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Abstract

Link prediction is an important task in online social network-
ing as it can be used to infer new or previously unknown rela-
tionships of a network. However, due to the homophily prin-
ciple, current algorithms are susceptible to promoting links
that may lead to increase segregation of the network—an ef-
fect known as filter bubble. In this study, we examine the fil-
ter bubble problem from the perspective of algorithm fairness
and introduce a dyadic-level fairness criterion based on net-
work modularity measure. We show how the criterion can be
utilized as a postprocessing step to generate more heteroge-
neous links in order to overcome the filter bubble problem.
In addition, we also present a novel framework that com-
bines adversarial network representation learning with super-
vised link prediction to alleviate the filter bubble problem.
Experimental results conducted on several real-world datasets
showed the effectiveness of the proposed methods compared
to other baseline approaches, which include conventional link
prediction and fairness-aware methods for i.i.d data.

Introduction

Online social networking sites have transformed the way in-
dividuals interact and share information with each other. The
wealth of social network data available also provide oppor-
tunities to mine them for a variety of business applications.
For example, businesses can learn about the users’ interests,
sentiment, and online behavior by analyzing the social net-
work data. The insights gained from such analysis will help
businesses to increase engagement with their existing cus-
tomers or connect with new customers. Despite its impor-
tance, recent studies have raised concerns about the poten-
tial biases and unintended consequences that may arise from
such automated analysis.

For example, link prediction methods (Liben-Nowell and
Kleinberg 2007; Al Hasan et al. 2006; Masrour et al. 2015;
2018) are commonly employed by social networking sites
to encourage users to expand their social circles. “Suggested
for you” on Instagram and “People you may know” on
LinkedIn are two example applications of such methods.
However, the rise of link prediction systems have led to an
effect known as filter bubble (Pariser 2012), which is the re-
inforced segregation and narrowing diversity of information
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exposed to online users. If left unchecked, the filter bubble
may introduce systematic biases in the network data and its
subsequent analysis. For instance, Hofstra et al. (Hofstra et
al. 2017) examined the ethnic and gender diversity of social
relationships on Facebook and showed that those who have
ample opportunities to befriend other similar users often find
themselves in highly segregated networks. This is due to the
homophily principle (McPherson, Smith-Lovin, and Cook
2001), which is the tendency of individuals to form social
ties with other similar individuals in a network. As current
algorithms are designed to promote links between similar
users, their suggested links may exacerbate the user segre-
gation problem.

In addition to online social networks, the filter bubble
problem is also prevalent in recommender systems, which
can be viewed as a link prediction task applied to a bipar-
tite network of users and items. A recent study by Nguyen
et al. (Nguyen et al. 2014) concluded that recommender sys-
tems tend to expose users to “slightly narrowing set of items
over time.” For example, in movie recommendation, movies
from a certain genre may only be recommended to users
from a specific gender. By addressing the filter bubble prob-
lem in network link prediction, the proposed method can
potentially be used to alleviate the filter bubble problem in
other types of recommender systems.

This paper examines the filter bubble problem for network
link prediction from algorithm fairness perspective. Specif-
ically, we consider a link prediction algorithm to be unfair
if it is biased towards promoting certain types of links (e.g.,
those between users with similar gender or other protected
attributes). As a motivating example, consider the link pre-
diction task on professional networking sites. Certain pro-
fessions, such as software engineering, tend to be dominated
by men, a fact that is likely to be reflected in the link struc-
ture of the professional network. As a result, the links rec-
ommended by the site may reinforce this gender-based seg-
regation and primarily recommend links between individ-
uals from the same gender while recommending compara-
tively fewer inter-gender links. Though such a system may
be able to achieve high link prediction accuracy, it may un-
fairly disadvantage some users. For example, a female soft-
ware engineer may be treated unfairly as they are seldom
recommended to other male software engineers.

