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Abstract

Sampling-based motion planning (SBMP) is a major tra-
jectory planning approach in autonomous driving given its
high efficiency in practice. As the core of SBMP schemes,
sampling strategy holds the key to whether a smooth and
collision-free trajectory can be found in real-time. Although
some bias sampling strategies have been explored in the liter-
ature to accelerate SBMP, the trajectory generated under ex-
isting bias sampling strategies may lead to sharp lane chang-
ing. To address this issue, we propose a new learning frame-
work for SBMP. Specifically, we develop a novel automatic
labeling scheme and a 2-Stage prediction model to improve
the accuracy in predicting the intention of surrounding vehi-
cles. We then develop an imitation learning scheme to gener-
ate sample points based on the experience of human drivers.
Using the prediction results, we design a new bias sampling
strategy to accelerate the SBMP algorithm by strategically
selecting necessary sample points that can generate a smooth
and collision-free trajectory and avoid sharp lane changing.
Data-driven experiments show that the proposed sampling
strategy outperforms existing sampling strategies, in terms of
the computing time, traveling time, and smoothness of the tra-
jectory. The results also show that our scheme is even better
than human drivers.

1 Introduction

In the past decade, autonomous driving has gained signifi-
cant developments with the joint effort from academia and
industry. In 2018, Google’s driverless car, Waymo, started
the taxi service, which was the first one to put autonomous
driving technology into commercial practice. Despite such
promising developments, seeing surroundings robustly, per-
ceiving objects in real-time, and acting safely on par with or
even better than human drivers remain as the big challenges
in achieving full autonomy.

Motion planning, which aims to generate a collision-free
trajectory from the current location to the immediate desti-
nation for a driverless vehicle, is the key to acting safely. In
the literature, there are four main categories of motion plan-
ning algorithms, graph search-based planners (Montemerlo
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et al. 2008), sampling-based planners (Kuwata et al. 2009;
Karaman and Frazzoli 2011), interpolating curve planners
(Labakhua et al. 2008), and numerical optimization ap-
proaches (Ziegler et al. 2014). Among them, sampling-based
motion planning (SBMP) is becoming a mainstream mo-
tion planner in recent years (Ma et al. 2015; Banzhaf et al.
2017; Lim et al. 2018) given its capability of solving high-
dimensional motion planning problems in a shorter time.
Moreover, SBMP does not need precise obstacle geometry
while other methods do.

The key challenge in adopting SBMP to autonomous driv-
ing is to ensure that the planner can respond accurately to
the changing environment. The updating frequency of sen-
sors on autonomous vehicles is usually set as 10Hz (Kuwata
et al. 2008), which means that the planner needs to finish its
decision in 100ms in order to be responsive to changes in
the surrounding environment. According to (Ma et al. 2015),
SBMP runs longer than 100ms in complex environments. To
finish the planning task in 100ms, a planner will have no
choice but to sample fewer points, which may fail to find
a feasible solution. Even if a motion planner can finish its
task in time, it may bring other issues. For example, when
a planner always tries to find an optimal path with the min-
imum cost, e.g., the shortest traveling time, or highest fuel
efficiency, it may lead to jerky velocity over different plan-
ning time windows, sharp lane changes, and ride-line driv-
ing. Such actions will sacrifice the comfort of passengers.
Moreover, the generated driving behavior may disturb other
drivers and may cause accidents.

In this paper, we tackle the aforementioned issues in
SBMP through a novel learning framework. Specifically, we
first aim to allow motion planning to “see” ahead through
predicting the intention of surrounding vehicles because the
prediction will allow a motion planner to (1) have a longer
time for planning and (2) generate smooth velocity over a
longer time period. Then, we propose a new bias sampling
approach with prediction and imitation learning, which can
help generate a smooth and collision-free trajectory in a
shorter time. Our main contributions are summarized as fol-
lows:

• Firstly, we refine the existing automatic labeling strategy
for data preprocessing to correctly extract driving scenar-
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ios and propose the first 2-stage prediction model that
greatly improves the accuracy of prediction on vehicles’
intentions.

• We leverage conditional variational autoencoder (CVAE)
to design a new sampling strategy based on imitation
learning and the prediction result so that only sample
points near the human-driving trajectory will be sampled.
The proposed sampling strategy will lead to faster motion
planning and help generate a smooth and collision-free
trajectory that is on par with and even better than the tra-
jectory generated by human drivers.

