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Abstract

Electrical motors are the most important source of mechanical
energy in the industrial world. Their modeling traditionally
relies on a physics-based approach, which aims at taking their
complex internal dynamics into account. In this paper, we ex-
plore the feasibility of modeling the dynamics of an electrical
motor by following a data-driven approach, which uses only
its inputs and outputs and does not make any assumption on
its internal behaviour. We propose a novel encoder-decoder ar-
chitecture which benefits from recurrent skip connections. We
also propose a novel loss function that takes into account the
complexity of electrical motor quantities and helps in avoid-
ing model bias. We show that the proposed architecture can
achieve a good learning performance on our high-frequency
high-variance datasets. Two datasets are considered: the first
one is generated using a simulator based on the physics of
an induction motor and the second one is recorded from an
industrial electrical motor. We benchmark our solution using
variants of traditional neural networks like feedforward, con-
volutional, and recurrent networks. We evaluate various design
choices of our architecture and compare it to the baselines. We
show the domain adaptation capability of our model to learn
dynamics just from simulated data by testing it on the raw
sensor data. We finally show the effect of signal complexity
on the proposed method ability to model temporal dynamics.

1 Introduction

Electrical motors are so much a part of everyday life that
we seldom give them a second thought. For example, when
we switch on an electrical vehicle, we confidently expect
it to run rapidly up to the correct speed, provide acceler-
ation, stop when brakes are applied, and casually predict
faults to avoid future mishaps. Electrical motors have very
complex dynamics and it is essential to have a controller
that can provide robust control based on these dynamics.
Electrical motor controllers also provide protection and su-
pervision of the electro-mechanical system (Campbell 1987;
Sisking 1978). For these services, it is imperative to know the
dynamical physical model of electrical motors. Accurate dy-
namics is derived from the first principles of physics. These

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dynamical models are dependent on different electrical mo-
tor physical quantities like currents, voltages, speed, fluxes,
inductances, and resistances, which are measured directly or
indirectly using sensors or estimators. Accurately measur-
ing some of these quantities is hard due to the presence of
noise. Operating conditions also affect some of these quanti-
ties, one example being thermal evolution of resistances with
time. Therefore mathematical models cannot be fully trusted
in the design of controllers. A large number of simulations
and human expert knowledge is required to develop robust
controllers. The focus of this work is to model relationships
between different electrical quantities of an electrical motor.
We focus on deriving currents and electromagnetic torque
from voltages and speed recorded from electrical motors
using sensors.

Internet-of-Things (IoT) has made it possible to monitor
different electro-mechanical devices in real-time and also pro-
vides sensor data that can be used to learn the dynamics of the
system under consideration. End-to-end learning of temporal
dynamics from time-series data has been made easier due to
methods like Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN), and Long-Short Term Memory
(LSTM) structures. By providing a large amount of multi-
dimensional data, it has been shown that RNN and LSTM
approaches can model complex nonlinear feature interactions
which are crucial to model complex nonlinear dynamics.

In line with the current work of (Miller and Hardt 2019),
we found that one dimensional CNNs provide better results.
We modified CNNs into an encoder-decoder architecture and
incorporated recurrent skip connections between correspond-
ing layers of the encoder-decoder architecture. In order to
reduce the number of parameters, we further modified the
recurrent architecture by diagonalizing its weights. We com-
pared our proposed model with different benchmarks using
a novel metric which takes into account the complexity of
the predicted signals. We also proposed a novel loss function
that takes into account the complexity of the signal while
training the networks. We showed how using the proposed
loss function for training leads to better generalization.

This paper makes the following contributions:

• This is one of the first works addressing the problem of
learning nonlinear dynamics of electrical motors from
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recorded time-series data.
• We propose a new Encoder-Decoder architecture to learn

time-series relationship between different electrical quan-
tities.

• We validate our methodology on two datasets; a large
dataset of simulated electrical motor operations and a small
dataset of sensor data recorded from the real-world opera-
tions of electrical motors.

• We propose a novel loss function that uses fast variations
present in the electrical motor signals to avoid model bias.

