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Abstract

Prediction of particle radiative heat transfer flux is an impor-
tant task in the large discrete granular systems, such as pebble
bed in power plants and industrial fluidized beds. For particle
motion and packing, discrete element method (DEM) now is
widely accepted as the excellent Lagrangian approach. For
thermal radiation, traditional methods focus on calculating
the obstructed view factor directly by numerical algorithms.
The major challenge for the simulation is that the method is
proven to be time-consuming and not feasible to be applied
in the practical cases. In this work, we propose an analytical
model to calculate macroscopic effective conductivity from
particle packing structures Then, we develop a deep neural
network (DNN) model used as a predictor of the complex
view factor function. The DNN model is trained by a large
dataset and the computational speed is greatly improved with
good accuracy. It is feasible to perform real-time simulation
with DNN model for radiative heat transfer in large pebble
bed. The trained model also can be coupled with DEM and
used to analyze efficiently the directional radiative conductiv-
ity, anisotropic factor and wall effect of the particle thermal
radiation.

Introduction

Radiative heat transfer widely exists in the large packed
beds, including circulating fluidized beds (Borodulya and
Kovensky 1983; Hou et al. 2015), high temperature solid
particle solar receiver (Johnson, Baker, and Tari 2019) and
pebble-bed power plant (Wu et al. 2016; 2020a; Zhang et
al. 2016). From the aspect of design and engineering ap-
plications, it is very meaningful and necessary to simulate
the flow and heat transfer processes in packed beds. At
early stages, all physical mechanisms involved in a packed
bed were not understood thoroughly. The porous model was
firstly established to provide an empirical approach to ana-
lyze flow and heat transportation at the transient and steady
state in pebble bed. The prediction accuracy depends greatly
on the empirical parameters.

In Euler-Euler approach, the effect of thermal radiation
is considered as the effective thermal conductivity and cal-
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culated by empirical correlations. In computational fluid dy-
namics (CFD) - discrete element method (DEM) framework,
which investigate two-phase flow behaviors in particle scale
level, particle motion, particle-fluid, contact conduction and
convection without thermal radiation are discussed in nu-
merical simulations (Kloss et al. 2012; Patil, Peters, and
Kuipers 2015). And the radiative heat transfer also is not
included in the analysis of entransy dissipation (Wang, Sun,
and Xu 2019).

From results of the heat transfer experiments (Abou-
Sena, Ying, and Abdou 2005; van Antwerpen, Du Toit, and
Rousseau 2010), radiative thermal conductivity is an impor-
tant part and increases significantly with the operation tem-
perature. Moreover, the radiation exchange factor is well-
known as its non-dimensional parameter, and widely used
for analysis of particle radiation. There is still lacking a
physical expression of the radiation exchange factor based
on the particle packing structure. In DEM, all particles mo-
tion is handled by the contact force to others and physical
walls. Similarly, the conductive heat transfer is calculated by
the contact thermal resistance. However, the computation of
thermal radiation in packed bed becomes time-consuming.
The numerical model often applies a short-range energy cut-
off (Cheng and Yu 2013). In (Johnson, Baker, and Tari 2019;
Wu et al. 2020b), the obstructed view factor is simplified
to a function of the distance. Obviously, the local packing
characteristics is not considered. In radiation transfer equa-
tion (RTE), the particle system is assumed isotropic homo-
geneous medium with scattering, emitting and absorption. It
is the scattering coefficient and absorption coefficient is ap-
plied in the numerical model. Thus, it is difficult to discuss
the effect of the physical properties such as surface emissiv-
ity and solid conductivity.

The obstructed view factor between spheres in packed
bed is a bridge between particle-scale packing and macro-
scopic properties including radiative thermal conductivity,
anisotropic factor and wall effect, even for the radiation
between complex non-spherical particles. Traditionally, the
view factor is calculated by numerical integration or Monte
Carlo method (Walker, Xue, and Barton 2010). However, the
computational time is unacceptable to obtain satisfactory re-
sult in large packed beds. Thus, to analyze and discuss the
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long-range radiation in packed bed, the main task is devel-
oping an efficient approach to calculate the obstructed view
factor.

