
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Generating Adversarial Examples for
Holding Robustness of Source Code Processing Models

Huangzhao Zhang,1 Zhuo Li,1 Ge Li,1∗ Lei Ma,2 Yang Liu,3 Zhi Jin1∗
1Key Lab of High Confidence Software Technologies (Peking University, China), Ministry of Education

2Kyushu University, Japan, 3Nanyang Technology University, Singapore
{zhang hz, lizhmq, lige, zhijin}@pku.edu.cn, malei@ait.kyushu-u.ac.jp, yangliu@ntu.edu.sg

Abstract

Automated processing, analysis, and generation of source
code are among the key activities in software and system life-
cycle. To this end, while deep learning (DL) exhibits a certain
level of capability in handling these tasks, the current state-
of-the-art DL models still suffer from non-robust issues and
can be easily fooled by adversarial attacks.
Different from adversarial attacks for image, audio, and
natural languages, the structured nature of programming
languages brings new challenges. In this paper, we pro-
pose a Metropolis-Hastings sampling-based identifier renam-
ing technique, named Metropolis-Hastings Modifier (MHM),
which generates adversarial examples for DL models spe-
cialized for source code processing. Our in-depth evaluation
on a functionality classification benchmark demonstrates the
effectiveness of MHM in generating adversarial examples
of source code. The higher robustness and performance en-
hanced through our adversarial training with MHM further
confirms the usefulness of DL models-based method for fu-
ture fully automated source code processing.

Introduction

Automated processing, analysis, and generation of program
source code can greatly reduce the cost in software and
system development, testing, operation and maintenance,
with the currently urgent industrial demands. It is not un-
til several years ago, researchers started to propose deep
learning (DL) methods for source code processing. Up to
present, a lot of successes have been achieved in many
tasks, such as functionality classification (Mou et al. 2016;
Zhang et al. 2019b), code clone detection (Wei and Li 2017),
code completion (Li et al. 2017), method naming (Allama-
nis, Peng, and Sutton 2016), and code comment generation
(Hu et al. 2018), etc.

However, there is a major hazard lying under the state-
of-the-art DL models – they lack of adversarial robustness.
Adversarial examples can be generated from original inputs
by carefully designed minor perturbations. The adversarial
examples that have little or no difference from their original

∗Corresponding authors.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A simple example of adversarial attack on a source
code classifier by performing identifier renaming.

counterparts by the human perceptions, can result in severe
erroneous behavior of DL models.

Although some adversarial example generation ap-
proaches were recently proposed for natural language pro-
cessing (NLP), such as GeneticAttack (Alzantot et al. 2018)
and HotFlip (Ebrahimi et al. 2018), which performs word or
character replacements to perturb the sentences, they are not
suitable for source code. Unlike most natural languages, the
source code of programming languages must strictly follow
the rigid lexical, grammatical and syntactical constraints. In
other words, the adversarial perturbations must satisfy all
these constraints, without following which, the generated
source code would encounter compilation error and would
be automatically rejected for further analysis. The gradient-
based perturbations, which are widely applied in image pro-
cessing (Goodfellow, Shlens, and Szegedy 2015) are also
difficult under this scenario since the source code space is
discrete. Figure 1 gives a simple example of adversarial at-
tacks on source code processing tasks, in which the classifier
is attacked by the simple renaming of variable “a” to “argc”.
The renaming operation fully preserves the program seman-
tics yet may mislead the classification model into erroneous
decisions. Such hazards could potentially be reduced with
adversarial training.

To address the aforementioned non-robust hazard, in
this paper, we propose the Metropolis-Hastings Modifier
algorithm (MHM). MHM generates adversarial examples
of source code by performing iterative identifier renam-
ing, which is based on Metropolis-Hastings sampling. Our

1169

method confines the generated examples to satisfy the con-
straints of programming languages. The evaluation on the
Open Judge (OJ) C/C++ source code functionality classifi-
cation dataset (Mou et al. 2016) demonstrates that MHM is
capable of attacking the LSTM model and the state-of-the-
art AST-based Neural Network (ASTNN) model (Zhang et
al. 2019b). Meanwhile, our further in-depth evaluation re-
veals the effectiveness of adversarial training with MHM in
improving the classification performance. In particular, the
models after adversarial training also gain resilience against
the attackers. Our tool and data are open-sourced and pub-
licly available1. The contributions of this paper are summa-
rized as follows:

• We identify and confirm that the non-robust problem also
occurs to DL models utilized for source code processing.
• We propose a conceptually simple but effective algo-

rithm for adversarial example generation for source code,
namely MHM.
• We demonstrate the effectiveness of MHM in adversarial

attacking DL models for source code processing.
• We further demonstrate the usefulness of MHM for ad-

versarial training to enhance robustness for DL models.

Preliminary

In this section, we give the formal definitions of the source
code classification task and corresponding adversarial exam-
ples. Then, we introduce the processes of adversarial attack
and adversarial training. We further briefly illustrate the ro-
bust and non-robust features.

