G = {V, E} to repre-
sent an input MIP instance I . In particular, objective function
coefficients c, constraint right-hand-side (RHS) coefficients
b and coefficient matrix A information is extracted from I to
build the graph. Vertices and edges in the graph are detailed
as follows and graphically illustrated in Fig 1.

Cons

Cons

Cons

Var

Obj

Var

Var

Cons

min c1x1 + c2x2 + . . . + cnxn

a11x1 + a12x2 + . . . + a1nxn ≤ b1

am1x1 + am2x2 + . . . + amnxn ≤ bm

. . .

Var Var Var

Obj

Figure 1: Transforming a MIP instance to a tripartiete graph

Vertices:
1) the set of decision variable vertices VV , each of which

corresponds to a binary variable in I .
2) the set of constraint vertices VC , each of which

corresponds to a constraint in I .
3) an objective function vertex o.

Edges:
1) v-c edge: there exists an edge between v ∈ VV and

c ∈ VC if the corresponding variable of v has a non-zero
coefficient in the corresponding constraint of c in the MIP
formulation.

2) v-o edge: for each v ∈ VV , there exists an edge between
v and o.

3) c-o edge: for each c ∈ VC , there exists an edge between
c and o.
Remark. The presented trigraph representation not only cap-
tures connections among the variables, constraints and objec-
tive functions but maintains the detailed coefficients numerics
in its structure as well. In particular, non-zero entries in coef-
ficient matrix A are included as features of v-c edges, entries
in objective coefficients c as features of v-o edges, and en-
tries in b as features of c-o edges. Note that the constraint
RHS coefficients b are correlated to the objective function by
viewing LP relaxation of I from a dual perspective.

Solution Prediction for MIP

We describe in Algorithm 1 the overall forward propagation
prediction procedure based on the trigraph. The procedure
consists of three stages: 1) a fully-connected “EMBEDDING”
layer with 64 dimension output for each node so that the
node representations are of the same dimension (lines 1-3
in the algorithm). 2) a graph attention network to transform
node information among connected nodes (lines 4-12). 3)
two fully-connected layers between variable nodes and the
output layer (line 13). The sigmoid activation function is
used for output so that the output value can be regarded as
the probability that the corresponding binary variable takes
value 1 in the MIP solution. The overall GCN is trained by
minimizing the binary cross-entropy loss.

Algorithm 1 Graph Convolutional Network (forward propa-
gation)

Input: Graph G = {V, E}; Input features {xj , ∀j ∈ V}; Num-
ber of iterations T ; Weight matrices Wt, ∀t ∈ {1, . . . , T}
for graph embedding; Output layer weight matrix Wout; Non-
linearity σ (the relu function); Non-linearity σs (the sigmoid
function); Neighborhood functionN ; Attention coefficients α.

Output: Predicted value of binary variables: zv, ∀v ∈ VV .
1: h0

v ← EMBEDDING(xv), ∀v ∈ VV
2: h0

c ← EMBEDDING(xc), ∀c ∈ VC
3: h0

o ← EMBEDDING(xo)
4: for t = 1, . . . , T do

5: ht
o ← σ

(
Wt

V o·CONCAT
(
ht−1

o ,
∑

v∈VV ∩N (o)

αvoh
t−1
v

))

6: for c in C do :

7: ht
o ← σ

(
Wt

oC · CONCAT
(
ht

o,h
t−1
c

))

8: ht
c ← σ

(
Wt

V c ·CONCAT
(
ht

o,
∑

v∈VV ∩N (c)

αvch
t−1
v

))

9: ht
o ← σ

(
Wt

Co · CONCAT
(
ht

o,
∑

c∈VC∩N (o)

αcoh
t
c

))

10: for v in V do :

11: ht
o ← σ

(
Wt

oV · CONCAT
(
ht

o,h
t−1
v

))

12: ht
v ← σ

(
Wt

Cv · CONCAT
(
ht

o,
∑

c∈VC∩N (v)