Artificial neural network (ANN) with multilayer percep-
tron provides a powerful predictor for regression and clas-
sification. The network with deep structure can used to ap-
proximate the non-linear function of the view factor. It can
be trained by efficient backpropagation algorithm (Foresee
and Hagan 1997; Wang, Sun, and Xu 2019) with big data of
a huge number of view factor case.
Contribution. Our contributions are summarized below.

• We describe a numerical model of radiative heat transfer
in packed bed and analytical expressions between packing
and macroscopic properties.

• We generate a large dataset with different view factor
cases for the function regression.

• We develop a deep neural network (DNN) model with rea-
sonable structures to calculate the view factor in packed
bed efficiently and accurately.

• With trained DNN model, we perform real-time numeri-
cal simulation of radiative heat transfer in packed bed.

Related Work

The artificial neural network (ANN) now is regards as a ver-
satile tool of machine learning in many engineering cases.
For fluid flow and heat transfer, a fully connected neural net-
work model is trained in (Alemany et al. 2019) to predict the
trajectory of hurricanes. Data-based approach of ANN is re-
ported by (Beck, Flad, and Munz 2019) to model the turbu-
lence in large eddy simulation. (Chang et al. 2018) presents
ANN model to predict heat transfer behaviors of the super-
critical water. The model is trained by 5280 data points,
which is collected from published experimental measure-
ments. The results show that the ANN performance is con-
siderably better than the empirical correlations. ANN is also
applied to predict the physical properties of alkanes (Santak
and Conduit 2019), convective heat transfer of supercritical
carbon dioxide (Ye et al. 2019) and pool boiling (Zende-
hboudi and Tatar 2017).

In discrete particle simulation, (Benvenuti, Kloss, and
Pirker 2016) develop artificial neural networks to link
macroscopic experiments to simulation parameters. (Kumar
et al. 2018) employees ANN to predict mass discharge rate
from conical hoppers. The input parameters include bulk
density, internal angle, particle diameter, friction coefficient.
And the data for training is generated by DEM simulation.
In (Desu, Peeketi, and Annabattula 2019), ANN model with
3 hidden layers is trained by 11-dimensional data from resis-
tor network (RN) model to predict effective thermal conduc-
tivity of thermal conduction. The presence stagnant gas and
the Smoluchowski effect are discussed for the conductive
heat transfer and the model is much faster than traditional
method with good accuracy. But no thermal radiation term
is considered in discussion.

The heat transfer experiments of packed beds under high
temperature ranges are reported in (Wakao and Kato 1969;
Nasr, Viskanta, and Ramadhyani 1994; Earnshaw, Londry,

and Gierszewski 1998) and aimed to measure the total ef-
fective thermal conductivity, which mainly includes the ra-
diative part and the conductive part. The materials for the
particles of the bed include glass, aluminum and lithium zir-
conate. The experimental results agree generally with the
Zehner–Schlunder correlation and Kunii–Smith correlation.

Physically, the conductivity of the thermal radiation in-
creases with the average particle size greatly (Fillion, Côté,
and Konrad 2011). Commonly, the particle size in many
cases of the packed beds is in range of 1.0 ∼ 10.0 mm and
it is much smaller than the pebbles of 60 mm in diameter
in pebble bed. In recent years, the measurements of peb-
ble beds operated under the similar conditions of the nu-
clear reactor are conducted in the high temperature test unit
(HTTU) (Rousseau et al. 2014) and test facility for pebble
bed equivalent conductivity measurement (TF-PBEC) (Ren
et al. 2017). The particles are spheres of graphite. From
the empirical correlations reviewed by (Tsotsas and Martin
1987) and numerical models reported in (Wu et al. 2020a),
the effect of emissivity on the radiation exchange factor is
a separable term in the radiative flux equation and it is a
continuous monotonically increasing function in the dense
bed of spheres. When the emissivity is zero, only scattering
happens between spheres and the net radiative flux becomes
zero.

Methodology

Directional Radiative Conductivity

For the two-phase flow and heat transfer in packed bed (Wu
et al. 2017), the CFD equation is written as

∂(ρfαf )

∂t
+∇ · (ρfαfuf ) = 0 (1)

∂(ρfαfuf )

∂t
+∇ · (ρfαfufuf ) = −αf∇p+∇ · (μfαf∇uf )+Sm

(2)

∂(ρfCpαfTf )

∂t
+∇·(ρfCpαfufTf ) = ∇·(λfαf∇Tf )+Se

(3)
where αf and ρf are the local porosity and fluid density;
uf and Tf are the fluid velocity and temperature; μf and p
are the fluid viscosity and the pressure; λf and Cp are the
thermal conductivity and specific heat; Sm and Se are the
source terms for particle-fluid interaction of drag force and
forced convection.