Unfair practices due to the decisions generated by auto-
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mated systems is a problem that has been well-documented
in many application domains, including criminal justice,
mortgage lending, and university admission. For example,
Angwin et al. (Angwin et al. 2016) warned about the poten-
tial biases against African Americans in the software used
to predict the risk score of defendants who would likely re-
offend again while O’Neil (O’Neil 2017) cautioned against
the manipulative marketing tactics used by for-profit col-
leges in online advertising that exploit vulnerable popula-
tions. These concerns have brought increasing scrutiny into
the issue of fairness in machine learning algorithms. Despite
their growing research, existing works are primarily focused
on independent and identically distributed (i.i.d) data, and
thus, may not be suitable for link analysis problems. For ex-
ample, previous works have considered the notion of fair-
ness either at individual (Dwork et al. 2012) or group (Hardt
et al. 2016; Feldman et al. 2015) level. In contrast, this paper
examines the notion of fairness at a dyadic-level, based on
the pairwise interactions between users in a social network.
Furthermore, previous approaches have considered fairness
in terms of the unjust decisions against members of a spe-
cific underrepresented (protected) group. Instead, we con-
sider fairness in terms of promoting inter-group connections
in a network in order to alleviate the filter bubble problem.

There are four major contributions of this paper. First,
we empirically assess the influence of protected attributes
such as gender on the link structure of a network by mea-
suring the homophily effect on several real-world network
datasets. Second, we introduce modred as a fairness crite-
rion for network link prediction. The metric is inspired by
the well-known modularity measure (Newman and Girvan
2004) developed for network community detection. We con-
sider the reduction in modularity measure as a way to deter-
mine whether the links predicted by an algorithm may lead
to further segregation of the network. We then illustrate how
the measure can be incorporated into a greedy algorithm
for postprocessing the results of current link prediction al-
gorithms. Finally, we present a novel Fairness-aware LInk
Prediction (FLIP) framework that combines adversarial net-
work representation learning with supervised link prediction
to mitigate the filter bubble problem.

Related Work
Link prediction is a well studied problem in network anal-
ysis with various algorithms been developed over the past
two decades (Al Hasan et al. 2006; Masrour et al. 2015).
This includes heuristics methods that consider the pairwise
similarities between nodes, where similarity is defined based
on the network topology (Newman 2001; Liben-Nowell and
Kleinberg 2007) or node features (Crandall et al. 2010). The
main benefit of these methods is their simplicity and the
fact that most of these approaches do not required train-
ing. Another class of link prediction methods employ ma-
chine learning methods, such as those based on probabilis-
tic graphical models (Clauset, Moore, and Newman 2008),
matrix factorization (Scripps et al. 2008), and supervised
classification (Al Hasan et al. 2006; Wang et al. ). Despite
their higher accuracy, these methods often suffer from the
class imbalance problem as the number of links in a network

is significantly fewer than the number of non-links. Recent
years have also witnessed the emergence of deep neural net-
work methods for the link prediction task (Li et al. 2014; ;
Tian et al. 2014). These methods have been shown to achieve
state of the art performance.

Social networks are increasingly personalizing their con-
tent using automated machine learning techniques, which is
a concern as the decisions may lead to adverse effects on the
users. This is due to the so-called “filter bubble” or “echo
chamber” effect (Hofstra et al. 2017; Pariser 2012) in which
individuals are increasingly isolated to consuming only in-
formation that conform to their own belief system. In on-
line social networks, the effect of filter bubble is exemplified
by the recommendation decisions generated using link pre-
diction algorithms. As link prediction algorithms are com-
monly used to encourage users to expand their networks,
this may lead to adverse consequences such as segregation
of users (Hofstra et al. 2017; Nguyen et al. 2014).

Quantifying fairness has been a subject of intense de-
bate among AI and ML researchers in recent years (Berk
et al. 2018; Dwork et al. 2012; Hardt et al. 2016; Kus-
ner et al. 2017). Previous works are primarily focused on
non-relational data and can be classified into two types—
individual-level or group-level fairness. Fairness definition
at individual level is based on the premise that similar
people should be treated similarly. For example, Dwork et
al. (Dwork et al. 2012) defined a task-specific metric based
on a probabilistic distance measure between individuals via
a Lipschitz condition. The metric is used as constraints to
optimize a fairness-aware classifier. In contrast, the group-
level approach quantifies fairness in terms of statistical mea-
sures such as demographic parity, equalized odds (Hardt et
al. 2016) or balanced error rate (Feldman et al. 2015) with
respect to the protected groups. The measures are typically
computed from a confusion matrix (Berk et al. 2018) and
are used to ensure that the average performance do not vary
significantly among different groups of a protected attribute.

