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Abstract

Partial (replication) index tracking is a popular passive in-
vestment strategy. It aims to replicate the performance of a
given index by constructing a tracking portfolio which con-
tains some constituents of the index. The tracking error op-
timisation is quadratic and NP-hard when taking the �0 con-
straint into account so it is usually solved by heuristic meth-
ods such as evolutionary algorithms. This paper introduces a
simple, efficient and scalable connectionist model as an al-
ternative. We propose a novel reparametrisation method and
then solve the optimisation problem with stochastic neural
networks. The proposed approach is examined with S&P 500
index data for more than 10 years and compared with widely
used index tracking approaches such as forward and back-
ward selection and the largest market capitalisation meth-
ods. The empirical results show our model achieves excellent
performance. Compared with the benchmarked models, our
model has the lowest tracking error, across a range of portfo-
lio sizes. Meanwhile it offers comparable performance to the
others on secondary criteria such as volatility, Sharpe ratio
and maximum drawdown.

Introduction

The efficient market hypothesis (EMH) is a financial the-
ory primarily proposed by Samuelson (Samuelson 1965) and
Fama (Fama 1969). It states that market prices always con-
tain all of the available information, so they reflect what a
company is truly worth. According to the EMH, stocks are
traded at their fair values. Therefore, it should be impossible
for investors to outperform the overall market because they
are not able to buy undervalued or sell overvalued stocks.
There has been a long debate about whether the EMH holds
true in reality. Investors who believe the EMH mainly adopt
passive investment strategies to match, as closely as possi-
ble, the performance of a specific index such as S&P 500.
Other investors believe that can select stocks expertly to
build portfolios that generate consistent excess returns and
beat the market. These approaches are called active invest-
ment strategies. Both types of approaches offer value to in-
vestors. However, in recent decades, there has been a sub-
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stantial shift in the asset management industry from active
to passive investment strategies as many actively managed
funds fail to outperform the market (Barber and Odean 2000;
Anadu et al. 2018).

Index tracking (or replication) is a popular passive invest-
ment strategy. It attempts to construct a portfolio of stocks
or financial products to replicate the performance of an in-
dex. The constructed portfolio is called the tracking portfolio
and the chosen index is called the benchmark. How well the
constructed portfolio is tracking the index is measured by
the tracking error, which is the difference between the index
performance and the tracking portfolio performance.

Methods of constructing a tracking portfolio can be di-
vided into two groups: full replication and partial repli-
cation. Full replication involves holding all of the stocks
that constitute the chosen index, in their respective weights.
It is the most intuitive and transparent index tracking ap-
proach. Since the tracking portfolio mirrors the index, its
returns should closely track the returns of the index in a
frictionless market (i.e., a financial market without trans-
action costs). However, in practice, full replication may
not be the most efficient strategy, due to the higher trans-
action costs involved in holding a large number of in-
dex constituents with frequent rebalancing, churn in index
members, and illiquid assets (Strub and Baumann 2018;
Benidis, Feng, and Palomar 2018). In contrast, partial repli-
cation, as the name implies, only invests in a limited number
of index constituents. It usually incurs a larger tracking er-
ror but involves smaller transaction costs because the track-
ing portfolio only contains a subset of stocks from the index.
Also, it involves rebalances at lower frequency as full repli-
cation usually requires daily rebalance.

Due its obvious advantages, partial replication approaches
have been well studied by academics and financial prac-
titioners. These approaches must address two fundamental
issues: asset selection and asset allocation. The former an-
swers the question which stocks should be selected into the
tracking portfolio while the latter answers the question how
much capital should be allocated to each of the selected
stocks. The two issues can be solved either sequentially or
jointly through optimisation techniques and we provide a
short review of related literature later.
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In this paper, we discuss a new partial replication method.
Specifically, we formulate the index tracking as a regression
problem whose objective is to minimise the tracking error
and the weights correspond to the amount to invest in each
stock. These weights are therefore subject to constraints in-
cluding: (i) a long-only strategy where each weight is non-
negative; (ii) full capital allocation, so all weights must sum
to one; and (iii) the �0 norm which determines the tracking
portfolio size via enforcing weight sparsity. This full prob-
lem is NP-hard, so it is usually solved by heuristic meth-
ods. For example, evolutionary algorithms have been widely
employed in many previous studies (Beasley, Meade, and
Chang 2003; Ni and Wang 2013; Li, Sun, and Bao 2011).
Here we revisit this optimisation problem from a different
angle, proposing a novel reparametrisation that enables it
to be solved by simple first-order optimisation methods like
gradient descent. In our reparametrised optimisation prob-
lem, weights are learnt through stochastic neural networks.
We evaluate the proposed approach with S&P 500 index data
and compare it with the forward selection, backward selec-
tion and largest market capitalisation methods. Our approach
provides superior tracking accuracy compared to all these
widely used financial methods, and across different track-
ing portfolio sizes. On secondary metrics such as volatil-
ity, Sharpe ratio and maximum drawdown, our model offers
comparable performance to the alternatives.