Source Code Classification

Source code classification is a simple but important task
in the field of source code processing and analysis, which
is the subject task of this paper. Generation tasks such as
code completion (Li et al. 2017), comment generation (Hu
et al. 2018) and method naming (Allamanis, Peng, and Sut-
ton 2016) are series classification under first-order Markov
hypothesis.
Dataset. A well-labeled source code datasetD is defined as:

D = {(xi, yi)}Ni=1 (1)

where xi is a source code snippet and yi is the correspond-
ing one-hot vectorized label. The source code snippets are
pre-processed into the form of character sequences, token
sequences, abstract parsing trees (ASTs), or control flow
graphs (CFGs), etc, according to the model requirements for
input format. We denote the datasets for training, validation
and testing by D(t), D(v) and D(e), respectively.
Feature. Features are sets of mappings from inputs to
scalars, denoted as f : X → R.
Classification model. The classification model C serves as
the subject model. It takes x as input, and outputs the pre-
dicted probabilities upon all candidate classes, denoted as
C(x). A deep classification model first extracts features by
performing non-linear transformations, and then performs

1https://github.com/Metropolis-Hastings-Modifier/MHM

classification based on the features. The overall classifica-
tion can be then deducted as:

C(x) = ∫(f1(x), f2(x), · · · , fk(x)) (2)

where ∫ is the softmax classification function. The model is
retrieved by minimizing the loss (J) on D(t):

J (D(t)|C) = − 1

N (t)

N(t)∑

i=1

∑
yi ◦ log C(xi) (3)

where ◦ is the element-wise multiplication. Although C may
obtain good performance on D(e) after training, it still suf-
fers from adversarial attacks on tasks like image processing.

Adversarial Examples

Adversarial example. Given a well-trained subject model C
and a labeled data pair ((x, y)), where C correctly classifies
x to y, the adversarial example setA against x is defined as:

A(x) = {x̂|x̂ ∈ E ∧ ∀i ∈ I, E(i|x̂) = E(i|x)
∧ argmax y �= argmax C(x̂)} (4)

where E is the full set satisfying all lexical, grammatical and
syntactical rules, I is the full set of legal input cases, and
E(i|x) is the output produced by the executable program of
x on input case i ∈ I.
Adversarial attack. Given an input (x, y) ∈ D, adversarial
attack aims to find x̂1, · · · , x̂n ∈ A(x). In general, there
are three ways for adversarial attack. One is to transform the
adversarial attack as a maximization optimization problem,
such as CW (Carlini and Wagner 2017). The objective could
be defined as:

max
x̂

∑
y ◦ log 1

C(x)
,

s.t. x̂ ∈ E ∧ ∀i ∈ I, E(i|x̂) = E(i|x) (5)

Another way performs gradient ascent to generate adver-
sarial examples, such as FGSM (Goodfellow, Shlens, and
Szegedy 2015) and BIM (Kurakin, Goodfellow, and Bengio
2017). These approaches perturb examples based on gradi-
ent information with very limited iterations. The basic idea
of one iteration could be formulated as:

xt+1 = xt + α · sign(∇x

∑
y ◦ log 1

C(x)
) (6)

In addition, a further approach of adversarial attack is often
handled as a sampling problem. For instance, GeneticAttack
by Alzantot et al. 2018 in NLP performs sampling via ge-
netic algorithm. Examples are drawn with probability given
by the target distribution. The target distribution (π(x)) is
defined as:

π(x) ∝ (1− C(x)[y]) · X1 · · · Xk (7)

where C(x)[y] is the probability of class y predicted by C,
and X1, · · · ,Xk are indicator functions of the lexical, gram-
matical and syntactical constraints.

In this paper, we adopt the sampling-based approach, per-
forming M-H sampling for adversarial attack. Sampling al-
gorithms, such as Markov chain Monte Carlo (MCMC), gen-
erate a sequence of examples, which may be more appropri-
ate under the definition of adversarial examples in Equation

1170

4. In addition, utilizing gradient information is difficult in
the source code scenario due to the discrete nature of source
code space, which makes optimization-based and gradient-
based approaches hard.

Adversarial attack includes two categories: 1) black-box
attack that only allows the attackers to have access to model
outputs, and 2) white-box attack (Ma et al. 2018; Xie et al.
2019a; 2019b) that allows full access to the subject model,
including outputs, gradients and (hyper-) parameters. In this
paper, we focus on the black-box setting.
Adversarial training. Adversarial training is an effective
approach to improve adversarial robustness and model per-
formance. Similar to data augmentation, adversarial train-
ing first updates the training set with adversarial examples
generated from D(t), forming D(t)

adv . Then a model having
the same architecture and hyper-parameters with the subject
model is trained from scratch on D(t)

adv .
In general, adversarially trained models gain better ro-

bustness to some extent, i.e. they are capable of resisting the
same adversarial attack approach. Even though, it is still not
known whether such a conclusion still applies in the context
of source code processing.