• We analyse the capability of the proposed method by using
a new analysis technique and we demonstrate the transfer
learning capability of our approach.
The paper is structured as follows: Section 2 provides a

brief background on electrical motors and recent advances
in physics and time-series modeling. Section 3 describes the
data and more specifically how it is collected and prepro-
cessed. Section 4 describes the benchmark and the proposed
methods. Sections 5 and 6 contains experimental details and
the obtained results. In the last section, conclusions are drawn
and some possible extensions of this work are mentioned.

2 Background

The state space model of an induction motor is presented in
(Jadot et al. 2009). Modeling of electrical motors based on
analytical mechanics and energy consumption is presented
in (Jebai et al. 2014). Existing methods for designing a con-
troller for an induction motor can be done in two ways; when
perfect knowledge of the parameters is available (Espinosa-
Perez and Ortega 1994; Espinosa-Perez and Ortega 1995;
Nicklasson et al. 1997) and when there is an uncertainty asso-
ciated with the parameters estimation (Chan and Wang 1990;
Stephan, Bodson, and Chiasson 1992; Marino, Peresada, and
Tomei 1999; 2000). Electrical quantities like resistances and
inductances are roughly estimated in most of the applica-
tions. These quantities also vary with change in tempera-
ture of the electrical motor environment. The control law
is dependent on these quantities and measuring them re-
quires high precision sensors and numerous expensive ex-
periments. Due to this, acquiring perfect knowledge of the
parameters is very impractical and has very limited appli-
cability in industrial settings. Designing controllers in the
presence of parametric uncertainty is done by using adap-
tation schemes. Two methods of adaptation are time-scale
separation and time-varying adaptation (Anderson 1977;
Zhang 2002; Jadot et al. 2009). (Silva, Bazzi, and Gupta
2013) presents a neural network classifier for fault diagnosis
in electrical motor operations. They do not use dynamics
modeling and only rely on supervised labels (Murphey et
al. 2006), learn motor dynamics from simulated data and
perform fault detection in simulated motor operations.

The first use of neural networks to model physical phe-
nomena was presented in (Levin 1990). This paper presents
a multi-layered neural networks for nonlinear prediction and
system modeling from time-series data. Recently, deep neural
networks have been used in learning physical dynamics from
data in range of applications e.g., calorimetry (Carminati

et al. 2017), drone landing (Shi et al. 2019), and nonlinear
dynamics identification (Lusch, Kutz, and Brunton 2018).
Karpatne et al. presents a physics-guided neural network
(PGNN) that leverages the output of physics-based model
simulations along with observational features to generate
predictions using a neural network architecture (Karpatne et
al. 2017). Furthermore, they present a novel framework for
using physics-based loss functions in the learning objective
of neural networks, in order to ensure that the model predic-
tions not only show lower errors on the training set but are
also scientifically consistent with the known physics on the
unlabeled set.

RNN and LSTMs have been shown to be very good at
learning hidden temporal dynamics from data in various ap-
plications such as wind speed forecasting (Ghaderi, Sanan-
daji, and Ghaderi 2017), estimating missing measurements
in time series (Yoon, Zame, and Schaar 2017), and consumer
event forecasting (Laptev et al. 2017). Convolutional archi-
tectures have recently been shown to be competitive on many
sequence modelling tasks when compared to the de-facto stan-
dard of recurrent neural networks (RNNs), while providing
computational and modeling advantages due to inherent par-
allelism. In (Bai, Kolter, and Koltun 2018), authors provide
an empirical comparison between convolutional and recur-
rent network in modeling time-series. Aksan et al. presents a
stochastic variant of temporal convolutional network which
performs better than stochastic RNNs (Aksan and Hilliges
2019). Miller et al. have shown that in some cases, feed-
forward networks are better in modeling temporal patterns
than sequential networks (Miller and Hardt 2019).

Li et al. showed that parameters in recurrent neural net-
works can be decreased by making neurons independent of
each other (Li et al. 2018). In time-series prediction, different
events often have different importance. This can be achieved
using asymmetric loss function which weights distinct parts
of signal differently as shown in (Christoffersen and Diebold
1997).