In addition, there has been growing literature on develop-
ing fairness-aware methods. Current methods can be divided
into three categories. The first category includes prepossess-
ing algorithms (Zemel et al. 2013; Madras et al. 2018) with
the motivation that training data is the main cause of bias
in machine learning. Zemel et al. (Zemel et al. 2013) intro-
duced an optimization algorithm to map data points into a
new space to ensure membership in the protected group is
lost. Madras and et al. (Madras et al. 2018) connected group
fairness concept to adversarial concept for learning fair rep-
resentation. In addition, there has been some recent work on
fairness in recommender systems related to the link predic-
tion problem (Zhu, Hu, and Caverlee 2018).

Fairness for Network Data

We first review the fairness criteria for i.i.d. data. Let Y be
the target variable of interest (true outcome) and X be a
set of input features. Conventional supervised learning algo-
rithms are designed to predict the target outcome Y from X

by learning a model f such that Ŷ = f(X) is the predicted
outcome. Existing fairness-aware methods seeks to ensure
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that the predictions generated by the model will not discrim-
inate against one or more subgroups, defined by a protected
attribute X(p) such as gender, race, or sexual orientation.

A widely used criterion for assessing fairness is demo-
graphic parity (Louizos et al. 2015; Kamishima, Akaho,
and Sakuma 2011; Johndrow, Lum, and others 2019; Ed-
wards and Storkey 2015; Calders, Kamiran, and Pechenizkiy
2009), which considers the degree of independence between
the model output and protected attribute. Assuming both the
target outcome and protected attributes are binary-valued,
demographic parity seeks to achieve:

P (Ŷ = 1|X(p)X(p)) = P (Ŷ = 1)

Another well known fairness criterion is equalized odds
(Hardt et al. 2016), which seeks to ensure that the predic-
tions are conditionally independent of the protected attribute
given the true outcome:

P (Ŷ = 1|X(p) = 0, Y = y) = P (Ŷ = 1|X(p) = 1, Y = y),

If we consider Y = 1 as advantaged outcome, a special
case for this criterion is known as equal opportunity (Hardt
et al. 2016), which is defined as follows:

P (Ŷ = 1|X(p) = 0, Y = 1) = P (Ŷ = 1|X(p) = 1, Y = 1),

Dyadic-level Fairness

In this paper, we investigate the filter bubble problem from
the perspective of algorithm fairness. Specifically, a dyadic-
level fairness criterion can be defined based on the protected
group membership of individuals participating in the links.
Below, we consider two such criteria:
• Subgroup dyadic-level protection, where fairness is as-

sessed in terms of how representative each protected sub-
group is in the formation of the links. For example, in ap-
plications such as link-based recommender systems, the
fairness criteria could be to ensure that the recommended
links do not favor certain subgroups in the population at
the expense of other subgroups.

• Mixed dyadic-level protection, where fairness is deter-
mined based on homogeneity of the nodes involved in
each link. Specifically, a link is considered to be an intra-
group link if it relates a pair of nodes with the same pro-
tected attribute values. Otherwise, it is known as an inter-
group link. To prevent effects such as filter bubble, inter-
group or mixed links should be favored to prevent segre-
gation of the users.

In principle, the subgroup dyadic-level protected can be im-
plemented using existing group-level fairness criteria for
i.i.d. data by applying them to the links instead of individual
nodes in the network. For mixed dyadic-level protected, we
introduce the network modularity measure to be described
in the next section.

Network Modularity

Homophily (McPherson, Smith-Lovin, and Cook 2001),
which is the tendency of individuals to form relations with
others similar to them, is an important characteristic of many
social networks. Such relationship can be quantified using

the well-known network modularity (or assortative mixing)
measure (Newman and Girvan 2004; Newman 2006). The
measure, which was originally developed for community de-
tection in networks, is based on the idea that a random graph
is not expected to contain any clustering structure. Any com-
munity structure in a given network can thus be validated
by comparing its link density against its expected density if
the link structure of the network is completely random. The
modularity measure is defined as follows (Newman and Gir-
van 2004):

Q =
1

2m

∑
ij

(
Aij −

didj
2m

)
δ(ci, cj) (1)

where A is the adjacency matrix representation of the net-
work, δ(ci, cj) is the Kronecker delta function, ci is the com-
munity of node i, di is its corresponding degree and m is to-
tal number of links. Intuitively, a network is said to be assor-
tative if a significant portion of its links are between nodes
that belong to the same community.