There are two distinctive features or contributions of
our study in this paper. First, the proposed index tracking
approach solves a typical partial replication optimisation
problem with stochastic neural networks by using a novel
reparametrisation method. To the best of our knowledge, this
is one of the few studies that discusses the methodologies
for this topic from a connectionist perspective and our ap-
proach is simple, efficient and scalable compared to com-
monly used heuristic alternatives. Second, we perform thor-
ough and large scale experiments to validate the proposed
model and offer deep insights. For example, we use over a
decade of data from for back-testing, from 31 March 2006
to 31 October 2018. This is a much longer horizon than most
existing studies in the literature. We also take the transaction
costs into account and examine different tracking portfolio
sizes. This thorough evaluation confirms that our approach
is robust under various real-world investing scenarios.

Related Work
As mentioned earlier, stock selection and capital allocation
are the two fundamental issues for partial (replication) in-
dex tracking (Garcı́a, Guijarro, and Oliver 2017). The former
concerns determining which stocks should be included in
the portfolio while the latter aims to optimally allocate cap-
ital among the chosen stocks to minimise the tracking error.
Previous studies can be broadly clustered into two groups
according to whether these two issues are solved separately
or jointly.

The first group of methods address these issues in two se-
quential stages. As the second stage is usually formulated
as a regression problem, where the optimal weights of the
tracking portfolio are determined by using quadratic pro-
gramming, the major differences between research methods

in this group lie in the techniques used for stock selection in
the first stage. For example, hierarchical clustering was em-
ployed to select stocks from the index constituents which
have similar return performances (Focardi and Fabozzi
2004; Dose and Cincotti 2005). Stocks were also selected
based on their factor replicating ability (Corielli and Mar-
cellino 2006), and co-integration and correlation (Alexander
and Dimitriu 2005). However, methods in this group are sub-
optimal in that in that capital allocation and stock selection
are carried out separately rather than jointly optimised.

The second group of methods unifies stock selection and
capital allocation by adding a sparsity constraint on the
portfolio weights into the tracking error so that the two
issues can be optimised simultaneously. The �0 norm has
been widely used as the sparsity constraint to construct
a sparse tracking portfolio (Benidis, Feng, and Palomar
2018). However, imposing the �0 constraint makes the reg-
ularised regression problem NP-hard and requires search
heuristics, such as genetic algorithms (Ni and Wang 2013;
Li, Sun, and Bao 2011; Garcı́a, Guijarro, and Oliver 2017),
Tabu search (Garcı́a, Guijarro, and Oliver 2017), simulated
annealing (Chang et al. 2000; Woodside-Oriakhi, Lucas, and
Beasley 2011) and transformation (Coleman, Li, and Hen-
niger 2006; Wang et al. 2012). These algorithms are not
guaranteed to find the optimal solution, and in many situ-
ations the search space grows super-linearly.