3 Available datasets
It seems there is no large electrical motor operations dataset
available in the research community to train deep neural
networks. We thus introduce two different datasets for our
experiments; one dataset consists of simulations performed
by using the control law proposed in (Jadot et al. 2009) and
the second dataset is recorded from an industrial electrical
motor. Data is collected at a sampling rate of 250Hz. We
generate 100 hours of simulation data which cover a wide
range of operating conditions.The dataset consists of the fol-
lowing electrical quantities; currents id and iq, voltages ud

and uq, rotor speed ωr, stator pulsation ωs, and torque τem.
The indices d and q denote three phase quantities represented
in a two phase orthogonal rotating reference frame. The real
electrical motor data are collected from a 4-kilowatt induc-
tion motor. Data from 10 various operating conditions are
collected. Rotor speed and torque load are different in each
of the runs. In total, we collected 1207 seconds of raw sensor
data.

In our experiments, we split the data into four parts; train-
ing and validation parts consist of 70% and 30% of the sim-
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(a) Simulated sample. (b) Real world sample.

Figure 1: Electrical motor quantities showing first 40 seconds of an electrical motor operation.

Model
Architecture

Input Output
Shallow Deep

Feed-Forward 4 Linear 5 Linear Flattened vector Middle Value
RNN 1 Recurrent → 2 Linear 2 Recurrent → 2 Linear Channelized Same length as input

LSTM 1 LSTM → 2 Linear 2 LSTM → 2 Linear Channelized Same length as input
CNN 3 Conv → 2 Linear 4 Conv → 2 Linear Channelized Middle Value

Table 1: Architectural details of the benchmark models.

ulation data, respectively. We use 20% of the raw sensor
data to fine tune the model trained on the training set of the
simulated data and the rest for testing. We do not use sta-
tor pulsation ωs in our experiments since it has a trajectory
similar to ωr. To train our network, we normalize our data
between (−1, 1) as different electrical quantities have differ-
ent ranges. Normalized signals from the first 40 seconds of
a simulated sample and a raw sensor sample are shown in
figure 1. It can be seen that raw sensor data has short term
variations due to inherent noise present on the sensors.

4 Modeling

Benchmark Methods

To the best of our knowledge, this is the first work in model-
ing nonlinear dynamics of electrical motor and we would also
like to emphasize that the proposed datasets are challenging.
To illustrate this fact, we provide several benchmark meth-
ods that are derivatives of standard neural networks. Broadly,
feed-forward network, convolutional neural network, recur-
rent neural network and Long-Short Term Memory (LSTM)
structures are evaluated. Table 1 shows all the benchmark
networks. For each type of network, we try two variations,
shallow and deep, to evaluate the effect of the network depth
on their learning capability.

Feedforward Neural Networks We use feedfoward neu-
ral networks (FNNs) to show that our proposed problem and
dataset are quite difficult and FNNs have limited learning ca-
pabilities. Row 1 in table 1 provides the configuration details
of the two experimented networks.

Sequential Neural Networks Sequential neural networks
have been used widely to learn from sequential data. RNNs
and LSTMs are two of the most commonly used sequential

neural networks. Configuration details are shown in rows 2
and 3 in table 1.

Convolutional Neural Networks FNNs have very limited
learning capabilities when the input data is complex like se-
quential or multidimensional. Recently, convolutional neural
networks (CNNs) have been shown to provide competitive
performances on sequential data. The configuration of bench-
mark for CNNs is shown in row 4 of table 1.

Proposed Method

Traditionally, sequential networks have been used to model
temporal dynamics. In our experiments, we found that RNNs
and LSTMs do not provide as good learning capability as
one dimensional CNNs. Since our task is to perform multi-
variate prediction over the same length as the input, we use
an architecture where all layers are made of convolutions.
We then carefully introduce several intuitive modifications to
the encoder-decoder architecture which leads to a better and
parameter efficient model.

Encoder-Decoder Network To capture temporal dynam-
ics from complete input and output window we introduce
an encoder-decoder network. It consists of encoding and de-
coding blocks with convolutional and deconvolutional layers,
respectively. The convolutional and deconvolutional blocks
are followed by ReLU activations. We do not use pooling as
in our experiments we found that they deteriorate the results.