αcvh
t
c

))

13: zv ← σs

(
Wout · CONCAT

(
h0

v,h
T
v

))
, ∀v ∈ VV

Nodes’ representations in the tripartite graph are updated
via a 4-step procedure. In the first step (line 5 in Algorithm
1), the objective node o aggregates the representations of all
variable nodes {hv, v ∈ VV } to update its representation ho.
The “CONCAT” operation represents the CONCATENATE
function that joins two arrays. In the second step (lines 6-8),
{hv, v ∈ VV } and ho are used to update the representations
of their neighboring constraint node c ∈ VC . In the third
step (line 9), representations of constraints {hc, c ∈ VC} are
aggregated to update ho, while in the fourth step (lines 10-12),
{hc, c ∈ VC} and ho are combined to update {hv, v ∈ VV }.
See Fig. 2 for an illustration of information transition flow in
the trigraph. After T transitions, two fully-connected layers
coupled with a sigmoid activation function σs is used for
solution value prediction of each v ∈ VV (line 13).

The intuition behind Algorithm 1 is that at each iteration,
a variable node incrementally gathers more aggregation in-
formation from its neighboring nodes, which correspond to
the related constraints and variables in the MIP formulation.
It is worth mentioning that these transitions only extract
connection relations among the nodes, ignoring the detailed
coefficients numerics A, b and c. To enhance the representa-
tion ability of our model, we include an attention mechanism
to import information from the coefficients’ values.
Attention Mechanism: A distinct feature in the tripartite
graph structure is the heterogeneities in nodes and arcs.
Rather than using a shared linear transformation (i.e., weight
matrix) for all nodes (Veličković et al. 2017), we consider
different transformations in each step of graph embedding
updates, reflecting the importance of feature of one type of
nodes on the other. In particular, given node i of type Ti and

1454

Cons

Var

Obj

Var

Var

Cons

Cons

Var

Obj

Var

Var

Cons

Cons

Var

Obj

Var

Var

Cons

Cons

Var

Obj

Var

Var

Cons

Step 1 Step 2 Step 3 Step 4

Figure 2: Information transition flow in the trigraph convolu-
tional layer

The information transitions run consecutively as follows:
Step 1, transform variable nodes information to the objective
node; Step 2, transform the objective and variable nodes
information to constraint nodes; Step 3, transform constraint
nodes information to the objective node; Step.4, transform the
objective node and constraint nodes information to variable
nodes.

node j of type Tj , the attention coefficient which indicates
the importance of node i ∈ V from its neighbor j ∈ N (i) is
computed as:

αij = σs

(
Watt

Ti,Tj
· CONCAT

(
hi,heij ,hj

))
, (5)

where hi,hj ,heij are embeddings of node i, j ∈ V and edge
(i, j) ∈ E respectively, σs is the sigmoid activation function,
and Watt

Ti,Tj
is the attention weight matrix between type Ti

and Tj nodes. For each i ∈ V , the attention coefficient is
normalized cross over all neighbor nodes j ∈ N (i) using a
softmax function. With this mechanism, coefficients infor-
mation in A, b and c (all of which contained in the feature
vector of the edges) are incorporated to reflect edge connec-
tion importance in the graph.

Prediction-Based MIP Solving

Next, we introduce how the solution value prediction results
are utilized to improve MIP solving performance. One ap-
proach is to add a local branching (Fischetti and Lodi 2003)
type (invalid) global cut to the MIP model to reduce the
search space of feasible solutions. This method aims to iden-
tify decision variables that are predictable and stable, and
restrict the B&B tree search on unpredictable variables to
accelerate primal solution-finding. An alternative approach is
to perform an actual branching at the root node that maintains
global optimality. These two methods are detailed as follows.

a) Approximate approach. Let x̂j denote the predicted
solution value of binary variable xj , j ∈ B, and let S ⊆
B denote a subset of indices of binary variables. A local
branching initial cut to the model is defined as:

Δ(x, x̂,S) =
∑

j∈S:x̂k
j=0

xj +
∑

j∈S:x̂k
j=1

(1− xj) ≤ φ, (6)

where φ is a problem parameter that controls the maximum
distance from a new solution x to the predicted solution x̂.
Adding cuts with respect to subset S rather than B is due to
the unpredictable nature of unstable variables in MIP solu-
tions. Therefore, only those variables with high probability to
take value 0 or 1 are included in S . For the extreme case that

φ equals 0, the initial cut is equivalent to fixing variables with
indices in S at their predicted values. It is worth mentioning
that the inclusion of global constraint (6) shrinks the feasible
solution region of the original model, trading optimality for
speed as an approximate approach.

b) Exact approach. The proposed local branching type cut
can also be incorporated in an exact solver by branching on
the root node. To do this, we create two child nodes from the
root as follows:

Left: Δ(x, x̂,S) ≤ φ, Right: Δ(x, x̂,S) ≥ φ+ 1,

which preserves all feasible solution regions in the tree search.
After the root node branching, we switch back to the solver’s
default setting and perform an exact B&B tree search process.

Data Collection

Features: An ideal feature collection procedure should cap-
ture sufficient information to describe the MIP solving pro-
cess, and being of low computational complexity as well.
A good trade-off between these two concerns is to collect
features at the root node of the B&B tree, where the prob-
lem has been presolved to eliminate redundant variables and
constraints and the LP relaxation is solved. In particular, we
collect for each instance 3 types of features: variable features,
constraint features, and edge features. Features descriptions
are summarized in Table 1 in Appendix A.

As presented in the feature table, features of vari-
ables and constraints can be divided into three cat-
egories: basic features, LP features, and structure
features. The structure features (most of which can
be found in (Alvarez, Louveaux, and Wehenkel 2017;
Khalil et al. 2016)) are usually hand-crafted statistics to
reflect correlations between variables and constraints. It is
noticeable that our tripartite graph neural network model can
naturally capture these correlations without human expertise
and can generate more advanced structure information to
improve prediction accuracy. This will be verified in the
computational evaluations section.

Labels: To make predictions on solution values of binary
variables, an intuitive labeling scheme for the variables is to
label them with the optimal solution values. Note, however,
obtaining optimal solutions for medium or large scale MIP
instances can be very time-consuming or even an impossible
task. In the situation when optimal solutions are difficult to
obtain, we propose to identify stable and unstable variables in
solutions. This is motivated by the observation that solution
values of the majority of binary decision variables remain
unchanged across a series of different feasible solutions. To
be specific, given a set of K solutions {x̄1, . . . , x̄K} to a
MIP instance I , a binary variable xj is defined as unstable
if there exists some k1, k2 ∈ {1, . . . ,K} such that xk1

j �=
xk2
j , and as stable otherwise. Although obtaining optimal

solutions might be a difficult task, the stable variables can
be viewed as an easy-to-predict part in the (near) optimal
solutions. To generate a sequence of solutions to an instance,
we use the proximity search method (Fischetti and Monaci
2014). Starting from some initial solution x̄k with objective

1455

value cT x̄k, a neighborhood solution with the objective value
improvement being at least δ can be generated by solving the
following optimization:

min
∑

j∈B:x̄k
j=0

xj +
∑

j∈B:x̄k
j=1

(1− xj) (7)

s.t. cTx ≤ cT x̄k − δ, (8)
Ax ≤ b, (9)
xj ∈ {0, 1}, ∀j ∈ B, (10)
xj ∈ Z, ∀j ∈ G; xj ≥ 0, ∀j ∈ C, (11)

where the objective function represents the distance between
x̄k and a new solution x. Note that the above optimization is
computationally tractable since solving process can terminate
as soon as a feasible solution is found. By iteratively apply-
ing this method, we obtain a series of improving feasible
solutions to the original problem. Stable binary variables are
labeled with their solution values while the unstable variables
are marked as unstable and discarded from the training set. A
limitation of this labeling method is the inability of handling
the case when the initial feasible solution x̄0 is hard to obtain.