The following sparse index tracking studies are worth
mentioning. An evolutionary heuristic for index track-
ing optimisation with the �0 constraint was discussed
in (Beasley, Meade, and Chang 2003). The optimisation
problem was also transformed into mixed-integer linear pro-
gramming and be solved using a standard integer program-
ming solver (Canakgoz and Beasley 2009). A combination
of the �0 norm and the �2 norm was studied in (Takeda et
al. 2013). However, heuristic methods such as genetic algo-
rithms are very unstable in solving such optimisation prob-
lem. The �1 norm penalty was added to Markowitz mean-
variance framework (Markowitz 1952) to derive a sparse
and stable portfolio (Brodie et al. 2009). The combination
of the �1 norm and the �2 norm was discussed to regularise
the regression problem for sparse solution. Although the �1
norm is applicable to many portfolio construction problems,
it has a fatal conflict with other constraints of index track-
ing, i.e., the long-only strategy and all the weights sum to
one. Removing these constraints, particularly, the latter can
make the �1 norm functional (Wu, Yang, and Liu 2014) but
this is a rather non-standard solution to the index tracking
problem. Another alternative is to use the fractional norm
�p, where 0 < p < 1, which has no conflict with other
constraints. However, it is a non-convex relaxation of the
�0 norm and increase the difficulty of solving the optimi-
sation problem. Recently, a hybrid heuristic algorithm was
proposed to solve the non-convex optimisation problem im-
posed by �p norm (Fastrich, Paterlini, and Winker 2014).

Our method is built on recent developments in train-
ing algorithms for neural networks with stochastic and/or
non-smooth neurons. Conventional neural network building
blocks are differentiable and deterministic functions, e.g.,
linear maps and smooth activation functions. However, cer-
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tain non-conventional elements can be useful. E.g., a binary
neuron whose value is sampled from a Bernoulli distribu-
tion parametrised by p can effectively represent a “hard”
gate. The main challenge for this type of stochastic neural
network is estimating the gradient of a loss function w.r.t.
the parameters behind the discrete distribution (e.g., p in
the above example). Estimating gradients from a stochas-
tic function (e.g., draw a sample from a parametrised dis-
tribution) has been studied for years in the operations re-
search community (Fu 2006), and in the machine learning
community, it was popularised by variational auto-encoders
(Kingma and Welling 2014), where the core idea is to find
a sampling process that separates pure noise and distribu-
tion parameters. Early research usually focused on contin-
uous distributions (e.g., Gaussian), but recently some vi-
able solutions for discrete distributions have been proposed
(Maddison, Mnih, and Whye Teh 2017; Jang, Gu, and Poole
2017). For discrete distributions, we have to further handle
hard non-linearities, and several options have been explored
in (Bengio, Léonard, and Courville 2013). In this work, we
treat this line of research as a general-purpose optimisation
tool and demonstrate its effectiveness and efficiency for in-
dex tracking with cardinality constraints.

Methodology

Problem Setting

Index tracking can be formulated as a regression problem,

min
w

‖Xw − y‖22 (1)

where X ∈ R
D×N are the log-return of assets and y ∈

R
D is the target index (benchmark). D is the number of

timesteps (e.g., D = 750 trading days in three consecu-
tive years), and N is the number of assets (e.g., N = 500
stocks). w ∈ R

N is the weight of each asset to hold in order
to approximate the index y.

In this work, we assume a long-only strategy, which
means wi ≥ 0, ∀i, and the capital is always fully utilised,
i.e.,

∑
i wi = 1. With these constraints, the objective func-

tion in Eq. 1 can be rewritten as,

min
w≥0,

∑
i wi=1

‖Xw − y‖22 (2)

Eq. 2 is a non-negative regression problem with sum-to-one
constraint, which can efficiently be solved by quadratic pro-
gramming (QP).

The quadratic form of Eq. 2 is,

min
w

1

2
wTPw + qTw

subject to: Gw ≤ h and Aw = b
(3)

where P = 2(XTX), q = −2XTY , G = −I , h = 0,
A = 1T , and b = 1. This is a convex optimization problem
that can be handled by most of the off-the-shelf solvers.

Partial Replication Asset Selection

The final but most important constraint in partial index repli-
cation is that we can only buy up to K assets. This reduces

transaction costs compared to the full index, and it makes the
portfolio more manageable. Thus, the final objective func-
tion can be written as,

min
w≥0,

∑
i wi=1,‖w‖0≤K

‖Xw − y‖22 (4)

‖w‖0 is the �0 norm, which is defined as the number of non-
zero elements in w. Eq. 4 is much harder to optimise com-
pared to Eq. 2 due to the �0 norm. In fact, the problem with
�0 norm has been proven to be NP-hard (Nesterov and Ne-
mirovskii 1994). This kind of optimisation problem is usu-
ally solved by the heuristic methods such as evolutionary
algorithms.