Robustness

We formulate robust and non-robust features following the
work of Ilyas et al. 2019.
Useful feature. ρ-useful features are strongly correlated
with the classification label. In binary classification, useful
features are defined as:

E(x,y)∼D[y · f(x)] ≥ ρ (8)

where ρ > 0. ρ measures the correlation between feature
f(x) and the classification label y. The greater ρ is, the
stronger the correlation is.
Robust feature. γ-robust features are useful features, and
are still useful after any allowable perturbations. If the clas-
sifier makes prediction upon robust features, it gains resis-
tance towards adversarial attacks. In binary classification,
robust features are defined as:

E(x,y)∼D[inf
x′∈Δ(x)

y · f(x′)] ≥ γ (9)

where Δ(x) is the full set of perturbed x, all elements in
which satisfy the lexical, grammatical and syntactical con-
straints of programming languages.
Non-robust feature. Non-robust features are useful fea-
tures, but not γ-robust for any γ > 0. Adversarial attack
mainly perturbs the non-robust features, since any perturba-
tions upon x may cause great change to non-robust f(x).

Metropolis-Hastings Modifier

In this section, we first give the overview and workflow of
our proposed technique MHM, and then elaborate each key
steps in details.

Overview of MHM Technique

As aforementioned, we regard adversarial example genera-
tion as a sampling problem. Adversarial examples are sup-
posed to be drawn from A(x) defined in Equation 4 with

Figure 2: Workflow of Metropolis-Hastings Modifier.

probability given by π(x) defined in Equation 7. Existing ap-
proaches that generate adversarial examples in NLP mostly
perform word-level (GeneticAttack by Alzantot et al. 2018)
or character-level (HotFlip by Ebrahimi et al. 2018) replace-
ment or substitution. Perturbations by these approaches are
often not acceptable in the context of programming source
code, because the lexical, grammatical and syntactical rules
can be easily broken.

In order to perturb the source code snippets within
the constraints, we propose Metropolis-Hastings Modi-
fier (MHM) method, which performs iterative identifier
renaming based on Metropolis-Hastings (M-H) sampling
(Metropolis et al. 1953; HASTINGS 1970; Chib and Green-
berg 1995). MHM takes the source code classifier under at-
tack (C) and a pair of correctly classified data ((x, y) ∈ D)
as input, and outputs a sequence of adversarial examples
(x̂1, x̂2, · · ·). We expect the adversarial examples to satisfy
three requirements: 1) enable to mislead the subject model,
2) free from compilation errors and enable to be executable,
and 3) enable to produce the same execution results given
the same input instances as the original examples.

In particular, the M-H algorithm is a classical Markov
chain Monte Carlo sampling approach. Given the station-
ary distribution (π(x)) and transition proposal, M-H is able
to generate desirable examples from π(x). To be specific,
at each iteration, a proposal to jump from x to x′ is made
based on the transition distribution (Q(x′|x)). The proposal
is accepted with probability given by the acceptance rate:

α(x′|x) = min{1, α∗} = min{1, π(x
′)Q(x|x′)

π(x)Q(x′|x) } (10)

Upon acceptance, the algorithm jumps to x′ and samples x′.
Otherwise, it stays at x and does not perform sampling.

Inspired by M-H sampling, MHM consists of three stages
in a single iteration: 1) selecting the source identifier, which
is the identifier to be renamed, 2) choosing the target iden-
tifier, which is the identifier to rename to, and 3) determin-
ing to accept or reject the transition proposal. Stage 1 and 2
generate a transition proposal, and stage 3 accepts or rejects
the proposal with probability given by the acceptance rate.
Since the operation of identifier renaming is invertible, the
transition in MHM is aperiodic and ergodic, making MHM
eventually converge. In order to avoid unnecessary time cost,
we provide to support maximum iteration threshold config-
uration for MHM.

1171

Algorithm 1 Metropolis-Hastings Modifier algorithm.
Inputs:

Source code classification model C;
Data pair (x, y), s.t. argmax y = argmax C(x);
Max iteration m;
Required adversarial example number n;
Candidate identifier number c.

Outputs:
n adversarial examples corresponding to (x, y).

1: Initialize x0 ← x, t← 1, count← 0;
2: Initialize {x̂1, · · · , x̂n} ← {None, · · · ,None}.
3: Tall ← {w|w is an identifier ∧ w ∈ V}.
4: while t < m do
5: S ← {w|w is an identifier ∧ w is defined in x};
6: Sample s from S;
7: T ← {wi|wi /∈ S ∧ i = 1, 2, · · · , c};
8: Sample t from T .
9: x′ ← xt−1 with all s replaced with t;

10: α∗ ← 1−C(x′)[y]
1−C(x)[y] ;

11: Sample u ∼ U(0, 1);
12: if u < α∗ then
13: Accept transition xt−1 ⇒ x′;
14: xt ← x′.
15: if argmax y �= argmax C(xt) then
16: count← count+ 1;
17: x̂count ← xt.
18: end if
19: else
20: Reject transition xt−1 ⇒ x′;
21: xt ← xt−1.
22: end if
23: t← t+ 1.
24: end while
25: Return {x̂1, x̂2, · · · , x̂n}.