The modularity measure can be used to determine
whether a network is unfair in terms of mixed dyadic-
level protection by replacing δ(ci, cj) in Equation (1) with
δ(X

(p)
i , X

(p)
j ), where X

(p)
i is the protected attribute value

for node i. The Q value is thus influenced by only those
pairs of nodes belonging to the same protected class. Val-
ues of Q close to one would indicate high unfairness due to
the strong alignment between the link structure and the pro-
tected attribute while values close to zero indicate high fair-
ness. For numeric-valued protected attributes such as age or
income level, it can be modified as follows:

r =

∑
ij(Aij − didj/2m)X

(p)
i X

(p)
j∑

kl(dkδkl − dkdl/2m)X
(p)
k X

(p)
l

where δij =

{
1 if i = j

0 o.w

This is also known as assortativity coefficient of the network.
To illustrate the use of modularity as a measure of un-

fairness, consider the networks shown in Figure 1. The data
correspond to friendship relations among freshman at a sec-
ondary school in the Netherlands from 2003-2004 (Snijders,
Van de Bunt, and Steglich 2010). Using gender as protected
attribute, the modularity value for the first network shown in
Figure 1(A) is equal to 0.3033 while the value for the second
network is 0.0179. Note that the network with higher mod-
ularity has more links between students of the same gender
compared to the one with lower value, and thus, is unfair
from the perspective of mixed dyadic-level protection.

Our proposed fairness-aware framework evaluates the re-
duction in the modularity measure to determine whether the
modified network obtained from the link prediction results
is biased towards creating more inter-group or intra-group
links. Specifically, we define the following metric:

modred =
Qref −Qpred

Qref
, (2)

where Qref is the modularity measure of a reference net-
work (e.g., the ground truth network when evaluating link
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(a) Snapshot taken in 2003. Modularity = 0.3033.

(b) Snapshot taken in 2004. Modularity = 0.0179.

Figure 1: Snapshots of friendship relation among students at
a Dutch school taken 2003 and 2004 along with their modu-
larity values. The node color represents the student’s gender.
Darker dashed lines correspond to links between students of
different gender while the solid ones correspond to links be-
tween students of the same gender.

prediction algorithms) and Qpred is the modularity of the pre-
dicted network, i.e., the network obtained by augmenting the
predicted links to the original network. A positive modred
value indicates that the link prediction algorithm predicts
more inter-group links than the ground truth network while a
negative value suggests that the algorithm is predicting more
intra-group links than the ground truth network.

Greedy Post-Processing

One approach to promoting fairness in link prediction is
to post-process the prediction results. To this end, we pro-
pose a greedy algorithm for reducing modularity of the pre-
dicted network. It takes as input a set of binarized link pre-
dictions, {ėxy} and calculates the change in modularity re-
sulting from flipping the prediction of each node pair. The
change in modularity for flipping link ėxy is:

score(ėxy) =
(−1)δ(ėxy)

2m

(
− 1 +

dx + dy − 1

2m

)
δ(X

(p)
x , X

(p)
y )

+
( ∑

v∈V,X
(p)
v �=X

(p)
x

v �=y

dv +
∑

v∈V,X
(p)
v �=X

(p)
y

v �=x

di

)
/4m2

(3)

where the value of (−1)δ(ėxy) is −1 if ėxy is 1 and +1 oth-
erwise, dx and dy are the degrees of nodes x and y respec-
tively. After computing this score for each predicted link we

Figure 2: FLIP architecture

flip the edges with the lowest scores. This is another approx-
imation since the score for edge should be recomputed after
each edge is flipped due to changes in the value of dx and dy .
The number of link predictions to flip is a hyper-parameter
that can be varied depending on the importance of accuracy
versus modularity.

Adversarial Learning for Fair Link Prediction

Consider an attributed network N = (V,E,X), where V
is the set of nodes, E ⊆ V × V is the set of links, and
X ∈ R

|V |×d is a matrix corresponding to the set of attribute
values associated with the nodes in V . Assume X can be
partitioned into submatrices [X(p), X(u)], which correspond
to the protected and unprotected features of the nodes. Here
we only consider a binary value X(p). Our goal is to accu-
rately infer new links in the network without being biased
against the formation of inter-group links.