For particle motion, packing and heat transfer are usually
calculated by the discrete element method (DEM) (Zhu et
al. 2007). The basic governing equations are

mi
d2Xi

dt2
=

n∑
k=1

Ft,ik +

n∑
k=1

Fn,ik +mig (4)

Ii
dωi

dt
= Ri ×

n∑
k=1

Ft,ik +Mr (5)

miCp,i
dTi

dt
= Qcond +Qconv +Qrad (6)
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Figure 1: The position of particle i, k and direction �β

where Xi and Ti are the particle velocity and temperature at
time t; mi, Ii and Cp,i are the particle mass, momentum of
inertia and specific heat respectively; ωi and Mr are angular
velocity and the rolling friction torque; Ft,ik and Fn,ik are
the tangential contact force and normal contact force; g is the
gravity vector; Qcond,Qconv and Qrad are the conduction
flux, heat convection and thermal radiation flux respectively.
At high temperature, such as the 1000◦C ∼ 1200◦C in ex-
periments, radiative heat transfer becomes a dominant part.
The radiation flux is determined by the temperature differ-
ence between the particle and all its surrounding ones. The
gray-body radiative flux from particle i to particle k, which
are positioned in Pi = (xi, yi, zi) and Pk = (xk, yk, zk), is
formulated as

�qik = εrσAiVik(T
4
i − T 4

k ) · �nik (7)

where Ai, εr and σ are particle surface area, emissivity and
Stefan-Boltzmann constant. Vik is the obstructed view fac-
tor to surroundings and Qrad =

∑N
k=1 |�qik|; The direction

vector is defined as �Sik = Pk − Pi and unit vector is given
as �nik = �Sik/|�Sik|. For the bed of anisotropic packing, the
case heat transfer in a 1D thick plate is applied to obtain
the effective thermal conductivity (ETC). If the temperature
gradient is in the direction �β = (βx, βy, βz), which is a unit
vector i.e., |�β| = 1, and particle i is in its central line, the
steady temperature distribution with uniform heat source is
written as

T (�uik) = Ti − qs
2kβ

�u2
ik (8)

where qs is the heat transfer power; �uik is the projection
vector of �Sik in direction �β (see Figure 1) and it is �uik =

(�Sik · �β) · �β; kβ is the directional radiative conductivity and
it being the ETC in direction �β.

From Eq. (7) and Eq. (8), in which it is T 4
i − T 4

k =
4T 3(Ti − Tk) at low temperature gradients, kβ for bed of
mono-sized spheres is derived as

kβ = 12ρεrT
3 1− ϕ

Nd

N∑
k=1

N∑
i=1

Vik|�Sik|2(�nik · �β)2 (9)

where ϕ,N and d are the average porosity, particle num-
ber and the diameter in the packed bed. It can be found the
effective thermal conductivity is directly proportional to the

Figure 2: A thin packed bed with height of one-layer sphere
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Figure 3: The positions of plane and particles

cube of particle absolute temperature. And its dimensionless
parameter is

Fβ =
kβ

4ρdT 3
= 3εr

1− ϕ

N

N∑
k=1

N∑
i=1

Vik|�hik|2(�nik · �β)2

(10)
where Fβ is the directional radiation exchange factor and
�hik = �Sik/d.

For one-layer bed shown in Figure 2, it is �nik · �β = 0 or
all sphere pair and the directional radiative conductivity in z
axis is zero. However, it is greater than 0 in other directions,
i.e.,Fx > 0, Fy > 0 and Fz = 0. Moreover, it can be found
that the packing is isotropic approximately in x–y plane. To
describe the directional radiative conductivity along a plane
γ, the case in a cylindrical coordinate is applied and particle
i still is in its central line. In this case, the temperature with
uniform heat source is