Remark. The logic behind the stable variable labeling
scheme is to explore local optimality patterns when global
optimality is not accessible. In each iteration of proximity
search, a neighboring better solution is found, with a few
flips on solution values of the binary variables. Performing
this local search step for many rounds can identify local min-
imum patterns which reflect domain knowledge of the CO
problem. Take the Traveling Salesman Problem (TSP) as an
example. Let zjl define whether node l is visited immediately
after node j. If j and l are geometrically far away from each
other, zjl is likely to be zero in all the solutions generated by
proximity search and being recorded by our labeling scheme,
reflecting the underlying local optimality knowledge for TSP.

Experimental Evaluations

Setup. To evaluate the proposed framework, we modify
the state-of-the-art open-source MIP solver SCIP (version
6.0.1) for data collection and solution quality comparison.
The GCN model is built using the Tensorflow API. All
experiments were conducted on a cluster of three 4-core
machines with Intel 2.2 GHz processors and 16 GB RAM.

Instances. To test the effectiveness and generality of the
prediction-based solution framework, we generate MIP
instances of 8 distinct types: Fixed Charge Network Flow
(FCNF), Capacitated Facility Location (CFL), Generalized
Assignment (GA), Maximal Independent Set (MIS), Multidi-
mensional Knapsack (MK), Set Covering (SC), Traveling
Salesman Problem (TSP) and Vehicle Routing Problem
(VRP). These problems are the most commonly encountered
NP-hard combinatorial optimizations in OR and are quite
general because they differ significantly in MIP structures
and solution structures. For each problem type, 200 MIP
instances of similar scales are generated. The number of
instances used for training, validation, and testing is 140, 20,
40 respectively. Parameter calibrations are performed on the

validation set, while prediction accuracy and solution quality
comparisons are evaluated on the test instances. Detailed
MIP formulation and instance parameters of each type are
included in Appendix B.

Data collection. In terms of feature collection, we im-
plemented a feature extraction plugin embedded in the
branching procedure of SCIP. In particular, variable features,
constraint features, and edge features are collected right
before the first branching decision is made at the root node,
where the presolving process, root LP relaxation, and root
cutting plane have completed. No further exploration of the
B&B search tree is needed and thus the feature collection
process terminates at the root node. Construction of the
tripartite graph is also completed at the root node where
SCIP is working with a transformed MIP model such that
redundant variables and constraints have been removed.
In terms of label collection, since optimal solutions to all
problem types can not be obtained within a 10000 seconds
time limit, we applied the proximity search method to label
stable binary variables. The initial solution x̄0 for proximity
search is obtained under SCIP’s default setting with a 300
seconds execution time limit. If SCIP fails to obtain an initial
feasible solution within the time limit, the time limit doubles
until a feasible initial solution can be found. Parameter δ
for the proximity search is set as 0.01 · (cT x̄0 − LB) where
LB is the lower bound. Each proximity search iteration
terminates as soon as a feasible solution is found. This
process generally converges within 20 to 40 iterations.

Parameter calibration. We applied the orthogonal initial-
ization for Wt, and updated Wt by ADAM with a 0.001
learning rate and a mini-batch size of 8. We decrease the
learning rate by a factor of 5 if the validation loss does not
decrease for 10 consecutive epochs and stop training for 50.

Table 1: Hyper-parameter selections for each problem type

FCNF CFL GA MIS MK SC TSP VRP

φ 0 0 5 10 10 0 0 5
η 0.80 0.95 0.99 0.90 0.80 0.90 0.90 0.95

The performance of the proposed framework benefits from
a proper selection of hyper-parameters φ and S . Let zj denote
the prediction probability that binary variable xj , j ∈ B takes
value 1 in the MIP solution. We sort xj in non-decreasing
order of min(zj , 1 − zj) and choose the first η · |B| vari-
ables as S . The strategy of tuning φ ∈ {0, 5, 10, 15, 20} and
η ∈ {0.8, 0.9, 0.95, 0.99, 1} is grid search, where the com-
bination of φ and η that results in best solution quality on
the validation set is selected. Table 1 summarizes φ and η
selections for each problem type.