The main focus of this study is to propose a novel
reparametrisation for Eq. 4, such that it can be solved by
plain first-order optimisation methods, e.g., gradient de-
scent. The core of the proposed method is a stochastic asset
selection process that models the sparsity in w.
Selection Process The objective is to select at most K as-
sets to hold from the full index of N assets (e.g., K = 40
of N = 500). To better understand the proposed approach,
we can imagine that we have K bags, and every bag has N
balls corresponding to stocks. We model selection of assets
as drawing balls from bags, where the probability of draw-
ing a ball indexed by j from bag i is πi,j . These πi,j’s are
auxiliary variables, and we will discuss how learning them
can help the optimisation of w.

Asset selection can then be described by a stochastic pro-
cess: we pick exactly one ball from each bag in turn, and
take the note of the ball’s index every time. This guarantees
that we have K or fewer unique indices in the end, and those
are the indices of assets that we will buy.

For the aforementioned stochastic process, we use a one-
hot encoding vector to record the outcome of picking a ball
from a bag.

zi ∼ Discrete([πi,1, . . . , πi,N ]) (5)

E.g., for the first bag, if the 5th ball is picked, we have a
vector z1 = [0, 0, 0, 0, 1, 0, . . . ], i.e., in z1, the 5th element is
1, and all the remaining are zeros. In the end of the process,
we have K index vectors: {z1, z2, . . . , zK}.

If we take a sum of zi’s, we will have a vector of length N :
z =

∑K
i=1 zi, in which at most K elements are non-zeros. z

can be seen as a mask vector for assets, only if one element
is 1 or more, the corresponding asset is selected.

Reparametrisation

Optimisation of π and w is complicated by the constraints
they must meet. Therefore we perform reparametrisation to
express them in terms of unconstrained counterparts.
Auxiliary Asset Selection Probabilities The auxiliary
variables πi,j , are all bounded in [0, 1]. We can generate
these in terms of unconstrained parameters S ∈ R

K×N . For
every bag, its probability vector [πi,1, πi,2, . . . , πi,N ] is pro-
duced by applying a softmax function on every row of S,

πi,j =
exp(Si,j)∑
j exp(Si,j)

. (6)
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Capital Allocation Weights With these preparations, we
can now generate capital allocation weights w given a set of
unbounded parameters w̃ ∈ R

N in three steps:
1. Element-wise exponentiation ensures positivity: ŵ =

[exp (w̃1), exp (w̃2), . . . , exp (w̃N )]

2. Element-wise product with z allocates capital only to
picked stocks: w̄ = ŵ � z.

3. Normalisation w = w̄∑
i w̄i

ensures all capital is allocated.

After those steps, we can easily verify the capital allocation
regression weights w meet all three conditions for partial
replication tracking: w ≥ 0,

∑
i wi = 1, ‖w‖0 ≤ K.

Objective Function

With the reparametrisation derived above, the objective
function in Eq. 4 can be written as,

min
w̃,S

‖Xw − y‖22 (7)

where the parameters in the optimisation problem are all
now unbound, i.e., w̃ ∈ R

N and S ∈ R
K×N . Here w is a

stochastic function w = f(w̃, S, ε) and ε stands for the ran-
domness introduced by the sampling process (picking balls
from bags).

Even though w̃ and S are unbounded now, there is still
one issue that stops us from using gradient-based optimi-
sation: the sampling process used for portfolio selection
(Eq. 5). The partial replication generator w = f(w̃, S, ε)
can be understood as a stochastic neural network with dis-
crete hidden neurons z, which is hard to train because the
backpropagation algorithm can not be applied to the non-
differentiable operations including the sampling function
used here. Thanks to the recent development of stochastic
gradient estimators (Kingma and Welling 2014), we can get
a low-variance estimator of the gradients as discussed next.

Gradient Estimation

The key ingredient to solve the gradient estimation issues is
the so-called Gumbel-Softmax trick (Maddison, Mnih, and
Whye Teh 2017; Jang, Gu, and Poole 2017), along with
Straight Through (ST) gradient estimator (Bengio, Léonard,
and Courville 2013).