T (�ρik) = Ti − qs
4kρ

�ρ2ik (11)

where kρ is the directional radiative conductivity and �ρik is
the projection vector in the plane and it is shown in Figure 3.
The vector is �ρik = �Sik − (�Sik ·�np) ·�np and �np unit normal
vector of the plane. kρ is derived as

kρ = 6σεrT
3 1− ϕ

Nd

N∑
k=1

N∑
i=1

Vik�ρ
2
ik (12)
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Figure 4: The numerical result of particle packing in a cylin-
drical packed bed

Finally, if the packing of the packed bed is isotropic in all di-
rections, the average effective thermal conductivity is writ-
ten as

kv = 4σεrT
3 1− ϕ

Nd

N∑
k=1

N∑
i=1

Vik
�S2
ik (13)

The anisotropic factor, which is a dimensionless parame-
ter for quantifying the degree of anisotropic directional ra-
diative conductivity in packed bed, is defined as

η =
kβ,max − kβ,min

kβ,max
=

Fβ,max − Fβ,min

Fβ,max
(14)

where Fβ,max and Fβ,min are the maximum and mini-
mum in all directions. For the case in Figure 2, it becomes
Fβ,min = Fz = 0 and η = 1. For isotropic case, it will be
Fβ,max = Fβ,min and η = 0. When η decreases from 1 to
0, the degree of anisotropy decreases to be isotropic.

In the uniform continuum model (Wu et al. 2019), the ra-
diative heat transfer is formulated as

ρ0εrAiσ

[∫
R3

K(|x− x′|)T 4(x′)dx− T 4(x)

]
+ q = 0

(15)
where ρ0 is the number density and q is the heat source term.
K (x) is the kernel function and directly determined by the
radial distribution function and the view factor.

View Factor Function

For a practical case shown in Figure 4, in which simulations
are performed by DEM, the spheres are of 60 mm in di-
ameter and packing density is 0.61. The calculation of view
factor Vik between all sphere pairs costs most computational
time in packed bed. The view factor between two spheres is
expressed as

Vik =
1

πAi

∫
Ak

∫
Ai

cos(ai) cos(ak)

r2
ν(xi,xk)dAidAk

(16)

where ν(xi,xk) is the visibility function. For ν(xi,xk) =
1, the ray from particle i can can reach the particle j. In
other cases, ν(xi,xk) is 0. The view factor from the sphere
to physical walls can be calculated from the result to other
spheres, and it is can be written as

Vi,w = 1−
N∑

k=1

Vik (17)

For two spheres without obstruction by other ones, the
analytical expression is written as

Vik =
1

π|�hik|

∫ π/2

0

2ζ − sin(2ζ)√
�h2
ik − 4 cos2(ζ)

sin(2ζ)dζ (18)

For the cases in Figure 4, the sphere pair may be ob-
structed by other spheres. The view factor function becomes
much more complicated and non-linear. It is necessary to
use numerical procedures for general complex cases. Tradi-
tionally, the view factor in packed bed is obtained by Monte
Carlo method (MCM) by using a ray tracing approach. The
advantages of MCM are of low memory cost and efficient
for multithreading. The disadvantage is that many rays need
to be traced for achieving good accuracy. From numerical
tests, it is good enough to apply 1 × 108 rays to calculate
view factor in packed bed. The average particle number sat-
isfying Vik > 0 is about 130 in the simulation. The average
time of the calculation for a sphere is about 38.8s in serial
mode, in which the simulation is performed in the Intel Core
i7-8700K. The time decreases to 7.26s per particle with 6
processors. With GPU accelerating, in which simulations are
performed in Nvidia GeForce GTX 1070, the average time
to calculate view factor to surroundings decreases greatly
to 0.64s per particle. However, neither CPU nor GPU per-
formance is capable for the practical cases. As the fact that
there are 2.7×104 spheres in the experimental nuclear reac-
tor and 4.2 × 105 spheres in the demonstration power plant
(Zhang et al. 2016). For a packed bed of 1× 105 spheres, it
takes about 201.7h with CPU or 17.8h with GPU for simu-
lation.

Deep Neural Network

To accelerate the calculation of the view factor, a deep neural
network model, which is a universal estimator for function
regression, is applied to understand the rule to calculate view
factor between all spheres in packed bed. The structure of
the model is shown in Figure 5.