Our proposed framework, known as FLIP (Fairness-aware
LInk Prediction), employs an adversarial learning approach
to ensure that inter-group links are well-represented among
the predicted links. The framework consists of the following
3 components, as illustrated in Figure 2:

1. A generator, G, that takes the attributed network as input
and learns a representation G(v) for each node v ∈ V .
We use DeepWalk (Perozzi, Al-Rfou, and Skiena ) as the
generator, though in principle, the framework can be ap-
plied to other network representation learning methods.

2. A discriminator, D, that takes the representations for each
pair of nodes produced by the generator as input and at-
tempts to predict if it is an intra-group or inter-group node
pair. The discriminator’s predicted probability that a pair
of nodes has the same protected attribute value is denoted
as D(G(vi), G(vj))

3. A link prediction component, L, which tries to infer new
links given node representation learned by the generator.
The predicted probability that a link exists between a pair
of vertices is L(G(vi), G(vj)).

To understand the rationale behind the framework, note
that a good feature representation learned by the generator
will enable the link prediction component to infer correctly
whether a node pair is connected. If the link structure of the
network is biased towards intra-group links, so will the link
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prediction component as well as the generator. The discrim-
inator plays the role of an adversary who attempts to predict
whether a node pair involves nodes from the same group or
from different groups. By making the generator and discrim-
inator to work against each other, this would lead to a situa-
tion in which the generator produces a feature representation
that is good enough for link prediction yet unbiased enough
to prevent the discriminator from inferring whether it is an
inter-group or intra-group node pair. In networks with ho-
mophily property, this will help to discourage the prediction
of intra-group links and promotes more inter-group links.

Discriminator

In recent years, adversarial networks have been used to
achieve different fairness criteria for independent and iden-
tically distributed (i.i.d) data (Beutel et al. 2017; Madras et
al. 2018). The shared idea between these methods is an ad-
versarial component that attempts to predict the protected
attribute value Xu. A naı̈ve approach to achieving fairness
in network data is to follow same path and design an ad-
versarial component that predicts the protected attribute of a
node using the following cross entropy cost function:

JD = − 1

|V |
∑
v∈V

[
X(p)

v log(ŷv) + (1−X(p)
v ) log(1− ŷv)

]

Here ŷu = D(G(u)) is the prediction of the discriminator
of the binary protected value of node u.

However this will not necessarily result in mixed dyadic
level protection because intra-group links may still be fa-
vored in a homophilic network. To solve this challenge we
propose the following adversarial loss:

JD = − 1

|T |
∑

(u,v)∈T

[
puvlog(p̂uv)

+(1− puv) log(1− p̂uv)

]
(4)

where T ⊆ V ×V is the set of node pairs in the training data,
puv is the actual type of node pair (u, v) with respect to a
given protected attribute (i.e. intra-group vs inter-group) and
p̂uv is the discriminator’s prediction. Instead of inferring the
node’s protected attribute, the discriminator receives a pair
of node representations, which it passes to a two layer fully
connected network with leaky ReLU activation to determine
the probability that it is an intra-group node pair.

Generator

In contrast to the original GAN framework proposed by
(Goodfellow et al. 2014) where the generator seeks to gen-
erate samples of data points that seem real, the generator in
our framework tries to learn node representation that will
preserve important structural information of the network
without implicit usage of the protected attribute informa-
tion. For the generator, we utilized DeepWalk (Perozzi, Al-
Rfou, and Skiena ) which is a network representation learn-
ing method inspired by the Skip-gram (Mikolov et al. 2013)
model from natural language processing. DeepWalk consists
of two steps: the first step is to extract sequences of nodes

from the network by performing a series of truncated ran-
dom walks starting from each node in the input network.
In the second step, the node sequences generated from the
random walk process are used to learn the feature represen-
tation of each node. This is accomplished as follows. A slid-
ing window of width w scans the generated node sequences
to generate all the node pairs (u, v) in which node v appears
in the sliding window centered at node u. A fully connected
neural network with a single hidden layer predicts the prob-
ability of the occurrence of node v given the one hot en-
coding, ū, of node u. Specifically, the network attempts to
predict p(v|u) for each u as follows:

p(v|u) � exp(f ′(v)�f(u))∑
v′∈V exp(f ′(v′)T f(u))

(5)

where f(v) = Wv̄, f ′(u) = Zū, W is the weight matrix
between the input and hidden layers of the network, and Z
is the weight matrix between the hidden and output layers
of the network. The rows of matrix W are the node rep-
resentations generated by the skip-gram model so we have
G(u) = f(u).