Figure 2 gives the overall workflow of one single iteration
in MHM, while Algorithm 1 shows the corresponding de-
tailed operations of MHM. We would illustrate the details of
each stage in the rest of this section.

Transition Proposal

The transition proposal of MHM is made in stage 1 and 2.
Stage 1 analyzes and collects all candidate identifiers that
can be renamed and selects the source identifier from them.
Stage 2 generates candidate identifiers, from which the tar-
get identifier is selected.

Most programming languages (e.g., C/C++ and Python)
have similar lexical rules for identifiers. For example, the
naming rule in the form of regular expression is often de-
fined as “[a-zA-Z][0-9a-zA-Z]*”. Identifiers that can be
renamed are those defined or declared within the source code
snippet. We collect all definitions and declarations of vari-
ables, and functions within the source code snippet x, form-
ing the set S(x). The source identifier (s) is then drawn from
S(x) with equal probability (see Line 5-6 in Algorithm 1).

The candidate identifier set (T (x)) is generated from the
overall vocabulary set (V). Elements in T (x) must satisfy

the aforementioned lexical rules for identifiers, and must not
appear in S(x). These two constraints guarantee that the
snippet after identifier renaming still satisfies the require-
ments defined in Equation 4. The candidate size is a hyper-
parameter of MHM. We do not attempt to rename identi-
fiers with similar names (e.g., renaming the variable “count”
to “cnt”), because all possible identifiers are treated equally
in MHM. Therefore, the target identifier (t) is drawn from
T (x) with equal probability (see Line 7-8 in Algorithm 1).

The transition proposal is to rename s in x to t, forming
x′. The transition probability is then defined as:

Q(x′|x) ∝ I{s ∈ S(x) ∧ t ∈ T (x)} · PS(x)(s) · PT (x)(t),

where S(x) ∩ T (x) = ∅ (11)

where PS(x)(s) and PT (x)(t) are uniform distributions to
draw s and t from S(x) and T (x), respectively, and the
constraint requires the generated T (x) not intersecting with
S(x). The inverted transition probability of renaming t back
to s is similarly defined.

Acceptance Rate

The transition proposal made in stage 1 and 2 is accepted
with probability given by the acceptance rate computed in
stage 3. The acceptance rate (α) is computed based on the
transition probability and the inverted transition probability.
If the transition proposal is accepted, s in x is then renamed
to t, otherwise the transition proposal is rejected. The source
code snippet after renaming will be tested by C to verify if it
is an adversarial example (see Line 9-22 Algorithm 1).

The unnormalized acceptance rate α∗ is deducted as:

α∗(x′|x) = π(x′)Q(x|x′)

π(x)Q(x′|x)

=
(1− C(x′)[y]) · PS(x′)(t) · PT (x′)(s)

(1− C(x)[y]) · PS(x)(s) · PT (x)(t)

≈ 1− C(x′)[y]

1− C(x)[y] (12)

where x′ is the snippet after renaming s to t, and the con-
straints in π(·) and Q(·) are all satisfied and therefore ne-
glected. We make an approximate assumption that the in-
verted distribution generates the same T (x′) with T (x), and
approximate α∗ in Equation 12, which is rather convenient
to compute. When α∗ > 1, the proposal will be accepted for
sure (100% probability).

Experiments

In this section, we perform in-depth evaluation to demon-
strate the usefulness of our proposed technique. We first in-
troduce our experimental setups, and then present the experi-
mental results of MHM on adversarial attack and adversarial
training, respectively.

Experiment Setup

Dataset. We choose the Open Judge (OJ) dataset, the bench-
mark dataset in source code classification, as the study sub-
ject, which is proposed by Mou et al. 2016. OJ is collected

1172

Hyper-parameters LSTM ASTNN

Vocabulary size 5,000 8,878
Embedding size 512 128
Hidden size 600 100
Layers 2 1
Dropout 0.5 0.2
Batch size 32 64
Optimizer Adam AdaMax
Learning rate 0.003(exp decay) 0.002

Table 1: Hyper-parameters of the subject models.

Model Acc (%) CE

RNN (Mou et al. 2016) 84.8 –
LSTM (Zhang et al. 2019b) 88.0 –
LSTM 92.9 0.23

TBCNN (Mou et al. 2016) 94.0 –
ASTNN (Zhang et al. 2019b) 98.2 –
ASTNN 98.2 0.06

Table 2: Performances of the subject classifiers.

from an open judge platform, consisting of 52,000 C/C++
compilable and correctly executable code files with problem
number labels. There are 104 problems (i.e. 104 classes) in
OJ, and each class contains 500 code files.