Instead of drawing a sample z from the categorical distri-
bution parametrised by [π1, π2, . . . , πN ] directly, we use the
Gumbel-Max trick (Gumbel 1954),

z = one hot(argmax
i

(gi + log(πi))) (8)

where [g1, g2, . . . , gN ] are i.i.d samples drawn from Gum-
bel distribution with location 0 and scale 1. The sampling
process can be realised by first generating a Uniform(0,1)
sample u and then calculating g = − log(− log(u)).

The motivation behind Eq. 8 is to ‘separate’ the trainable
variables (i.e., πis) from pure noise (i.e., gis), so that taking
the gradient of random sample with respect to the distribu-
tion parameters becomes possible.

Eq. 8 is not sufficient, as argmax is non-differentiable too.
Thus, we use softmax function as a continuous relaxation,

z = softmax(g + log(π)) (9)

where g = [g1, g2, . . . , gN ] and π = [π1, π2, . . . , πN ]. Eq. 9
is called Gumbel-Softmax estimator in (Maddison, Mnih,
and Whye Teh 2017; Jang, Gu, and Poole 2017).

However, it is crucial to make sure z is a true one-hot
encoding vector, as it will be used for asset selection even-
tually. As a middle ground, we use Eq. 8 in the forward pass
and Eq. 9 in the backward pass. This is known as Straight
Through Gumbel-Softmax estimator (Bengio, Léonard, and
Courville 2013; Jang, Gu, and Poole 2017).

Optimisation with Annealing The optimisation of Eq. 7
is now straightforward, as we can use gradient descent or its
variants. Note that, in each forward-backward round, a set
of new zi’s will be sampled, so that the algorithm has the
opportunity to explore many combinations of assets.

To guarantee the converge, we introduce an annealing
process that progressively reduces the randomness of sam-
pling, such that, for each of the K selections, only the
one with the highest probability will be chosen in the end.
This can be realised by adding a temperature term into the
reparametrisation of πi,j in Eq. 6

πi,j(τ) =
exp(Si,j/τ)∑
j exp(Si,j/τ)

(10)

where τ = 0.1/ log(e + t) and t is the iteration index.
We should emphasise that the designed annealing process

is not the same as described in Gumbel-softmax estimator
(Jang, Gu, and Poole 2017), where the authors added a tem-
perature term into Eq. 9:

z = softmax((g + log(π))/τ) (11)

but we found it unnecessary in our case. The reason is that
we use the straight-through estimator, which delivers a true
one-hot vector even with high temperature.

Post-processing The most valuable part of this method is
the asset selection, and it is fairly easy to solve the con-
strained regression problem in Eq. 2 if the selection of assets
is given. Therefore we can optionally post process the results
of our proposed method using conventional constrained re-
gression. The overall procedure is: (i) Train our model by
optimising Eq 7. (ii) Retrieve the selected assets’ IDs by tak-
ing the index of the maximum of each row in matrix S; (iii)
Get the unique IDs in (ii); (iv) Use those IDs to select a sub-
set of X such that X ′ ∈ R

D×K′
(here K ′ is the number of

selected assets and it should be smaller than or equal to K);
(v) Solve the constrained regression problem,

min
w′≥0,

∑
i w

′
i=1

‖X ′w′ − y‖22 (12)

with Quadratic Programming (QP) using Eq. 3.

Experiments

Synthetic Example

We first build a toy problem to illustrate our algorithm. First,
we generate 5 random samples, {x1, x2, x3, x4, x5}, from a
multivariate Gaussian distribution, where each xi is a 750-
dimensional vector. Then we generate the ground truth Y as
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Figure 1: Toy asset selection problem, where each colour groups one ‘sector’ of ‘stocks’. X-axis: 500 possible stocks to hold.
Y-axis: Capital allocation to each stock. The ideal solution holds exactly one stock in each sector with equal allocation across
sectors. Left: One of many possible ideal solutions. Middle: Solution given by QP with all constraints except for capped K.
Right: Solution given by our method with K = 5.

Y = 0.2x1 + 0.2x2 + 0.2x3 + 0.2x4 + 0.2x5, which can
be treated as true (benchmark) index. To generate X , each
xi is duplicated by Ni times, where Ni is a random integer
in [50, 200], then we concatenate those repeated xi’s, i.e.,
X = [x1, x1, . . . , x1, x2, x2, . . . , x5, x5]. Finally, we add
some small Gaussian noise to all entries in X and Y . This
synthetic problem corresponds to a situation where there are
many assets grouped into five underlying classes which de-
termine the overall benchmark.