• Finally, we evaluate our model and compare the perfor-
mance with others, from the perspectives of the prediction
accuracy, the success rate of finding collision-free trajec-
tory, the computation time of planning, and the quality of
trajectory.

The rest of the paper is organized as follows. In Section 2,
we first review the general process of the SBMP algorithm
and briefly introduce our framework. Then, we present our
2-stage intention prediction model and evaluate its perfor-
mance in Section 3. Next, in Section 4, we leverage the pre-
diction results and imitation learning to design a new sam-
pling strategy. Finally, we evaluate our sampling strategy in
Section 5 and conclude the paper in Section 6.

2 The Background and New Framework

In this section, we first explain the basic modules of SBMP,
then present the proposed learning framework for SBMP.

A vehicle’s state at any given time is defined as a vector
[px, py, v, θ] ∈ R

4 where px and py are the coordinates of
the center of the vehicle’s rear axle, v is the instantaneous
velocity, and θ is the heading angle of the vehicle with re-
spect to the road direction (y-axis). SBMP aims to find the
best trajectory that connects a vehicle’s initial state, xinit,
to any possible goal state, xgoal, in a goal region, Xgoal. To
this end, there are many intermediate states, xs, which are
on the feasible trajectories. Each of such intermediate states
is defined as a sample point. SBMP generally consists of
sampling phase and planning phase introduced as follows.

• Sampling phase: This procedure discretizes the state
space and generates the sample points. Although the uni-
form sampling strategy is commonly used, many bias
sampling strategies have been proposed, such as goal bi-
asing (LaValle 2006), bias Gaussian sampling (Kuwata et
al. 2009), and informed sampling (Gammell, Srinivasa,
and Barfoot 2014). The key advantage of bias sampling
is that, by eliminating unnecessary sample points, a bias
sampling scheme may reduce the search space and speed
up the planning algorithm.

• Planning phase: Given the sample points, the obstacle in-
formation, and the differential constraints, this procedure
generates a collision-free roadmap (Kavraki, Kolountza-
kis, and Latombe 1996) or tree (Janson et al. 2015) con-
necting xinit and xgoal. If a tree is constructed in this
phase, the algorithm stops because the final trajectory can
be obtained directly. If a roadmap is constructed where
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Figure 1: Framework of Proposed Motion Planning.

there are several feasible trajectories, graph search algo-
rithms, such as Dijkstra (Dijkstra 1959), A* (Hart, Nils-
son, and Raphael 1968), D* (Stentz 1997), can be applied
to find the optimal one connecting xinit and xgoal.

Among aforementioned two procedures in SBMP, sampling
strategy in the sampling phase plays the key role in quickly
finding a trajectory. In this paper, we design a new bias sam-
pling strategy to reduce the computation time in the plan-
ning phase by integrating prediction and imitation learning.
As shown in Fig. 1, our proposed SBMP includes four mod-
ules, namely, prediction module, imitation learning module,
sampling module, and planning module, respectively, where
we make contributions to the first three modules.

3 Prediction of Vehicle’s Intention

In this section, we introduce the prediction module to allow
the planning algorithm to see ahead, optimize the trajectory
and relax the constraints on its computational time. Specif-
ically, we first present an overview for the prediction mod-
ule in Section 3.1. Next, in Section 3.2, we analyze existing
automatic labeling schemes and propose our own scheme.
Then in Section 3.3, we present details of our learning model
with the training strategy, and conduct numerical experi-
ments that validate the advantages of the proposed model.

3.1 Overview of the Prediction Module

The objective of the prediction module is to accurately pre-
dict the intention of a vehicle based on its history trajectory.
Many deep learning models have been proposed for predic-
tion in the past few years (Su et al. 2018). In general, exist-
ing learning models take a vehicle’s past features as inputs,
including position, velocity, acceleration, etc. On the other
hand, the output of the models can be a classification of fu-
ture behavior, such as car following, lane-changing-left and
lane-changing-right in a recent study (Su et al. 2018).

Despite the promising results of existing deep learning-
based prediction models, we notice that the accuracy is usu-
ally below 90% for lane changing (Su et al. 2018), which
could compromise the path planning in autonomous driving.
This is because an unexpected lane changing of a vehicle
may affect the safety of neighboring vehicles and may in-
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Figure 2: Overview of training process and testing process of our prediction model.

terfere the planned path of other vehicles. To improve the
accuracy, we refine the prediction module as follows:

• We classify the history trajectory of a vehicle into differ-
ent stages and use one learning model to predict in each
stage. This feature is based on our analysis on the existing
vehicle trajectory datasets, in which we can identify dif-
ferent moving behaviors before, during, and after chang-
ing lanes.