Results of Solution Prediction

We demonstrate the effectiveness of the proposed GCN model
on prediction accuracy against the XGBoost (XGB) classifier
(Chen and Guestrin 2016). For XGB, only variable features
are used for prediction since it can not process the trigraph

1456

information. Noting that solution values of binary variables
are usually highly imbalanced, we use the average precision
(AP) metric (Zhu 2004) to evaluate the performance of the
classifiers. In particular, the AP value is defined as:

AP =

n∑
k=1

P (k)Δr(k), (12)

where k is the rank in the sequence of predicted variables,
P (k) is the precision at cut-off k in the list, and Δr(k) is the
difference in recall from k − 1 to k.

Table 2: Comparisons on the average precision metric

Basic Basic&structure All

Instances XGB GCN XGB GCN XGB GCN

FCNF 0.099 0.261 0.275 0.317 0.787 0.788
CFL 0.449 0.590 0.567 0.629 0.846 0.850
GA 0.499 0.744 0.750 0.797 0.936 0.937
MIS 0.282 0.355 0.289 0.337 0.297 0.325
MK 0.524 0.840 0.808 0.843 0.924 0.927
SC 0.747 0.748 0.748 0.753 0.959 0.959

TSP 0.327 0.358 0.349 0.353 0.401 0.413
VRP 0.391 0.403 0.420 0.424 0.437 0.459

Average 0.415 0.537 0.526 0.556 0.698 0.707

Table 2 describes the AP value comparison results for
the two classifiers under three settings: using only basic fea-
tures, using basic&structure features, and using all features
respectively. It is observed that the proposed GCN model
outperforms the baseline classifier in all settings. The per-
formance advantage is particularly significant in the basic
feature columns (0.537 by GCN against 0.415 by XGB),
where only raw coefficient numerics in MIP are used for
prediction. The other notable statistic in the table is that the
GCN model with only basic features is on average superior to
the XGB classifier with basic&structure features, indicating
that the proposed embedding framework can extract more
information compared to hand-crafted structure features used
in the literature (Alvarez, Louveaux, and Wehenkel 2017;
Khalil et al. 2016). For comparisons in the all features col-
umn, the advantage of GCN is less significant due to the
reason that high-level MIP structure information is also cap-
tured in its LP relaxations.

Figure 3: Accuracy under different prediction percentage

To help illustrate the predictability in solution values for

problems of different types, we present in Fig.3 the detailed
accuracy curve for each of the 8 problem types using the
GCN model with all features. The figure depicts the pre-
diction accuracy if we only predict a certain percentage of
the most predictable binary variables2. It can be observed
from the figure that solution values of most considered MIP
problems (such as FCNF, GA, MK, SC,TSP) are fairly pre-
dictable, with an almost 100% accuracy if we make solution
value prediction on the top 0-80% most predictable variables.
Among the tested problem types, solution values to MIS and
VRP problem instances are fairly unpredictable, which is con-
sistent with the hyper-parameter calibration outcomes that φ
takes value greater than 0.

Comparisons of solution quality

a) Approximate approach: To evaluate the value of incor-
porating the (invalid) global cut in MIP solving, we compare
the performance of prediction-based approximate approach
against that of the solver’s aggressive heuristics setting3. To
be specific, we modified SCIP’s setting to “set heuristics
emphasis aggressive” to make SCIP focus on solution find-
ing rather than proving optimality. For each problem type,
10 MIP instances are randomly selected from the 40 testing
instances for solution quality comparisons.