We first filter OJ by a C++ (ver.11) parser and discard
those against the rules of grammar. Macros, such as “#in-
clude”, are removed from the source code during the fil-
tration, and so are the comments. Then, we substitute all
strings, integer constants and floating point constants with
“〈STR〉”, “〈INT〉” and “〈FP〉”, respectively. Finally, we split
the filtered dataset (4 : 1), resulting in a training set with the
size of 38,924 and a test set with the size of 9,718, where
each data pair represents a compilable source code file and
its functionality label. During training, we randomly extract
20% code files from the training set, forming the validation
set. The overall training set and the test set remain the same
during our experiments, while the validation sets are differ-
ent under each experiment trial.
Subject models. Subject models are target models under ad-
versarial attack. We adopt LSTM and ASTNN (Zhang et al.
2019b) architectures as subject models in our experiments.
We follow the instructions in the original work and choose
the hyper-parameters of the subject models listed in Table 1.
The obtained performances of the subject models and some
other reported results are listed in Table 2.

The LSTM architecture is one of the most representa-
tive model in sequence processing, and is widely used in
the field of source code processing (Zhang et al. 2019b;
Li et al. 2017). In this paper, we apply bidirectional LSTM
as one of the subject models. The input source code snip-
pets are token sequences, which are retrieved by traversal
upon the syntactical parsing trees. The LSTM subject model
consists of two layers of bidirectional LSTMs. The predic-
tion is generated by a softmax layer, based on the mean vec-

Attacker Subject Attack(%) Valid(%) Succ(%)

GA LSTM 92.5 11.1 10.3
w/o LM LSTM 92.0 9.7 8.9

MHM LSTM 71.3 100 71.3
MHM ASTNN 92.1 100 92.1

Table 3: Results of adversarial attack.

tor of the last layer hidden states. The hyper-parameters are
listed in Table 1. Our LSTM outperforms LSTM by Zhang
et al. 2019b since ours have much more parameters. After
training, the LSTM subject model gives 92.9% accuracy,
which is a competitive and acceptable result.

ASTNN (Zhang et al. 2019b) is the state-of-the-art archi-
tecture on the OJ benchmark. It is an AST-based model and
we reuse the code open-sourced by the authors. The model
takes ASTs as inputs, which are generated by the pycparser
tool2. All hyper-parameters are the same as reported in the
original paper. The ASTNN subject model gives 98.2% ac-
curacy, which is the state-of-the-art result on OJ.
Baseline algorithm. We take GeneticAttack (GA) (Alzan-
tot et al. 2018) as our baseline, which is the state-of-the-
art attacking approach on SNLI (a natural language infer-
ence dataset) under black-box setting. GA uses a black-
box population-based genetic algorithm to generate adver-
sarial examples for natural languages. Intuitively, it main-
tains a population of sequences, and performs perturbation
by word-level replacement according to the embedding dis-
tances (independently retrieved from the subject model) un-
der black-box setting. Then, the intermediate sentences are
filtered by the subject classifier and a language model, which
leads to the next generation. Unlike MHM, GA verifies the
perturbations with a language model, which cannot always
guarantee the aforementioned constraints.

In our experiment, we apply a bidirectional LSTM lan-
guage model with the hidden size of 600 trained on OJ, to
the GA algorithm. Embedding distances are calculated on
pre-trained Word2Vec embeddings obtained on OJ, which is
independent of the subject model. We set the population size
to 32, and the maximum iteration threshold to 30.

Adversarial Attack

To validate the attacking capability, we randomly sample
1,000 correctly classified examples from the test set of OJ
for LSTM and ASTNN respectively, on which we apply
the GA baseline and MHM for adversarial attack on subject
models. Lexical, grammatical and syntactical constraints are
neglected during generation for GA. In this paper, we use at-
tack rate, validity rate and final success rate as the evaluation
criteria. In particular, attack rate is the proportion of sam-
ples that are capable to mislead the subject model. Validity
rate is the proportion of valid source code snippets among
those which are able to attack the subject model. Success
rate is the proportion of valid adversarial examples, which

2https://github.com/eliben/pycparser

1173

Figure 3: Adversarial examples generated by MHM on OJ.
The renamed identifiers are marked in red.

is the product of attack rate and validity rate. The results are
shown in Table 3.

Although GA with or without (i.e., the row w/o LM in
Table 3) the language model gives high attack rate, only
very little portion of the generated examples are valid ad-
versarial examples since most are unable to pass the compi-
lation checking. GA also cannot attack ASTNN because the
subject ASTNN performs front-end compilation to obtain
ASTs. MHM is able to attack LSTM and ASTNN subject
models effectively, and the adversarial example generation
rate upon ASTNN even reaches above 90%. All examples
generated by MHM are valid adversarial examples, which
satisfy Equation 4. After restoring the macros, integer and
floating point constants, and strings, all adversarial exam-
ples generated by MHM are compilable and executable. The
results of execution are identical to the original examples
given the test cases. This is obvious since MHM ensures any
modification towards source code is error-free and synony-
mous. In addition, the GA experiments take several days,
while MHM only takes about several hours.

Figure 3 shows some of the adversarial examples gener-
ated by MHM. Identifier renaming modifications, such as
“a” to “argc” and “sushu” to “maxindex”, will lead the sub-
ject models to erroneous predictions.