• To train different models for different stages, we develop
a novel automatic labeling scheme so as to train different
models using different labeled data.

In this paper, we demonstrate the proposed design using
two stages: (1) regular, and (2) after-crossing-line (vehicle
crosses the line in previous 2 seconds). As shown in Fig. 2,
for the first stage, we consider three scenarios: (1) typical
car following, (2) car following before lane changing (BLC),
and (3) lane changing pattern I (i.e., before crossing the line
between two lanes). For the second stage, we consider the
history trajectory from the time that the vehicle crosses the
line to a certain time after it crossed the line. In this stage, we
consider four possible scenarios: (1) typical car following,
(2) car following after lane changing (ALC), (3) lane chang-
ing pattern II (i.e., immediately after crossing the line), and
(4) driving on line. In the next subsection, we will discuss
how to automatically assign labels to vehicles with different
timestamps in a dataset.

3.2 Automatic Labeling

Since a typical trajectory dataset contains a large number of
positions of vehicles, it is crucial to design automatic label-
ing scheme to classify the state of each vehicle over time.
In the literature, there are mainly three types of automatic
labeling schemes.

The first type of schemes (Deo and Trivedi 2018) iden-
tifies the time that a vehicle is crossing the line between
two lanes, and then specifies the state of vehicle as lane-
changing if and only if the vehicle is within t seconds before
or after the crossing event, where t is a predefined thresh-
old as shown in Fig. 3 (a). A major problem of this type of

Figure 3: Illustration of three types of automatic labeling
schemes. Positions of vehicle between two red vertical line
segments are labeled as lane-changing.

schemes is that, with a fixed t, some car following cases may
be wrongly labeled as lane-changing, as shown in Fig. 4 (a).

The second type of schemes (Nie et al. 2016; Scheel et
al. 2018) assumes that a vehicle starts lane changing if its
lateral velocity towards an adjacent lane exceeds a threshold
vl in N consecutive time steps before line crossing, and it
ends lane changing if it crosses the line or its lateral velocity
is lower than vl after line crossing, as shown in Fig. 3 (b). Its
main issues are that a vehicle may continue lane-changing
after the cross-over or change its steering angle several times
during lane-changing , as shown in Fig. 4 (b) (c).

A recent study in (Su et al. 2018) proposed the third type
of schemes, which first identifies two positions of vehicle,
corresponding to 2 seconds before and after line crossing,
respectively. Next, the two points will be used to create a
straight line, whose angle with the line is θ, shown as yel-
low line in Fig. 3 (c). Finally, it attempts to find two parallel
tangent lines that have the nearest tangent points to the cross-
ing point, and will use these two points as the starting and
end points for lane changing. Although this scheme leads to
better prediction performance, it also suffers the inaccurate
labeling issue when a vehicle changes its steering angle mul-
tiple times during lane changing, as shown in Fig. 4 (b) (c).
Moreover, this scheme cannot find the desired tangent line
in some cases, as shown in Fig. 4 (d) (e).

Besides the above schemes for automatic labeling, most
existing automatic labeling schemes will skip the cases in
which a vehicle is driving along the line during lane chang-
ing, shown in Fig. 4 (f), which is a common situation.
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Figure 4: Some cases in real trajectory data. Each scatter
point indicates a position in the trajectory. Each yellow line
segment indicates positions with possible wrong labels.

(a) (b)

Figure 5: Illustration of our proposed automatic labeling
method on lane-changing cases.(a) Regular Lane-changing.
(b) Lane-changing with on line driving.

To improve the prediction accuracy, we propose a novel
automatic labeling scheme as follows. Similar to the scheme
in (Su et al. 2018), we first identify two points A and B,
corresponding to t seconds before and after line crossing,
respectively. Next, we draw two lines to connect each point
to the line crossing point C, as shown in Fig. 5 (a). In this
manner, we can find two angles θ1 and θ2. We then find one
tangent line using angle θ1 that leads to a tangent point D
that is nearest to A, and let D be the starting point of lane
changing. Similarly, we use θ2 to find another tangent line
that leads to a tangent point E that is nearest to B, and let E
be the end point of lane changing.