The parameters of DeepWalk are trained using the maxi-
mum likelihood estimation approach, with the following loss
function:

JSkip =−
∑
u∈V

[
− log(

∑
v′∈V

exp(f ′(v′)�f(u))

+
∑

v′∈Ωw(u)

exp(f ′(v)�f(u))
]

Here Ωw(u) represent the set of all nodes that appears in the
neighborhood of node u in the given random walk sequence
with window size of width w.

Link prediction

This component takes a pair of node embeddings as input to
predict whether their nodes should be linked or not. This is
accomplished by adding a two-layer link prediction network
to the GAN model. During the training phase the link pre-
diction component receives pairs of node embeddings and
concatenates them into a feature vector, which is then passed
to a two-layer fully connected network with leaky ReLU ac-
tivation. The output of the network corresponds to the like-
lihood of a link to exist between the node pair. Here we de-
ployed the standard cross entropy cost function as follows:

JL = − 1

|T |
∑

(u,v)∈T

[
euvlog(êuv)+(1−euv) log(1− êuv)

]

(6)
where êuv is output of the link prediction component for
node pair (u, v) and euv is the binary ground truth link label.

Putting everything together, the overall loss function for
the proposed framework is given as follows:

JG = (1− α)JSkip − αJD + βJL (7)

where β is a hyperparameter. The generator, discriminator,
and link prediction network are all trained end to end us-
ing Adam (Kingma and Ba 2014). The generator and link
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Table 1: data sets

network #nodes #edges protected feature
Dutch school 26 221 gender

Facebook 1,034 26,749 gender
Google+ 4,938 547,923 gender

Table 2: Proximity based link prediction algorithms. For
each node v, N(v) is the set of its immediate neighbors.

Method Definition

Jaccard |N(u)∩N(v)|
|N(u)∪N(v)|

Adamic/Adar
∑

x∈N(u)∩N(v)
1

log(dx)

Preferential attachment dxdy

p(link) p(link|intra) prob(link|inter)
Dutch School 0.3662 0.5406 0.1699

Facebook 0.050 0.053 0.047
Google+ 0.045 0.061 0.0316

Table 3: Homophily effect

prediction network are trained on the same batches but ev-
ery other batch is used to train the discriminator only so that
training alternates between updating the link predictor and
generator together on one batch and updating the discrimi-
nator on the next batch.

Experimental Evaluation

This section describes the experiments performed to evalu-
ate the efficacy of our proposed methods to address the filter
bubble problem in network link prediction.

Experiment Setup

We first discuss the experimental setup, including data sets,
baselines and evaluation metrics used in our experiment.

Datasets We evaluated our methods on three real world
social network data sets. Table 1 summarizes the main prop-
erties of these data sets. The first data set is a Facebook
ego network (Leskovec and Mcauley 2012), which con-
tains 1,034 nodes, and 26,749 friendship links. The second
data set is Google+, which has 4,938 nodes and more than
500,000 links. (Leskovec and Mcauley 2012), The third data
set is Dutch school network (Snijders, Van de Bunt, and
Steglich 2010), which corresponds to friendship relations
among 26 freshmen at a secondary school in the Nether-
lands. For all three datasets, we use gender as the protected
attribute for inferring intra-group and inter-group links.