Notice that the proposed approximate approach does not
guarantee global optimality (i.e., does not provide a valid
lower bound), we use the primal gap metric (Khalil et al.
2017) to capture solver’s performance on primal solution
finding. In particular, the primal gap metric P-Gap(x̃) reports
the relative gap in the objective value of a feasible solution x̃
to that of the optimal (or best-known) solution x̃∗:

P-Gap(x̃) =
|cT x̃− cT x̃∗|

max{|cT x̃|, |cT x̃∗|}+ ε
× 100%, (13)

where ε = 10−10 is a small constant to avoid numerical error
when max{|cT x̃|, |cT x̃∗|} = 0. Since all problem types are
not solvable within a 10000 seconds time limit (under the
SCIP’s default setting without the global cut), x̃∗ is selected
as the best-known solution found by all tested methods.

Table 3 is a collection of solution quality results by the pro-
posed method with a 1000 seconds execution time limit. To
demonstrate the significance of performance improvement,
we allow the solver to run for 2-10 times the execution time
(i.e., 2000-10000 seconds) in aggressive heuristics setting.
It is revealed from the table that the proposed approximate
method (the GCN-A columns) gains remarkable advantages
in terms of the P-Gap metric to the SCIP’s aggressive heuris-
tics setting under the same time limit (the AGG1 column)
on all testing problems. Compared to the setting with 10000
seconds (the AGG10 column), the proposed framework still
maintains an average better P-Gap performance, indicating

2The predictability of a binary variable xj is measured by
max(zj , 1− zj).

3As far as we know, there are hardly any stable approximate
solvers for MIP and “set heuristics emphasis aggressive” is the most
relevant setting we find to accelerate primal solution-finding in the
SCIP’s documentation. Therefore we use this setting as a benchmark
for comparison.

1457

Table 3: Primal gap comparisons for the approximate approach

AGG1* AGG2 AGG5 AGG10 GCN-A

P-Gap(%) Heur-T(s) P-Gap Heur-T P-Gap Heur-T P-Gap Heur-T P-Gap Heur-T

FCNF 1.733 303.9 1.733 538.1 1.678 821.7 0.380 1182.8 0.000 1000.0
CFL 2.334 284.8 2.112 683.6 0.868 1594.0 0.206 2818.4 0.092 1000.0
GA 0.451 499.4 0.430 958.8 0.430 1992.1 0.430 3619.0 0.000 1000.0
MIS 10.292 352.5 6.125 480.0 5.083 575.0 5.083 696.2 1.042 1000.0
MK 0.003 233.1 0.003 378.4 0.000 665.5 0.000 1006.6 0.003 1000.0
SC 1.509 707.4 0.529 1120.5 0.383 1796.5 0.000 2851.1 0.164 1000.0
TSP 10.387 475.4 6.286 972.3 2.752 1896.0 1.981 2968.7 0.332 1000.0
VRP 3.096 381.6 3.096 756.9 1.177 1869.0 1.131 3800.5 0.896 1000.0

Average 3.726 404.8 2.539 736.1 1.546 1401.2 1.151 2367.9 0.316 1000.0
* AGG1 represents SCIP’s aggressive heuristics setting with 1× 1000 seconds execution time limit. Similarly, AGG2,

AGG5 and AGG10 correspond to aggressive heuristics setting with 2× 1000, 5× 1000 and 10× 1000 seconds time
limit respectively.

a 10 times acceleration in solution-finding, with the trade
of optimality guarantees. Note that SCIP with AGG setting
still spends quite some time proving optimality, we report
the average running time of heuristics for AGG (the Heur-T
columns). It is revealed from table 3 that AGG10 needs an
average higher running time (2367.9s) in heuristics compared
to the total running time (1000s) by GCN-A.

b) Exact approach To evaluate the value of performing an
actual branching at the root, we compare the performance
of the prediction-based exact approach against that of the
solver’s default setting with a 1000 seconds time limit. Be-
cause the exact approach provides a valid lower bound to
the original problem, we use the well-known optimality gap
metric O-Gap(x̃) to measure the MIP solving performance:

O-Gap(x̃) =
|cT x̃− LB|
|cT x̃|+ ε

× 100%, (14)

where x̃ and LB denote respectively the primal solution and
best lower bound obtained by a specific method.