Based on the above procedure, our automatic labeling
scheme provides two levels of labels. In the first level, we
specify the classical labels. In the second level, we provide
labels that match with our prediction needs. Specifically, in
a regular lane changing case, such as Fig. 5 (a), positions be-
fore D and after E are labeled as car following, and the po-
sitions between D and E are labeled as lane-changing-right
for the first level. In the second level, we consider positions
between A and D as BLC, positions between D and C as

lane-changing pattern I, between C and E as lane-changing
pattern II, and between E and B as ALC. For the on-line
driving case, we first specify the second level label as on-
line drive if (1) the vehicle crossed line multiple times in a
short period tx and (2) the maximum distance to the line is
smaller than a threshold dx. For example, in Fig. 5 (b), posi-
tions between U and Y are labeled as on-line driving. Next,
we identify some turning points and determine the first level
labels. For example, in Fig. 5 (b), positions before V and af-
ter X are labeled as lane-changing-right, and the positions
between V and X are labeled as lane-changing-left.

3.3 2-Stage Model, Training Strategy, and
Numerical Results

As shown in Fig. 2, our prediction module consists of
two learning models. We choose Long Short-Term Memory
(LSTM) architecture for both of them, each with same net-
work settings as (Su et al. 2018). The prediction module will
take the lateral and longitude position, velocity, acceleration,
heading angle, and lane ID of past 10 frames as inputs for
each of the adjacent vehicles and output their intentions.

To train the two models, we use 6 sequences of trajec-
tory data in two public datasets: NGSIM US-101 (Federal
Highway Administration 2007) and I-80 (Federal Highway
Administration 2006). Each sequence comprises trajectories
of multiple vehicles in 15 minutes. We use data in the first
12 minutes for training and the last 3 minutes for testing,
with all data labeled by our automatic labeling scheme. As
shown in Fig. 2, we train the Stage-1 model with three pos-
sible cases, and the Stage-2 model with four cases. In real-
ity, the frequencies of these cases are not the same and the
car following case is the dominating one in a common traffic
scenario. To improve the performance of the neural network,
we increase the number of BLC and lane-changing pattern
I cases so that the Stage-1 model can learn more about lane
changing. The same strategy is also applied to train Stage-2
model. To train both models, we select learning rate to be
0.00125 and use softmax cross entropy as the loss function.

To evaluate the performance of our 2-Stage model, we
conduct extensive experiments. Due to limited space, we
only present the results from two experiments to compare
the performance of our model with the Social-LSTM model
(SLM) applied in (Su et al. 2018) using the the same la-
beled data for training and testing. In the first experiment,
we utilize the testset with all the vehicles randomly selected,
each at random time epoch. The results are summarized in
Table 1, in which we can find that both the SLM and ours
achieve high accuracy in different classification tasks. More-
over, our model achieves about 3% better accuracy in all
cases. Since the prediction before and after lane changing is
more important to our system, we conduct the second ex-
periment, in which we choose vehicles randomly but only
at time epoch when the vehicle is 4 seconds before or after
the line crossing. As shown in Table 2, in such a more chal-
lenging scenario, we notice that the accuracy of the SLM de-
creases considerably, especially for the accuracy of car fol-
lowing. By comparison, our model still can achieve high ac-
curacy for all three categories. These results clearly demon-
strate the advantages and potentials of the proposed model.
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Table 1: Comparison results on testing set with each testing
scenario randomly selected in all testing scenarios.

Method Real Label Predict Label
Following Left Right

Social LSTM Model
(Su et al. 2018)

Following 93.96% 2.43% 3.61%
Left 11.72% 87.00% 1.28%
Right 8.99% 1.33% 89.68%

2-stage Model
Following 96.67% 1.33% 2.00%
Left 7.77% 91.78% 0.45%
Right 7.56% 0.50% 91.94%

Table 2: Comparison results on testing set with each testing
scenario randomly selected in ±4 s interval of cross-over.