Encoder-Decoder Network with Skip Connection It has
been shown that adding skip connection to encoder-decoder
helps in transferring high level features directly from one
encoding layer to its corresponding decoding layer (Mao,
Shen, and Yang 2016). We also introduce skip connections
between encoding and decoding layers.
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Figure 2: Proposed architecture.

Encoder-Decoder Network with Recurrent Skip Connec-
tion Convolution operations are windowed over the kernel
size, this means that convolution cannot learn temporal rela-
tionships which are out of the kernel sized windows. Adding
recurrent layer over convolutional features can overcome this
issue. This also helps in learning temporal patterns in the
latent space. We add recurrent layers after every encoding
layers. The output of the recurrent layer is then sent to the
corresponding decoding layers.

Encoder-Decoder Network with Bidirectional Recurrent
Skip Connection Bidirectional RNNs help in learning tem-
poral patterns in both direction. For our use case, as we want
to predict for each time step of the input window. Therefore,
we also use bidirectional RNNs.

Encoder-Decoder Network with Bidirectional Diagonal-
ized Recurrent Skip Connection Vanilla RNNs have a
high number of parameters due to matrix multiplications be-
tween weights and features. Diagonalizing weights in the
recurrent unit decreases the number of parameters.

The hidden state update equation of an RNN is given by:

ht = tanh(Wxt + Uht−1 + b) (1)
where xt ∈ R

M and ht ∈ R
N are the input and hidden

state at time t, respectively. W ∈ R
N×M , U ∈ R

N×N , and
b ∈ R

N are the weights for the input and the hidden vector,
and the bias of the neurons. We propose to impose diagonal
structures for the weight matrices W and U by setting N =
M . Let the diagonal vector of entries be denoted by vectors w
and u, respectively. Practically, this amounts to replacing the
matrix multiplication operations with Hadamard products �
of the involved vectors. The diagonalized recurrent network
is described as:

ht = tanh(w � xt + u� ht−1 + b) (2)
where w ∈ R

M , u ∈ R
M , and b ∈ R

M are input weights.

Total Variation Weighted Mean Square Loss

In real world usage of electrical motors, large variations
in the signals occurs less often than small variations. We
observe this effect in our dataset, which causes model bias
toward small variations when trained with mean square loss.
This is not a desirable behavior if the learned model is used
in controllers. To avoid this problem, we propose a novel
asymmetric loss function that takes into account the signal
variations:

LTV-WeightMSE =
1

N

N∑

i=1

T−1∑

t=1

|yit−yit+1|
1

T

T∑

t=1

(yit−ŷit)
2 (3)

where yit and ŷit are the values of output and predicted sample
i at time-step t, respectively. N is the number of training
samples where each sample is of duration T .

5 Experiments

For all our experiments we use an Ubuntu 18.04 OS with
V100 GPU. PyTorch is employed to implement the bench-
mark and proposed architectures. Simulation data are col-
lected from a Simulink model which is heavily used in the
motor control industry. To show the requirements of the pro-
posed method and why benchmark methods fail, we perform
extensive experiments. We vary our architecture by trying
different input lengths, number of layers, and RNN/LSTM
hidden vector lengths. We try the following input lengths
{5,10,15,20,25,50,100,200} and find out that an input length
greater than 100 is better at capturing the motor operation
dynamics. Depending on the architecture, different input
and output structures are required. Feed-forward networks
take a flattened vector and predict a single output which is
the middle value of the output signal. RNNs and LSTMs
take channelized input and predict output of the same length.
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Model Window Size Parameters MAE SMAPE R2

Shallow Feed-Forward 25 751617 77.76 9.79% -0.59
Deep Feed-Forward 20 1118209 78.91 8.53% -0.39

Shallow RNN 100 9889 77.97 8.5% -0.3
Deep RNN 150 12001 78.26 7.76% -0.35

Shallow LSTM 50 13441 79.39 6.41% -0.26
Deep LSTM 100 21889 79.58 6.29% -0.11

Shallow CNN 100 518721 79.51 6.22% -0.13
Deep CNN 100 650049 79.69 6.13% -0.14

Shallow 100 309185 80.63 5.02% 0.08
Deep 100 1096385 81.21 4.57% 0.29
Skip 100 364801 28.96 3.71% 0.42