The results indicate that identifiers may be non-robust fea-
tures. The identifier “sushu”, which is the Chinese Pinyin
of “prime number” (in the original example in case 2), is
strongly correlated with the functionality. MHM discovers
this non-robust feature, and perturbs it to “maxindex”. The
perturbation from “sushu” to “maxindex” breaks the original
correlation and erroneously correlates to another label.

Model Acc(%) CE Attack(%)

LSTM 92.9 0.23 71.3
+ adv train 94.0 0.20 46.4

ASTNN 98.2 0.061 92.1
+ adv train 98.1 0.057 54.7

Table 4: Results of adversarial training with MHM.

0 1 2 3
92

93

94

Example # (k)

A
cc

(%
)

LSTM

0 1 2 3

97.8

98

98.2

Example # (k)

ASTNN

0 1 2 3
20

25

30

Example # (k)

C
E

(×
1
0−

2
)

LSTM

0 1 2 3

6

6.5

Example # (k)

ASTNN

0 1 2 3

50

60

70

Example # (k)

A
tta

ck
(%

)
LSTM

0 1 2 3

60

80

Example # (k)

ASTNN

Figure 4: The Impact on number of adversarial examples
mixed into the training set during adversarial training.

Adversarial Training

In order to validate whether adversarial training is still use-
ful for improving the adversarial robustness or classification
accuracy of the subject model. New models with identical
hyper-parameters in Table 1 are trained from scratch on the
adversarially augmented training set with generated adver-
sarial examples included.

In particular, we generate 2,000 adversarial examples
from the training set with MHM in the same procedure as
for the LSTM and ASTNN of last subsection. In the next
step, the adversarial examples are mixed into the training set,
forming an augmented training set, based on which, we train
new models. In the next step, the models are tested against
the test set and adversarial attacks by MHM again. The re-
sults are shown in Table 4.

We can see that both LSTM and ASTNN gain the abil-
ity to resist adversarial attack from MHM after adversarial
training without sacrificing much performance. The attack-
ing rates on adversarially trained LSTM and ASTNN de-
crease greatly (about 30%-40%). Moreover, after adversarial
training, LSTM even gains 1.1% accuracy improvement.

To understand the impact caused by the quantity of ad-
versarial examples in adversarial training, we further per-

1174

form more experiments where the number of adversar-
ial examples mixed into the training set is treated as a
hyper-parameter. We mix 1,000-3,000 examples generated
by MHM into the training set, and evaluate accuracy, cross-
entropy loss and attacking rate of the adversarially trained
models by MHM, respectively. Figure 4 shows the impact
of different number of examples on adversarial training.

After reaching the threshold, as the number of adversarial
examples increases, the adversarially trained models tend to
lose performance, while they tend to be more robust. It then
becomes a trade-off to pick an appropriate example num-
ber. In this case, mixing 2,000 adversarial examples into the
training set may be the appropriate choice.

As explained in the last subsection, identifier names may
be the useful non-robust feature. Variable or function names
are strongly correlated to the functionality label in OJ (such
as “sushu” in case 2 in Figure 3). Therefore, a robust clas-
sification model should not make prediction based on these
features. After mixing adversarial examples into the train-
ing set, the correlation between identifier names and func-
tionality labels are broken and this non-robust feature is no
longer useful for classification. As a consequence, adversar-
ially trained models gain much better robustness.

Related Works

In this section, we briefly introduce the state-of-the-art
source code processing, and discuss the current research
progress in adversarial attacks most relevant to ours.

Source Code Processing

Automated program source code processing with DL tech-
niques has achieved much progress in recent years, such as
pointer mixture networks (Li et al. 2017) in code comple-
tion, convolutional attantion networks (Allamanis, Peng, and
Sutton 2016) in method naming, and DeepCom (Hu et al.
2018) in comment generation, etc.

Source code functionality classification, along with the OJ
benchmark, is proposed by Mou et al. 2016. Tasks such as
code clone detection (Wei and Li 2017; Liuqing et al. 2017;
Hao et al. 2019), code defect prediction (Wang, Liu, and Tan
2016; Dam et al. 2018; Gong et al. 2019), and type inference
(Hellendoorn et al. 2018; Malik, Patra, and Pradel 2019),
etc., are related to functionality classification. TBCNN (Mou
et al. 2016) and state-of-the-art ASTNN (Zhang et al. 2019b)
perform functionality classification upon ASTs.

In this paper, we adopt functionality classification as the
subject task, because it is a simple but important task in
source code processing, and it is closely related to the afore-
mentioned tasks. The LSTM and ASTNN architectures are
employed as subject models, since LSTM is the most rep-
resentative and widely-used model for token sequence pro-
cessing (Zhang et al. 2019b; Li et al. 2017), while ASTNN
is the state-of-art model for AST classification.