Method Real Label Predict Label
Following Left Right

Social LSTM Model
(Su et al. 2018)

Following 73.20% 16.93% 9.87%
Left 11.76% 86.28% 1.96%
Right 9.50% 1.95% 88.55%

2-stage Model
Following 83.03% 10.36% 6.61%
Left 7.73% 90.97% 1.30%
Right 8.32% 1.60% 90.08%

4 Sampling with Imitation Learning and

Prediction

Many works (Li, Song, and Ermon 2017; Kuefler et al. 2017)
learn from human drivers’ trajectory and teach autonomous
vehicles to drive like human drivers. The question that we
aim to answer is: can an autonomous vehicle drive even bet-
ter than human drivers given the capability of “seeing” ahead
spatially and temporally? To this end, we aim to find the
most appropriate set of sample points including but not lim-
ited to the sample points near the human-driving trajectory
and other sample points which will lead to a better trajec-
tory than human-driving one with high probability. In other
words, we need to learn the distribution of sample points
on and near human-driving trajectory for any given envi-
ronment, initial state, and goal state. We apply generative
models, which are good at learning from the given data and
generating new data, to learn such a distribution.

In the rest of this section, we first introduce the basics of
CVAE. Then, we describe how to apply the CVAE model
to our problem and its training process. Finally, we present
how to integrate the prediction module and the well-trained
CVAE model to generate sample points.

4.1 Basics of CVAE

Variational Autoencoder (VAE) (Kingma and Welling 2013)
is a mainstream generative model. It can generate new sam-
ples that follow the same distribution of the training data.
In this paper, we choose conditional variational autoencoder
(CVAE) (Sohn, Lee, and Yan 2015), an extension of VAE,
as the generative model. With sampled data x, denote the la-
tent variable of x as z. Conditioned on c, we train CVAE to
maximize the objective function (Sohn, Lee, and Yan 2015)
for a given sample x:

Eqφ(z|x,c)[log pψ(x|z, c)]−DKL[qφ(z|x, c)||pψ(z|c)] (1)

where φ and ψ are parameters of encoder and decoder func-
tions respectively. Given sample x, we firstly utilize an en-

coder to capture the distribution of its latent variable z con-
ditioned on c and approximates the distribution to a function
pψ(z|c). After decoding the latent variable z conditioned on
c, we hope to maximize the expectation of log likelihood
log pψ(x|z, c) in order to regenerate x.

The procedure of training a CVAE is to map the distribu-
tion over latent variable z to a known distribution N(0, I)
(Doersch 2016) and make generated x̄ based on latent vari-
able close to x as much as possible. Therefore, we let the
encoder output two values, μ and σ2. We minimize the KL
divergence between N(0, I) and N(μ, σ2). Once trained,
given c, we can sample from N(0, I) to generate x̄ condi-
tioned on c.

4.2 Our Training Model

The network architecture used for training and sampling of
CVAE is shown in Fig. 6. Besides the encoder and decoder
networks, we need an additional convolutional neural net-
work (CNN) to preprocess our 3D environment information,
which involves current and future situations. The surround-
ing environment only contains the neighboring vehicles in
a fixed range of distance. In the training phase, we use the
ground truth to describe the future environment. Now we in-
troduce c, x, loss function and the training process.

Condition c In our model, the condition c includes the en-
vironment information, the initial state xinit, and the goal
state xgoal. We define the environment information in every
100ms as a frame. For each frame, we encode it into a oc-
cupancy matrix as follows. Let the width of the lane be w,
the lateral distance of the ego vehicle to the lane center be
d, the ego vehicle position be [px, py], and the neighboring
range be r. Considering the camera and Lidar sensing abil-
ity, we set r = 150 feet. If the ego vehicle is in the right
of the lane center, d is negative and vice versa. We draw
a rectangle with length 2 ∗ r and width 3 ∗ w. The center
of this rectangle is [px − d, py]. This rectangle is divided
evenly into several small grids. As the vehicle size is usually
around 9 feet * 16 feet, the size of a grid is set as 4 feet *
6 feet which is smaller than the vehicle size to make it sen-
sible to the vehicle movement even in a short time period.
Therefore, this rectangle is divided into 3∗w

4 × 50 grids. Let
(posi, posj), i <

3∗w
4 , j < 50 be the center of each grid.

Given the 1s (10 frames) predicted trajectory of surround-
ing vehicles, the raw information is encoded in a 3D occu-
pancy matrix Menv ∈ R

m×n×10 as follows:

Mnew[i][j][t] =

{
1, if (posi, posj) is occupied at time t

0, if (posi, posj) is free at time t

where m = 3∗w
4 , n = 50.

This 3D occupancy grid matrix is input to the CNN model
for feature extraction. The output is a k-dimension vec-
tor venv ∈ R

k. Therefore, the condition variable can be
represented as a (k + 8)-dimension vector which contains
venv, xinit, xgoal as shown in the most left part in Fig. 6.