We can tell that the good solution w to the regression
problem ‖Xw − Y ‖22 with non-negativity and sum-to-one
constraints should be very sparse. The perfect solution to
w should have exactly 5 non-zero values, each correspond-
ing to one of those xi’s, as illustrated in Fig. 1. Note that
Fig. 1 (Left) is just one of many possible optimal solutions
since each xi is duplicated, meaning that choosing any of its
copies is equally good.

If we try to solve this constrained regression problem us-
ing quadratic programming without cardinality constraints
(i.e., Eq. 3), we may have a solution with good fitting per-
formance, however, the number of assets used is very large
(Fig. 1 (Middle)), which results in a high transaction fee.

In contrast, if K = 5 is given, our method perfectly se-
lects an equally weighted portfolio of one asset from each of
the asset groups (Fig. 1 (Right)).

S&P500 Index Tracking

To rigorously evaluate our method’s real-world perfor-
mance, we track the S&P500 index using the proposed
method and compare it with several baselines.

Data Preparation The pricing data is obtained from the
Center for Research in Security Prices (CRSP), which is
known to be the most accurate data for study. We use the
daily closing prices adjusted for dividends. To simulate real
trading, we also take into account the transaction fee, for
which we choose the flat-fee pricing model, $5.00 per trade,
quoted by TradeStation (a popular US online stock broker-
age firm).

Backtesting Frequent rebalancing can reduce tracking er-
ror, however this also leads to high transaction costs. As we
target long-term investment, we adopt quarterly portfolio re-
balancing for all compared methods.

The backtesting period is the last decade, starts from
2009-01-02 and ends by 2018-10-31. The backtesting is by
sliding window model fitting and evaluation as follows: at
the end of each quarter, e.g., on the 31st March 2009, we re-
balance the portfolio according to the weights calculated by
our method. To be more specific, on the 31st March 2009,
we train our model using the data in the last three years (i.e.,
2006-03-31 to 2009-03-31), then we buy the stocks sug-
gested by the model (w) and hold until the next rebalance
day, i.e., 2009-05-31. This procedure is repeated quarterly
until the last trading day 2018-10-31. The backtesting sim-
ulator accounts for all real-world details including trading
costs, stock splits, dividends, index churn, etc.

Performance measure Our goal is to track the index as
accurately as possible. Therefore the most direct perfor-
mance measure is (testing time) mean squared error (MSE)
between index and partial replication portfolio performance.
Considering that we use daily log-return data, the MSE is
usually at the scale of 10−6, thus we report percentage error
(PE) instead.

Apart from PE, we also report compute three other mea-
sures of interest: (i) Volatility of portfolio return, (ii) Sharpe
ratio (Sharpe 1994), and (iii) Maximum Drawdown. These
measures are defined as follows:
Volatility of portfolio return is defined as the standard de-

viation of returns computed on every rebalance date. For
volatility, we have run backtesting for 10 years with quar-
terly rebalance, thus we have 40 return values, and we
calculate the standard deviation of those 40 values.

Sharpe ratio is defined as s = r/σr, where r is the
mean return, σr is the standard deviation over that period
(volatility). Thus the Sharpe ratio s encodes a tradeoff of
return and stability.

Maximum Drawdown (MDD) is the measure of decline
from peak during a specific period of investment:
MDD = (Vt − Vp)/Vp, where Vt and Vp stand for trough
and peak values, respectively.
From the point of view of measuring a portfolio’s per-

formance we prefer lower, higher, and lower numbers re-
spectively for these measures. However, our primary goal
is to track the benchmark index, therefore they are of sec-
ondary importance to index tracking accuracy. For example,
in cases where the index is volatile, we prefer to predict a
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Figure 2: Equity curve for the index and trackers. Rows from top to bottom compare different partial replication trackers:
Forward-selection, Backward-selection, Largest market cap, Proposed method. Columns evaluate different portfolio sizes K =
[30, 40, 50] from left to right. In every subplot, the top section (two curves) shows the index (grey) and the tracker, and bottom
section (green bars) shows the percentage tracking error ŷ−y

y .

high-volatility portfolio that accurate tracks the volatile in-
dex, rather than have a low-volatility portfolio that fails to
track the index. We expect a good index tracker to match the
volatility and Sharpe ratio of the index, rather than produc-
ing a low-volatility portfolio as maybe desired in some other
applications. However, for a given index-tracking accuracy
we may prefer a low-volatility approximation.