Baseline Algorithms We considered 4 state-of-art link
prediction algorithms as baselines. Three of them are well
known classical proximity based methods which use neigh-
borhoods structural information. The first baseline is based
on the well known Jaccard’s (Jac) coefficient similarity met-
ric which is deployed in the context of network link predic-
tion by calculating the portion of common neighbors for a

given nodes pair. The second baseline is Adamic/Adar(Ad-
Ad), a similar measure that assigns less weight to more
connected common neighbors. The third proximity based
algorithm is preferential attachment (Pr-At)(Mitzenmacher
2001) which sets the probability of a connection between
two pair of such that it is correlated with the product of the
their degrees (Newman 2001). Table 2 summarized the for-
mal definition of these algorithms. We also considered the
more recent DeepWalk(DW) algorithm (Perozzi, Al-Rfou,
and Skiena ) which learns d-dimensional feature representa-
tions of nodes by simulating uniform random walks and pro-
vides latent features for nodes at the first step and then, simi-
lar to proposed approach in (Grover and Leskovec ), we con-
struct the edge embedding by applying binary Hadammard
product operation to the given node pair and train a logistic
regression to do link prediction. For evaluation, we use the
settings suggested in the original DW paper for both the DW
baseline and the proposed method’s skip gram model. These
settings are: latent feature dimension (128), length of ran-
dom walks(80), and number of random walks(10) and win-
dow size(10) on all data sets.

We also consider a traditional fairness algorithm based on
equalized odds which we use to post-process our 4 base-
lines. As previously mentioned, imposing an equalized odds
constraint on the predictions of a model is a popular way of
ensuring fair predictions. For our task, we use a generalized
version of equalized odds proposed in (Pleiss et al. 2017) to
post-process each of the baseline algorithm predictions. To
make the generalized equalized odds constraint compatible
to network data setting we treat link type, intra-group ver-
sus inter-group, as each link’s binary protected attribute. We
refer to this post processing algorithm as (PEO).

Sampling process and training A big challenge for link
prediction algorithms is the sparsity of real world network
data. In other words, since the number of existing links
are significantly smaller than non-existing links, training a
model which is not biased toward negative examples is dif-
ficult. Given a graph N = (V,E,X) we generate a train-
ing set with equal number of negative and positive examples
< N ′, E+, E− >. Here N ′ is the remaining sub-graph after
removing all sampled positive links, E+, and E− is a set of
randomly sampled non-links such that |E+| = |E−|. Sam-
pling positive links from N is random with the restriction
that N ′ remains connected. For each data set we generating
10 examples of < N ′, E+, E− > by deleting 80% of all
links in N . For FLIP and DW we learn node representations
by performing random walks on graph N ′ and train the link
prediction using 10% of the generated positive and negative
samples. For the other baselines we used all the 30% of E+

and E− for calculating the proximity measures. We used re-
maining 70% for test.

Evaluation Metric We evaluate the quality of link pre-
dictions with two metrics, accuracy and the area under the
ROC curve (AUC) which represents the trade-off between
true and false positives with respect to different thresholds.
For the fairness subgroup dyadic-level metric we consider
modred measure given in equation 2.
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Table 4: Performance comparison between baseline and proposed algorithms on 3 real-world datasets. Results are reported
based on the average AUC and modred scores after repeating the sampling process 10 times.

Method Dutch school Facebook Google+
AUC modred AUC modred AUC modred

Jac 0.6500 +/- 0.0008 -0.5030 +/- 0.0046 0.8305 +/- 0.0 -0.1494 +/- 0.0396 0.7932 +/- 0.0 0.0932 +/- 0.0297
Ad-Ad 0.6571 +/- 0.0006 -0.3761 +/- 0.0044 0.836 +/- 0.0 0.2224 +/- 0.0089 0.8692 +/- 0.0 -0.3048 +/- 0.0015
Pr-At 0.6023 +/- 0.0016 0.4431 +/- 0.0022 0.8068 +/- 0.0 0.4601 +/- 0.0015 0.9047 +/- 0.0 -2.9354 +/- 0.0106
DW 0.5287 +/- 0.0074 -0.0471 +/- 0.2423 0.951 +/- 0.0 0.0889 +/- 0.0022 0.7708 +/- 0.0006 0.1663 +/- 0.0386