RNN-Skip 100 638145 28.18 3.42% 0.43
BiRNN-Skip 100 967105 27.96 3.31% 0.41

DiagBiRNN-Skip 100 618465 26.88 1.09% 0.95

Table 2: Experimental details and results for the benchmark models and the proposed model variants obtained on the simulated
validation set. First 8 rows show results for the benchmark models and last 6 rows show results for the variants of the proposed
model. Average of the three output quantities; currents id and iq and electromagnetic torque τem is shown.

CNNs take channelized input and predict middle value of the
output signal.

In encoder-decoder variations where an RNN is used, the
hidden vector size is the same as the number of features in the
input vector. In the encoder-decoder network the input and
output lengths are the same. We train all our models using the
proposed TV-weighted mean square loss function. To find the
best architecture, we use the validation set of the simulated
data. Then we fine-tune the best model on the training set
of the raw data and test it on the raw data test set. We also
train the best performing model using mean square loss to
compare it with the proposed loss function.

To evaluate the capability of the proposed method, we use
different metrics allowing us to compare the performance
at global and local scope of the input signal. To analyse the
learning capability at global scope, we report mean abso-
lute error (MAE), symmetric mean absolute percentage error
(SMAPE), and coefficient of determination R2 (Cameron
and Windmeijer 1997).

MAE(y, ŷ) =
1

T

T∑

t=1

|yt − ŷt| (4)

SMAPE(y, ŷ) =
100

T

T∑

t=1

|ŷt − yt|
|ŷt|+ |yt| (5)

R2(y, ŷ) = 1−
∑T

t=1(ŷt − ȳ)2
∑T

t=1(yt − ȳ)2
(6)

where yt is the ground truth, ŷt is the predicted output of the
model at time t, and T is the total experiment duration. ȳ
denotes the mean of ground truth y.

MAE, SMAPE, and R2 values do not provide enough infor-
mation about the signal parts where the model is performing
poorly or very well. Thus, we compute the signal complexity
(SC) on sliding windows over the ground truth signal and plot

it versus the corresponding window SMAPE value computed
between the ground truth and the predicted signal. The signal
complexity is given by SCy =

∑W−1
t=1 |yt−yt−1| for a small

window length W . All metrics are reported on the original
range of the respective quantities after re-scaling.

6 Results

We provide results for the benchmark models and the varia-
tions of the proposed architecture. The first eight rows of table
2 show the results obtained by different benchmark models.
Window size column shows the input length on which the
best result was obtained. Hidden vector size for both RNN
and LSTM is 32. The number of parameters is also reported
for all the models. For each of them we report MAE, SMAPE,
and R2 values. The average of the three output quantities are
provided; current id, current iq, and electromagnetic torque
τem. All results were obtained on the validation set of the
simulated data. Among benchmark models, we observe that
MAE values are very close for all the models. But when we
compare SMAPE and R2 values, deep CNN and deep LSTM
come out to be the best. In our experiments, we observe
that the models perform better when the input length is 100
or more. For all the models, the performance gap between
shallow and deep variants is small. This means that the net-
work depth provides little advantage in learning nonlinear
dynamics of electrical motors.

Based on the results obtained from the benchmark meth-
ods, we fix the input size to 100 for all our proposed model
variants. The last 6 rows of table 2 show the results of the
proposed model variants trained and validated on the sim-
ulated data. First and second rows show the results of the
shallow and deep variant of the encoder-decoder architecture.
We see that MAE is still comparable to the benchmark mod-
els but SMAPE and R2 value improves. Third row shows
the result of the model where skip connections have been
added between encoder-decoder. MAE gets better in this case.
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(a) Current id (b) Current iq (c) Torque τem

Figure 3: Comparison between the proposed TV-weighted MSE loss and MSE loss used to train the proposed network. TV-
weighted MSE is able to learn about signal windows which have a lot of variations.