Table 4: O-Gap comparisons for the exact approach (%)

FCNF CFL GA MIS MK SC TSP VRP

DEF 7.06 3.96 5.30 62.92 2.01 12.09 12.13 68.69
GCN-E 4.78 3.64 4.31 61.75 2.00 11.19 12.84 68.13

We conclude the experimental results in Table 4. The DEF
row corresponds to SCIP’s default setting and GCN-E corre-
sponds to the exact approach using the new root branching
rule. It is revealed from the table that GCN-E outperforms
DEF in terms of the optimality gap within the time limit.
This provides empirical evidence that the proposed method is
potentially useful for accelerating MIP to global optimality.

To help understand how the new branching rule acceler-
ates the MIP solving process, we plot the B&B tree of a
small-scale “CFL” instance in Fig. 4. It is observed from
the tree search process that the solver finds a good solution
quickly on the left tree, and goes to the right tree to get the

Figure 4: Visualization of the B&B tree after performing a
root branching based on GCN prediction.

optimal solution, and finally prove optimality by exploring
the remaining nodes on both sides.

Generalization to larger instances

The graph embedding framework endows the model to train
and test on MIP instances of different scales. This is impor-
tant for MIP solving since there is hardly any good strategy
to handle large-scale NP-hard MIP problems. To investigate
this, we generate 200 small-scale MIP instances for each
problem type and train our GCN model on these instances
and test its applicability in large-scale ones. Detailed statis-
tics of small and large instances are reported in Appendix B.

Table 5: Generalization ability of the proposed framework

Average precision Primal gap (%)

GCN GCNG* AGG1 GCN-A GCNG-A

FCNF 0.653 0.675 1.733 0.000 2.119
CFL 0.837 0.801 2.341 0.100 0.410
GA 0.963 0.873 0.661 0.211 0.016
MIS 0.091 0.104 2.223 1.136 1.087
MK 0.789 0.786 0.000 0.000 0.000
SC 0.878 0.843 1.349 0.000 0.215

TSP 0.396 0.343 10.061 0.000 4.802
VRP 0.358 0.321 4.408 1.254 1.239

Average 0.621 0.593 2.847 0.338 1.236
* GCNG is the GCN model trained on small-scale MIP instances.

GCNG-A is the approximate solving approach based on the
GCNG prediction model.

1458

It is revealed from table 5 that the GCN model maintains an
acceptable prediction accuracy degradation when the prob-
lem scale differs in the training and testing phase. Besides,
the prediction result is still useful to improve solver’s primal
solution finding performance.

Conclusions

We presented a supervised solution prediction framework to
explore the correlations between the MIP formulation struc-
ture and its local optimality patterns. The key feature of the
model is a tripartite graph representation for MIP, based on
which graph embedding is used to extract connection informa-
tion among variables, constraints and the objective function.
Through experimental evaluations on 8 types of MIP prob-
lems, we demonstrate the effectiveness and generality of the
GCN model in prediction accuracy. Incorporated in a global
cut to the MIP model, the prediction results help to accelerate
SCIP’s solution-finding process by 10 times on similar prob-
lems with a sacrifice in proving global optimality. This result
is inspiring to practitioners facing routinely large-scale MIPs
on which the solver’s execution time is unacceptably long
and tedious, while global optimality is not a major concern.

Limitations of the proposed framework are two-fold. First,
this method is better being applied to binary variable intensive
MIP problems due to the difficulties in solution value pre-
diction for general integer variables. Second, the prediction
performance degrades for problems without local optimality
structure where correlations among variables from the global
view can not be obtained from the neighborhood information
reflected in the MIP’s trigraph representation.