Jac+PEO 0.5356 +/- 0.003 0.0325 +/- 0.0521 0.7992 +/- 0.0001 -0.5575 +/- 0.2353 0.7500 +/- 0.0 3.4696 +/- 0.048
Ad-Ad+PEO 0.5275 +/- 0.0024 -0.2337 +/- 0.052 0.7992 +/- 0.0001 0.0132 +/- 0.0599 0.8292 +/- 0.0 3.2193 +/- 0.0133
Pr-At+PEO 0.5054 +/- 0.0003 0.0219 +/- 0.1091 0.6822 +/- 0.0004 -0.208 +/- 0.2277 0.8584 +/- 0.0 3.8539 +/- 0.1538
DW+PEO 0.4908 +/- 0.0055 -0.1209 +/- 0.2133 0.9489 +/- 0.0 0.0142 +/- 0.0204 0.7354 +/- 0.0008 3.546 +/- 2.6518
Jac+GM 0.6571 +/- 0.0289 -0.2179 +/- 0.0840 0.8421 +/- 0.0018 0.6613 +/- 0.0501 0.7399 +/- 0.0013 0.9657 +/- 0.0405

Ad-Ad+GM 0.6528 +/- 0.0265 -0.2110 +/- 0.0882 0.8421 +/- 0.0018 0.6613 +/- 0.0501 0.8179 +/- 0.0009 1.3693 +/- 0.0383
Pr-At+GM 0.5827 +/- 0.0440 0.1795 +/- 0.1654 0.7400 +/- 0.0036 0.9190 +/ 0.0597 0.8422 +/- 0.0004 1.7478 +/- 0.0960
DW+GM 0.5363 +/- 0.0560 0.1335 +/- 0.0907 0.9013 +/- 0.0045 0.4972 +/- 0.0617 0.7254 +/- 0.0295 1.5062 +/- 0.5906

FLIP 0.6576 +/- 0.0039 0.3592 +/- 0.0089 0.8601 +/- 0.0001 0.3483 +/- 0.0039 0.8575 +/- 0.0 0.2071 +/- 0.0088

Experimental Results

In the following subsection we investigate the general per-
formance of the proposed framework.

Homophily property

Table 3 summarizes our evaluation on the homophily prop-
erty of the three networks. The first column is the probability
a node pair is linked. The second column shows the condi-
tional probability a node pair is linked given that it is an
intra-group node pair, while the third column corresponds to
the conditional probability of a link between an inter-group
node pair. These probabilities indicate that all three networks
have homophily property because they are more likely to
have intra-group links than inter-groups links.

Performance Comparison We summarize our results for
link prediction in Table 4. For FLIP we report the result for
α = 0.1 and β = 0.2. For greedy post-processing we chose
to invert 3% of the predictions that reduces the modularity
the most. Based on these results we can make several ob-
servations. First, there is generally a trade off between AUC
and modred so higher modred scores are only achievable
by sacrificing accuracy.

Second, none of the baseline algorithms achieve con-
sistently high modred scores. In particular, equalized
odds post-processing provides highly inconsistent gains in
modred that are heavily dependant on the data set. It pro-
vides significant gains on the Google+ data set, but on the
Dutch school data set it provides only moderate gains. It
is also a moderate impediment on the Facebook data set.
However, greedy post-processing and FLIP always achieve
high modred scores and provide a good balance between
AUC and modred. This is unsurprising since FLIP and
greedy post-processing were the only two techniques specif-
ically designed for promoting fairness in link prediction.
This demonstrates the importance of developing algorithms
tailored specifically for network data and link prediction.

Third, among the baselines, preferential attachment does
the best job in terms of balancing the tradeoff between accu-
racy and modred. One possible explanation for this is that
all other baselines make predictions based on the neighbor-

hood structure of nodes. In a network that is homophillic
with respect to a protected attribute, nodes with the same
protected attribute value are likely to have similar neighbor-
hood structure. Since all of our networks are homophillic
with respect to the protected attribute, link prediction meth-
ods based on neighborhood structure are more likely to rein-
force the existing homophilly and create intra-group links. In
contrast, preferential attachment ignores the neighborhood
structure of nodes when making predictions so it less af-
fected by pre-existing network homophilly.

Conclusions

This paper presents novel fairness-aware methods to alle-
viate the filter bubble problem in network link prediction.
First, we present a fairness criterion based on network mod-
ularity measure to determine whether inter-group links are
well-represented in the predicted output of a link prediction
algorithm. We then consider two approaches to overcome
the filter bubble problem—one based on a greedy postpro-
cessing approach using the modred measure while the other
based on an adversarial learning framework. Experimental
results showed that the proposed methods are promising as
they can reduce modularity of the predicted network without
degrading prediction accuracy significantly.
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