Quantity
MSE Loss TV-weighted MSE Loss

MAE SMAPE R2 MAE SMAPE R2

id (A) 28.1351 0.9702% 0.6572 27.9123 0.4619% 0.9224
iq (A) 26.8912 2.3925% 0.9507 26.5234 1.9014% 0.9631

τem (Nm) 26.2321 1.5839% 0.9247 26.1978 0.9193% 0.9652

Table 3: Performance of proposed encoder-decoder with diagonalized recurrent skip connection model when trained using MSE
loss and the proposed TV-weighted MSE loss. Results were obtained on the simulated data validation set.

Quantity
Simulated Model Fine-tuned Model

MAE SMAPE R2 MAE SMAPE R2

id (A) 39.8392 4.1029% 0.3829 35.3167 2.6429% 0.5637
iq (A) 47.3818 6.3729% 0.4113 42.9472 5.2841% 0.4936

τem (Nm) 38.5628 3.8128% 0.4997 32.3819 2.3891% 0.6017

Table 4: Results obtained for each of the output quantity on the raw test set. ‘Simulated Model‘ column shows the results of the
model trained on the simulated data and ‘Fine-tuned Model‘ column shows the results of the model fine-tuned on the raw sensor
data.

Fourth and fifth rows correspond to recurrent skip connec-
tions with unidirectional and bidirectional recurrence, respec-
tively. Having recurrence in skip connections improves MAE
and SMAPE values but comes at the cost of an increased
number of parameters. It can be seen that bidirectionality has
a positive effect on MAE and SMAPE. Last row shows the
best version of our encoder-decoder model, where we replace
RNNs in skip connections with diagonalized RNNs. This
model outperforms all the methods and has fewer parameters
when compared to other RNN variants.

Table 3 shows the results obtained by the proposed model
when MSE loss and TV-weighted MSE loss were used in
training. All three metrics for all three quantities improve
when the proposed TV-weighted MSE loss is used in training
the DiagBiRNN-Skip Encoder-Decoder network. Figure 3
shows how the SMAPE values increase when signal com-
plexity increases, and compares the results with both loss
functions. The SMAPE vs SC plots are 2D histograms where
color intensity of each box represent the number of samples
that are in that bin. We see that signal parts with higher signal
complexity occur less often. Our model trained with MSE
loss is able to predict more accurately parts of signal with
small signal complexity. We observe that the model trained

using TV-WeightMSE loss overcomes this issue.
Table 4 shows the results of simulated model and model

fine-tuned on the raw data training set when tested on the raw
data test set. It can be seen that the proposed model is able
to learn the temporal dynamics of each of the quantities very
well just from the simulated data. When the model is fine-
tuned on the sensor data, it seems to be able to learn about
the noise associated with the sensors and yields better results.
Figure 4 shows the SMAPE vs signal complexity graph for
the three output quantities obtained from the simulated and
fine-tuned models. We observe that current iq and torque τem
have some signal parts which are more complex than current
id. Figure 5 shows the results for one of the raw samples
from the test set. It can be seen that the model trained on
the simulated data has some offset in its prediction whereas
the model fine-tuned on the sensor data is much closer to the
ground truth, even if it is still not perfect.

7 Conclusion

A novel problem has been investigated: the learning of elec-
trical motor dynamics from time-series sensor data. We also
have presented a novel encoder-decoder architecture that
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(a) Current id (b) Current iq (c) Torque τem

Figure 4: Comparison of simulated and fine-tuned model using SMAPE vs Signal Complexity graph.

(a) Current id (b) Current iq (c) Torque τem

Figure 5: Predicted result of one of the experiments from test set.

uses diagonalized recurrent skip connections to learn the
complex temporal dynamics. To learn the model, a novel
loss function has been introduced that avoids prediction bias.
We have used transfer learning to fine tune a model trained
on large simulated data on a small raw sensor dataset. Our
experiments have shown the promising performance of the
proposed method on a noisy sensor dataset collected in an in-
dustrial context. We have also carried out a detailed analysis
at the global and the local scope of the prediction performed
on the test data. Our results show the feasibility of AI solu-
tions in modeling electrical motor dynamics, thus opening a
new avenue of research in this area.
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