Baselines We compare the proposed stochastic neural net-
work method with three baselines that are widely used in
commercial practice,

1. Forward Selection: We fit the constrained regression
problem using QP, select one stock with the largest
weight value wi, record it in a selected stock list, and
re-fit the model without the selected stock. We do this re-

peatedly until the size of the selected stock list reaches
K. Finally, we fit the constrained regression problem us-
ing QP with these K stocks only.

2. Backward Selection: We fit the constrained regression
problem using QP, and get rid of one stock with the small-
est wi value, and re-fit the model. We do this repeatedly
until the number of the remaining stocks is K.

3. Largest Market Capitalisation: On every rebalance day,
we sort all stocks according to their market capitali-
sations, and pick the top K stocks. Then we fit the
constrained regression problem using QP with these K
stocks only.

Note that, we can not evaluate those methods for which
computational cost is too high, such as Evolutionary Algo-
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Figure 3: Portfolio performance measures with various methods (colour indicators match Fig. 2). Left: Volatility. Middle: Sharpe
Ratio. Right: Maximum Drawdown. Above: Absolute performance, with index indicated by dashed line. Below: Deviation from
the index. In each plot x-axis spans various portfolio size K values.

rithms, because we run backtesting using sliding windows
over ten years for different choices on K, those methods
are prohibitively expensive. We evaluate three choices of
K ∈ {30, 40, 50}, corresponding to different portfolio car-
dinalities that may be desired in different real-world trading
situations.

Result Analysis Fig. 2 compares all methods’ index track-
ing performance at several partial replication portfolio sizes.
From the graphs we can see that: (i) Our stochastic neural
network approach has the highest tracking accuracy com-
pared to the competitors (bottom row vs others). Note that,
all methods have almost the same transaction costs, as the
number of selected stocks is capped by K. Thus, the perfor-
mance difference can be only explained by the merit. (iii) As
expected, all methods improve tracking accuracy at higher
portfolio size (columns), but ours outperforms competitors
at each operating point. (iii) In terms of index tracking er-
rors, portfolios can out-perform or under-perform the index
(green plot above vs below zero in the lower percentage er-
ror plots). While the competing methods’ tracking errors are
mostly under-performance errors, our method’s tracking er-
rors mostly correspond to our portfolio out-performing the
index (green PE plot above zero).

In terms of other measures of portfolio performance,
i.e. volatility, Sharpe ratio, and maximum drawdown, our
method provides comparable performance to the alterna-
tives (Fig. 3). Recall that the goal is to match the perfor-
mance of the index in terms of these metrics, rather than
optimise these metrics per-se. The deviation from the in-
dex is shown in Fig. 3(bottom). We can see that our method
achieves slightly better performance on Sharpe ratio (mid-
dle) and maximum drawdown (right) and slightly worse per-
formance on volatility (left). As before, all methods tend to

2010 2012 2013 2015 2016 2018

100

200

300

400
Index

Proposed

Figure 4: Stochasticity Analysis. Backtesting performance
of 100 runs of our method show that it is consistently effec-
tive. Orange line is the mean partial replication index track-
ing performance and the shadow area covers one standard
deviation. Blue line is the index.

better approximate the index with larger portfolio size K.

Stochasticity Analysis The proposed method is non-
deterministic due to the nature of the sampling process.
Therefore we investigate the consistency of its performance
by re-running our method 100 times with different random
seeds. The testing-stage performance in Fig. 4 shows that
we achieve consistently good tracking performance, with the
small errors being ones of outperforming the index itself.

Conclusion

We present a solution for index tracking with cardinality
constraints. A novel reparametrisation method is proposed
to revisit the tracking error minimisation problem and we
then solve it with stochastic neural networks. Our model
is simple, efficient and scalable. Detailed backtesting
shows it outperforms widely used financial methods for
index tracking on more than 10 years of S&P 500 index data.
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