Variable x As the environment information in c has the
temporal dimension, x also needs to have time-sequential
sample points corresponding the frame in the 3D environ-
ment matrix. The variable x is a vector x ∈ R

10∗4+1∗4 which
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Figure 6: Architecture of our model applying CVAE.

contains 10 states corresponding to the 10 future frames and
1 state out of the predicted range. Therefore, x can be repre-
sented as x = [x1, x2, ..., x10, xs] where xs is a state out of
the predicted range but before the goal state. x1 is the state
of the ego vehicle in the 1st predicted frame.

We take 40 frames (4 s) trajectory and its corresponding
environment as a training case which means human driver
finishes the trajectory in 4 s. Lots of training cases of differ-
ent lane-changing scenarios are retrieved evenly. If we use
these training cases to train our model directly, the model
can only be applied to the cases where the travelling time
must be around 4 s. Obviously, it is unpractical. To han-
dle this problem and augment the training data, one lane-
changing trajectory is used to generate multiple training
cases with a different initial state but the same goal state.

Loss function We use the KL divergence, an important
term of the CVAE objective function, as one part of the loss
function. Another part is the reconstruction error between
the input x and the output of the decoder x̄. The final loss
function is:

||x̄− x||2 +DKL[qφ(z|x, c)||pψ(z|c)]. (2)

The loss function penalizes the large divergence between
the distribution of latent variable N(μ, σ2) and N(0, I) for
approximatingN(μ, σ2) toN(0, I) where μ and σ2 are out-
put by encoder. Besides, it encourages x̄ to be similar with
x as much as possible.

Training process The training process is illustrated in
Fig. 6. The 3D environment matrix is transformed to a 1D
vector by CNN. This vector is concatenated with the initial
and the goal state to constitute the condition c. Then the sam-
ple points x are concatenated by the condition c and mapped
to the latent space by the encoder. The encoder outputs two
values, one is mean μ and the other is logarithmic variance
log σ2 so that we can sample from N(μ, σ2) which is the
latent variable z. z concatenates with the same condition c.
The decoder projects this vector from the latent space to get
x̄. The loss value is calculated using the Eq. (2) to optimize
CNN, encoder network and decoder network.

4.3 Our Sampling Model

After training, the decoder is capable of using N(0, I) and
c to generate x̄ as shown in the sampling stage in Fig. 6,
where c can be obtained by the same way introduced in the
training process, for given environment frames, initial state,

and goal state. The initial and goal state can be obtained
from the location system and higher decision layer, respec-
tively. Therefore, to obtain c, an input of the decoder in the
sampling stage, we only need to construct the environment
frames, especially the future frames.

For each future frame, we need every surrounding vehi-
cle’s location information and heading angle to complete
our 3D environment matrix. The location of a vehicle in
each frame is calculated using the velocity and heading an-
gle. We can use the current instantaneous velocity to esti-
mate the velocity in the next 1 second. The heading angle
may change a lot in 1 second, especially, in lane-changing
cases. We leverage the output of our prediction module to
estimate the heading angle. Since our prediction module
can provide probabilities of lane-changing-left Pleft, lane-
changing-right Pright, and car following Pfollow for each
surrounding vehicle, we sort these three probabilities and de-
fine the largest one as Pm where the subscript m represents
the major intention. The second largest one as Ps where the
subscript s represents the secondary intention. We define the
normal range of heading angle for lane-changing-left, lane-
changing-right, and car following as [θfollow−, θfollow+],
[θleft−, θleft+] and [θright−, θright+] respectively, accord-
ing to the statistics of NGSIM real data. For further estima-
tion, let θfollow =

θfollow−+θfollow+

2 , θleft =
θleft−+θleft+

2

and θright =
θright−+θright+

2 . Denote the current heading
angle θ, estimated heading angle θnew. We estimate the
heading angle of a vehicle as follows.

θnew =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ + θm

2
, θ /∈ [θm−, θm+], Pm ≥ 80%

θ + θm

2
+ η ∗ θs, θ /∈ [θm−, θm+], Pm < 80%

θ + η ∗ θs, θ ∈ [θm−, θm+], Pm < 80%

where η is the weight.