Adversarial Examples

Adversarial learning, including adversarial example, adver-
sarial attack, and adversarial training, etc., draws more and
more attention in the recent years. The vulnerability of DL

models were first studied in image classification (Szegedy
et al. 2013). Afterwards, gradient-based perturbations are
intesively studied, e.g., FGSM (Goodfellow, Shlens, and
Szegedy 2015), BIM (Kurakin, Goodfellow, and Bengio
2017) and JSMA (Papernot et al. 2016), etc. It is not un-
til recently, the existence of adversarial examples are also
revealed in speech recognition (Carlini and Wagner 2018;
Sun et al. 2018; Qin et al. 2019) and natural language pro-
cessing (NLP) (Jia and Liang 2017; Alzantot et al. 2018;
Ebrahimi et al. 2018; Du et al. 2019).

In particular, in the field of NLP, adversarial example
generation is rather difficult due to the discrete property
of the language space. Jia and Liang 2017 add distract-
ing sentences into the input document, in order to force
the subject model to produce misclassifications. GA (Alzan-
tot et al. 2018) employs the population-based genetic algo-
rithm to perform black-box attack toward binary sentimen-
tal classifiers and natural language inference models. Fur-
ther works introduce gradient information into the genera-
tion process of adversarial examples for natural languages.
HotFlip (Ebrahimi et al. 2018) iteratively flips character to-
wards the gradient direction to attack character-level classi-
fiers. Zhang et al. 2019a introduce gradient information into
the transition proposal for white-box adversarial example
generation. Recently, Cheng, Jiang, and Macherey 2019 pro-
pose doubly adversarial input examples for enhancing the
robustness of neural machine translation models.

Although source code processing is similar to NLP, there
is a major difference that programming languages are strictly
bounded by lexical, grammatical and syntactical rules, while
the constraints for natural languages are rather loose. There-
fore, we embed strict identifier rule checking into our pro-
posed MHM, which differs from existing approaches.

Researchers have made great efforts to understand adver-
sarial examples in the field of CV. Goodfellow, Shlens, and
Szegedy 2015 investigate that adversarial examples are orig-
inated from the data distribution. Lately, Ilyas et al. 2019
demonstrate that adversarial examples come from the non-
robust features lying under the dataset. By erasing the non-
robust features and keeping the robust ones in the dataset,
the models gain higher robustness. We suggest adversary in
source code processing also has similar traits. We confirm
the issue of non-robustness in source code processing, and
improve the robustness by adversarial training with MHM.
Furthermore, we explain the robust and non-robust features
in source code by empirical case study.

Conclusion
In this paper, we identify and confirm the non-robust prob-
lem of DL models in source code processing tasks. To
cater to the special characteristics of source code, we pro-
pose MHM that generates adversarial examples by itera-
tively identifier renaming based on M-H sampling algo-
rithm. MHM strictly confines the perturbations on the ex-
amples to satisfy the rigid constraints of programming lan-
guages. The experimental results demonstrate that our pro-
posed MHM could effectively generate adversarial examples
to attack the subject models with high attack rate and valid-
ity rate. The obtained adversarial examples from MHM are

1175

able to improve classification performance and adversarial
robustness of the subject models after adversarial training.

In future work, more advanced synonymous parsing and
tree-based perturbations could be included into MHM, such
as replacing “for” sub-tree with “while” sub-tree, etc. Struc-
tural modification without changing the execution path may
also produce high-quality adversarial examples. The renam-
ing operation applied in MHM already confirms its effec-
tiveness in uncovering the non-robust issues. We expect the
inclusion of more diverse synonymous parsing tree modi-
fiers would further improve the attack capability.

Acknowledgement

This research is supported by the National Key R&D Pro-
gram under Grant No.2018YFB1003904, the National Natu-
ral Science Foundation of China under Grant No.61832009,
the JSPS KAKENHI Grant No.19K24348, 19H04086, and
Qdai-jump Research Program No.01277.