References
Alvarez, A. M.; Louveaux, Q.; and Wehenkel, L. 2017. A ma-
chine learning-based approximation of strong branching. IN-
FORMS Journal on Computing 29(1):185–195.
Alvarez, A. M.; Wehenkel, L.; and Louveaux, Q. 2016. On-
line learning for strong branching approximation in branch-and-
bound.
Bengio, Y.; Lodi, A.; and Prouvost, A. 2018. Machine
learning for combinatorial optimization: a methodological tour
d’horizon. arXiv preprint arXiv:1811.06128.
Chen, T., and Guestrin, C. 2016. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data mining,
785–794. ACM.
Chen, Z.-L. 2010. Integrated production and outbound distri-
bution scheduling: review and extensions. Operations research
58(1):130–148.
Cook, W. J. 2011. In pursuit of the traveling salesman: mathe-
matics at the limits of computation. Princeton University Press.
Dai, H.; Khalil, E.; Zhang, Y.; Dilkina, B.; and Song, L. 2017.
Learning combinatorial optimization algorithms over graphs.
In Advances in Neural Information Processing Systems, 6348–
6358.
Dósa, G., and Sgall, J. 2013. First fit bin packing: A tight anal-
ysis. In 30th International Symposium on Theoretical Aspects
of Computer Science (STACS 2013). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Farahani, R. Z., and Hekmatfar, M. 2009. Facility location:
concepts, models, algorithms and case studies. Springer.
Fischetti, M., and Lodi, A. 2003. Local branching. Mathemati-
cal programming 98(1-3):23–47.
Fischetti, M., and Monaci, M. 2014. Proximity search for 0-
1 mixed-integer convex programming. Journal of Heuristics
20(6):709–731.
Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and Lodi, A.
2019. Exact combinatorial optimization with graph convolu-
tional neural networks. arXiv preprint arXiv:1906.01629.
He, H.; Daume III, H.; and Eisner, J. M. 2014. Learning to
search in branch and bound algorithms. In Advances in neural
information processing systems, 3293–3301.
Khalil, E. B.; Le Bodic, P.; Song, L.; Nemhauser, G. L.; and
Dilkina, B. N. 2016. Learning to branch in mixed integer pro-
gramming. In AAAI, 724–731.
Khalil, E. B.; Dilkina, B.; Nemhauser, G. L.; Ahmed, S.; and
Shao, Y. 2017. Learning to run heuristics in tree search. In
26th International Joint Conference on Artificial Intelligence
(IJCAI).
Kool, W., and Welling, M. 2018. Attention solves your tsp.
arXiv preprint arXiv:1803.08475.
Kool, W.; van Hoof, H.; and Welling, M. 2018. Attention, learn
to solve routing problems! arXiv preprint arXiv:1803.08475.
Kruber, M.; Lübbecke, M. E.; and Parmentier, A. 2017. Learn-
ing when to use a decomposition. In International Conference
on AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, 202–210. Springer.
Laporte, G. 2009. Fifty years of vehicle routing. Transportation
Science 43(4):408–416.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial optimiza-
tion with graph convolutional networks and guided tree search.
In Advances in Neural Information Processing Systems, 537–
546.
2018. MIPLIB 2017. http://miplib.zib.de.
Nazari, M.; Oroojlooy, A.; Snyder, L.; and Takác, M. 2018.
Reinforcement learning for solving the vehicle routing problem.
In Advances in Neural Information Processing Systems, 9839–
9849.
Pinedo, M. 2012. Scheduling, volume 29. Springer.
Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.; and
Dill, D. L. 2018. Learning a sat solver from single-bit supervi-
sion. arXiv preprint arXiv:1802.03685.
Tang, Y.; Agrawal, S.; and Faenza, Y. 2019. Reinforcement
learning for integer programming: Learning to cut. arXiv
preprint arXiv:1906.04859.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.;
and Bengio, Y. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer net-
works. In Advances in Neural Information Processing Systems,
2692–2700.
Zhu, M. 2004. Recall, precision and average precision. Depart-
ment of Statistics and Actuarial Science, University of Waterloo,
Waterloo 2:30.

1459