A large dataset calculated by the GPU calculation is used
as the input for training. Then the preprocessing of the data
is to delete unrelated points, which are far away from the
particle pair and make no contribution to the view factor. The
principal component analysis (PCA) is used for the dimen-
sionality reduction. The neural network with three hidden
layers is applied for the regression and every hidden layer
contains up to 30 neurons. The connections are from the in-
put and every previous layer to following layers. The data is
divided randomly into 80% for training, 10% for validation
and 10% for testing. The model is trained by the algorithm of
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Figure 5: The structure of the neural network model for cal-
culating view factor

Bayesian regularization back-propagation (Foresee and Ha-
gan 1997).

Experiments

Experimental Setup

Datasets. No large dataset of view factor in packed bed is
reported in related literatures. We generate the view fac-
tor dataset by following steps: (1) Divide the view fac-
tor function into 11 groups. For case with 2 spheres, it is
V12 = f2 = f(P1, P2). For 3 spheres case, the function
is V12 = f3 = f(P1, P2, P3). And the function V12 =
f12 = f(P1, P2, ..., P12) is the case of 12 spheres, which
means that the ray from P1 to P2 may be affected 10 spheres
(P3, P4, ..., P12). For the cases of more than 10 spheres clos-
est to the line P1P2, it is reasonable to consider only top 10
ones. (2) For the function f2 = f(P1, P2), the view factor
is calculated directly by Eq. (18). For f3, f4, ..., f12, gen-
erate random points P1, P2, ..., P12 of mono-sized spheres
without overlapping. Calculate the view factor by MCM
with GPU accelerating. (3) All the cases are in the range
of |P1 − P2| < 6d. The dataset is stored in the form
P1, P2, ..., P12 and the record number is listed in Table 1.
Training. The preprocessing of the data can be per-
formed by translation, scale and rotation. For the points
P1, P2, ..., P12, we put P1 at origin and P2 at x axis. P3 is in
x–y plane and all points are scaled by particle radius. Then
every column for training is normalized in [-1, 1]. We use

Table 1: The dataset for training the view factor function
Function Record Number Function Record Number

f3 4.0× 104 f8 1.4× 105

f4 5.5× 104 f9 1.4× 105

f5 8.9× 104 f10 1.4× 105

f6 1.4× 105 f11 1.6× 105

f7 1.4× 105 f12 1.6× 105

Table 2: The structure of neural network for the function f6
Model Neurons Preprocessing Average Error

A 10 Yes 1.5× 10−3

B 10× 5 Yes 1.2× 10−3

C 10× 10 No 9.6× 10−4

D 10× 10 Yes 3.3× 10−4

E 25× 25× 25 Yes 2.7× 10−5

mean square error (MSE) as loss function and it is given as

MSE =
1

Nr

Nr∑
i

(�Vi − V12)
2 (19)

where Nr is the record number of the dataset for training.
V12 is the input value and V̂i is the predicted view factor.
The maximum of view factor is about 0.07558 for the case
without obstruction and all dataset is clean. Thus, the itera-
tion will stop at the absolute error e = |V̂i−V12| < 5×10−5

for 90% dataset.
Baselines. For the function of two spheres f2 = f(P1, P2),
a feedforward neural network with a single hidden layer of
only 10 neurons is applied and trained by 315 data points.
The prediction error is 8×10−6 and the performance is much
better than that of linear regression and symbolic regression.
The model can be used in the application to avoid the calcu-
lation of the complex integration term in Eq. 18. Moreover,
for the view factor function f6 = f(P1, P2, P3, P4, P5, P6),
the results with difference structures are given in Table 2.
It is found that the error decreases with increasing of the
layer number and neuron number. The performance is also
improved with preprocessing. When the network structure
increases to 25 × 25 × 25, the error with preprocessing de-
creases to acceptable value of 2.7 × 10−5. And for f12, the
neurons in network increases to 40 for good prediction.

Experimental Results

Prediction Performance. The application of the trained
deep neural network model in packed bed is conducted by
following procedures. First, find all surrounding spheres of
particle i. The neighbors are searched by Kd-tree in the
range of 6 times of the particle radius. The view factor de-
creases to 0 approximately for the pairs over 6 times of the
particle radius and it can be neglected in the discussion;
Then, apply the trained deep neural network (DNN) model
of the function regression to calculate the view factor; Fi-
nally, assemble the all view factor as a sparse matrix.