References

Allamanis, M.; Peng, H.; and Sutton, C. 2016. A convolutional
attention network for extreme summarization of source code. In
ICML 2016, 2091–2100.
Alzantot, M.; Sharma, Y.; Elgohary, A.; Ho, B.-J.; Srivastava, M.;
and Chang, K.-W. 2018. Generating natural language adversarial
examples. In EMNLP 2018, 2890–2896.
Carlini, N., and Wagner, D. A. 2017. Towards evaluating the ro-
bustness of neural networks. In SP 2017, 39–57.
Carlini, N., and Wagner, D. 2018. Audio adversarial examples:
Targeted attacks on speech-to-text. In SPW 2018, 1–7. IEEE.
Cheng, Y.; Jiang, L.; and Macherey, W. 2019. Robust neural ma-
chine translation with doubly adversarial inputs. arXiv preprint
arXiv:1906.02443.
Chib, S., and Greenberg, E. 1995. Understanding the metropolis-
hastings algorithm. The american statistician 49(4):327–335.
Dam, H. K.; Pham, T.; Ng, S. W.; Tran, T.; Grundy, J.; Ghose,
A.; Kim, T.; and Kim, C.-J. 2018. A deep tree-based model for
software defect prediction. arXiv preprint arXiv:1802.00921.
Du, X.; Xie, X.; Li, Y.; Ma, L.; Liu, Y.; and Zhao, J. 2019. Deep-
stellar: Model-based quantitative analysis of stateful deep learning
systems. In FSE, 477–487.
Ebrahimi, J.; Rao, A.; Lowd, D.; and Dou, D. 2018. Hotflip: White-
box adversarial examples for text classification. In ACL 2018, 31–
36.
Gong, L.; Jiang, S.; Yu, Q.; and Jiang, L. 2019. Unsupervised deep
domain adaptation for heterogeneous defect prediction. IEICE
TRANSACTIONS on Information and Systems 102(3):537–549.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explaining and
harnessing adversarial examples. In ICLR 2015.
Hao, Y.; Wing, L.; Long, C.; Ge, L.; Tao, X.; and Qianxiang, W.
2019. Neural detection of semantic code clones via tree-based con-
volution. In ICPC 2019, 70–80. IEEE Press.
HASTINGS, W. 1970. Monte carlo sampling methods using
markov chains and their applications. Biometrika 57(1):97–109.
Hellendoorn, V. J.; Bird, C.; Barr, E. T.; and Allamanis, M. 2018.
Deep learning type inference. In ESEC/FSE 2018, 152–162. ACM.
Hu, X.; Li, G.; Xia, X.; Lo, D.; and Jin, Z. 2018. Deep code
comment generation. In ICPC 2018, 200–210. ACM.

Ilyas, A.; Santurkar, S.; Tsipras, D.; Engstrom, L.; Tran, B.; and
Madry, A. 2019. Adversarial examples are not bugs, they are fea-
tures. In ArXiv preprint arXiv:1905.02175.
Jia, R., and Liang, P. 2017. Adversarial examples for evaluating
reading comprehension systems. arXiv preprint arXiv:1707.07328.
Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2017. Adversarial
examples in the physical world. In ICLR 2017.
Li, J.; Wang, Y.; Lyu, M. R.; and King, I. 2017. Code comple-
tion with neural attention and pointer networks. arXiv preprint
arXiv:1711.09573.
Liuqing, L.; Feng, H.; Wenjie, Z.; Meng, N.; and Barbara, R. 2017.
Cclearner: A deep learning-based clone detection approach. In IC-
SME 2017.
Ma, L.; Juefei-Xu, F.; Sun, J.; Chen, C.; Su, T.; Zhang, F.; Xue, M.;
Li, B.; Li, L.; Liu, Y.; et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In ASE, 120–131.
Malik, R. S.; Patra, J.; and Pradel, M. 2019. Nl2type: inferring
javascript function types from natural language information. In
ICSE 2019, 304–315. IEEE Press.
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller,
A. H.; and Teller, E. 1953. Equation of state calculations by fast
computing machines. The journal of chemical physics 21(6):1087–
1092.
Mou, L.; Ge, L.; Zhi, J.; Lu, Z.; and Tao, W. 2016. Convolutional
neural network over tree structures for programming language pro-
cessing. In AAAI 2016.
Papernot, N.; McDaniel, P. D.; Jha, S.; Fredrikson, M.; Celik, Z. B.;
and Swami, A. 2016. The limitations of deep learning in adversar-
ial settings. In EuroS&P 2016, 372–387.
Qin, Y.; Carlini, N.; Cottrell, G. W.; Goodfellow, I. J.; and Raffel,
C. 2019. Imperceptible, robust, and targeted adversarial examples
for automatic speech recognition. In ICML 2019, 5231–5240.
Sun, S.; Yeh, C.; Ostendorf, M.; Hwang, M.; and Xie, L. 2018.
Training augmentation with adversarial examples for robust speech
recognition. In Interspeech 2018, 2404–2408.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of neural
networks. In ArXiv preprint arXiv:1312.6199.
Wang, S.; Liu, T.; and Tan, L. 2016. Automatically learning se-
mantic features for defect prediction. In ICSE 2016, 297–308.
Wei, H., and Li, M. 2017. Supervised deep features for software
functional clone detection by exploiting lexical and syntactical in-
formation in source code. In IJCAI 2017, 3034–3040.
Xie, X.; Ma, L.; Juefei-Xu, F.; Xue, M.; Chen, H.; Liu, Y.; Zhao,
J.; Li, B.; Yin, J.; and See, S. 2019a. Deephunter: A coverage-
guided fuzz testing framework for deep neural networks. In ISSTA,
146–157.
Xie, X.; Ma, L.; Wang, H.; Li, Y.; Liu, Y.; and Li, X. 2019b. Dif-
fchaser: Detecting disagreements for deep neural networks. In IJ-
CAI, 5772–5778.
Zhang, H.; Zhou, H.; Miao, N.; and Li, L. 2019a. Generating
fluent adversarial examples for natural languages. In ACL 2019,
5564–5569.
Zhang, J.; Wang, X.; Zhang, H.; Sun, H.; Wang, K.; and Liu, X.
2019b. A novel neural source code representation based on abstract
syntax tree. In ICSE 2019, 783–794. IEEE Press.

1176