5 Experiments

To evaluate and compare our sampling strategy with other
sampling strategies, we adopt FMT* (Janson et al. 2015)
as the planning algorithm and conduct data-driven simula-
tions, in which we apply the cost function and trajectory
generation method suggested in (Webb and van den Berg
2013). We focus on the success rate of finding a collision-
free trajectory, computation time of the planning algorithm,
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Table 3: Success rate versus replanning time interval.
Replanning time interval 200ms 400ms 600ms 800ms 900ms

uniform 0% 0% 0% 0% 0%
bias Gaussian 70% 60% 30% 0% 0%

ours 100% 100% 100% 90% 70%

Table 4: Computation time in different replanning steps.
time step (ms) bias Gaussian (ms) ours (ms)

0 158 19
300 199 254
600 217 236
900 945 235

1200 279 180
1500 203 167
1800 76 199
2100 55 34
2400 8 32
2700 11 2
3000 5 arrived
3300 arrived -

average time 196 136

the travelling time of driving over the trajectory, and the ac-
celeration variation. Here, the acceleration variation repre-
sents the smoothness (Ziegler et al. 2014), and a smaller
value implies that passengers feel more comfortable. Due to
limited space, we compare our scheme with two strategies:
uniform sampling and bias Gaussian sampling (Kuwata et al.
2009), which is the default bias sampling strategy applied in
autonomous driving and has been tested on road.

The CNN is designed using 16 kernels with size 5. The
encoder and decoder have the same architecture which con-
tains two full connected layers where the first one has 512
hidden units and the second one has 128 hidden units. They
share the same CNN. As NGSIM US-101 dataset (Federal
Highway Administration 2007) includes 3 sub datasets, we
use two for training and one for testing. We utilize Adam
optimizer with a learning rate of 0.0001 and a batch size of
256 to train the model for 500 epochs. Since both predic-
tion module and imitation learning module are trained with
NGSIM dataset, we select lane-changing cases from the in-
tersection of test dataset to evaluate the performance. Here
we randomly select one lane-changing case for illustration.
The initial state is before lane-changing and the goal state is
after lane-changing. The travelling time for human driver is
4 s. There are 11 surrounding vehicles at the initial state. In
this following, we refer the computation time used for plan-
ning algorithm simply as computation time.

We first compare the success rate using different sam-
pling strategies under different replanning time intervals.
The number of sample points is set as 1000. We run FMT*
algorithm under each sampling strategy 10 times. From Ta-
ble 3, we can see that our sampling strategy performs much
better than other ones. With the prediction module, our sam-
pling strategy has higher chance to provide sample points
which lead to collision-free trajectory.

Then, we compare the acceleration variation using differ-

bias Gaussian

ours

Figure 7: Acceleration variation with different replanning
time intervals.

ent sampling strategies. Under each given replanning time
interval, we choose the trajectory with the shortest travelling
time for each sampling strategy. We calculate the accelera-
tion for each trajectory. As shown in Fig. 7, the acceleration
variation of trajectory generated by our sampling strategy is
always smaller than that by bias Gaussian sampling strategy
for all replanning time intervals, which demonstrates that
our sampling strategy helps generate a more smooth trajec-
tory than bias Gaussian. Moreover, we find that a longer time
interval leads to a smaller variance for both strategies, which
implies that a longer replanning interval alleviates the jerky
velocity problem and brings more comfort to passengers.

Finally, we consider the travelling time and computation
time when FMT* succeeds under both bias Gaussian and
our sampling strategies. We set the replanning time interval
as 300ms and select the trajectory with the shortest travelling
time for each sampling strategy. The results in Table 4 show
that our strategy takes less time (3 s) than a human driver
(4 s) and bias Gaussian (3.3 s) to reach the goal state. Ta-
ble 4 shows that the computation time for both of them first
increase then decrease as the ego vehicle approaching the
goal state, which is mainly caused by the varying of search
space over time. The results show that the average computa-
tion time of replanning with bias Gaussian sampling strategy
is much longer than ours, and that our computation time is
always less than the replanning time interval 300ms.

6 Conclusion

In this paper, we have proposed a new learning framework to
enhance SBMP in autonomous driving, which only samples
the points leading to a high-quality collision-free trajectory.
Specifically, we proposed new labeling and training models
to improve the accuracy of predicting a vehicle’s intention.
We then integrated the prediction of surrounding vehicles
and imitation learning to generate the collision-free sample
points near the human-driving trajectory that are used for the
planning algorithm. Data-driven experiments show that our
sampling strategy not only accelerates the computation, but
also alleviates the jerky velocity. Moreover, our sampling
strategy can generate a trajectory that leads to less driving
time than that by human drivers.
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