By testing the same case, average computational time
shown in Figure 6 is 2.15 × 10−3s per particle using DNN.
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Figure 6: The comparison of calculation speed for view fac-
tor with different method

It is 298 times faster than that of GPU, in which DNN pre-
diction also achieves good accuracy shown in Figure 7, and
only takes about 3.6 min to calculate view factor between
spheres in packed bed of 1× 105 spheres, which makes fea-
sible to perform real-time simulation of radiative heat trans-
fer.
View Factor Enclosure. For a sphere in packed bed, accu-
mulated view factor is sum of all view factor to surroundings
in range of a given distance. The average statistical results
with DNN model are shown in Figure 8.

The value increases with the distance and it is strictly
ranged of 0 to 1. In 1.05d that is very near to the particle,∑

Vik is about 0.57. It is because there are about 7 ∼ 8
spheres contact directly with view factor of 0.07558.

∑
Vik

increases greatly with the distance at r ≤ 2d and slowly
reaches its maximum at about 3d. In 1.5d, which is discussed
in short range model, accumulated view factor reaches to
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Figure 7: Prediction accuracy of the trained deep neural net-
work for the view factor
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Figure 8: Average accumulated view factor with distance for
spheres in packed bed
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Figure 9: The anisotropic factor under different size of the
pebble bed

0.84. Thus, it is not accurate enough for the model only con-
sidering the pairs in the distance of 1.5 times particle diam-
eter. In the full range of 3.0d,

∑
Vik is 0.9977 and it is rea-

sonable to be modeled as an enclosed space in the numerical
simulation.
Anisotropic Factor. For directional radiative conductivity
in x, y and z axis, Fβ becomes Fx, Fy and Fz , in which di-
rection �β is (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. The
position vector can be written as �hik = aij�nx + bij�ny +
cij�nz . It can be proven that the relationships between radi-
ation exchange factor in a given direction and its average
in a plane or the whole bed are Fxy = (Fx + Fy)/2 and
Fν = (Fx + Fy + Fz)/3. For cylindrical bed, the radiation
exchange factor almost keeps a constant under different po-
lar angles. From results under different azimuthal angle ϕ,
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F (ϕ) can be formulated as a+b sin2 ϕ. The parameter b de-
creases with the height of the bed and it will be isotropic at
b = 0.

The results of anisotropic factor are given in Figure 9 for
HTR-10 of 0.9m in thickness and HTR-PM of 1.5m in thick-
ness. Commonly, the fitting curve is given as

η = 1.73 exp(−1.1
√

H/d) (20)

where H is the packing height. At height of 6.5d, the
anisotropic factor decreases to about 0.1. At H = 1.0m, η
are 0.022 for HTR-10 and 0.031 for HTR-PM.
Wall Effect. In uniform continuum model, the view factor
from sphere to wall can be expressed as

Xw = 1−
∫ xw

−∞

∫ +∞

−∞

∫ +∞

−∞
K(x)dxdydz (21)

where xw is the distance to the wall. In discrete model,
the view factor can be obtained from sphere-sphere data in
Eq. (17). The numerical results of the wall effect are given
in Figure 10. Generally, the wall effect decreases with the
distance and the continuum model is the average value. For
xw < d, it is the wall region and the view factor to the wall
is greater than that to spheres. At d ≤ xw < 2.5d, it is near-
wall region and the wall effect is much less than the wall
region. At xw ≥ 2.5d, it is the bulk region and wall effect
can be neglected.

Conclusion

For the thermal radiation in packed bed under high temper-
ature, a deep neural network model is applied to investigate
the directional radiative conductivity, anisotropy and wall ef-
fect. It is found that:
(1) The radiative heat transfer in pack bed is of long-range.
Directional radiative conductivity is a macroscopic parame-
ter in a given direction. The calculation is related with the
obstruction view factor.

(2) The deep neural network (DNN), which is trained by big
data, is good predictor of the view factor. The calculation
speed is significantly accelerated, and it makes feasible to
perform real-time simulation of the radiative heat transfer.
(3) From numerical results, the anisotropic factor decreases
with the packing height. With the ANN model and uniform
continuum model, the wall effect on the thermal radiation
can be 3 parts of wall region, near-wall region and bulk re-
gion.
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