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Abstract

With the proliferation of GPS-based data (e.g., routes and tra-
jectories), it is of great importance to enable the functionality
of real-time route search and recommendations. We define
and study a novel Continuous Route-Search-by-Location (C-
RSL) problem to enable real-time route search by locations
for a large number of users over route data streams. Given
a set of C-RSL queries where each query q contains a set
of places q.O to visit and a threshold q.θ, we continuously
feed each query q with routes that has similarity to q.O no
less than q.θ. We also extend our proposal to support top-k
C-RSL problem where each query continuously maintains k
most similar routes. The C-RSL problem targets a variety of
applications, including real-time route planning, ridesharing,
and other location-based services that have real-time demand.
To enable efficient route matching on a large number of C-
RSL queries, we develop novel parallel route matching al-
gorithms with good time complexity. Extensive experiments
with real data offer insight into the performance of our algo-
rithms, indicating that our proposal is capable of achieving
high efficiency and scalability.

Introduction

With the continued proliferations of GPS-enabled devices
(e.g., vehicle navigation systems and smart phones), online
map-based services (e.g., Google Maps), and ridesharing
services (e.g., DiDi, Uber, and Grab), travel route data is be-
ing generated rapidly. For example, the average number of
new taxi trips per day from New York City in 2017 is well
over 300K1. The availability of massive-scale route data fos-
ters a line of research on RSL-query: Given a collection of
routes and a set of query locations, finds a subset of routes
that are spatially close to the query locations (Chen et al.
2010; Shang et al. 2012; 2014).

In most existing studies, the RSL query is defined as a
one-time query that search from a static collection of routes.
However, such one-time query is not capable of delivering
users instant results or keeping them updated with most re-
cent results over a stream of route data (Li et al. 2013; Chen,
Cong, and Cao 2013). This motivates us to study a novel
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1https://data.cityofnewyork.us/browse?q=trip
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Figure 1: An example of the C-RSL problem

Continuous Route-Search-by-Location (C-RSL) problem.
Consider the example in Figure 1, where q1 = {o1, o2, o3},
q2 = {o4, o5, o6, o7}, and q3 = {o8, o9, o10, o11} are three
C-RSL queries. Here, o1–o11 are query locations (user-
specified places), and τ1, τ2, and τ3 are routes that arrive in a
streaming fashion. When the trip of τ1 completes (8:45), we
compute the similarity between τ1 and each C-RSL query
(i.e., Sim(·, ·)). If the similarity between a new route and a
query is no less than a user-specified threshold (i.e., qi.θ in
Figure 1), we say that the query matches the new route and
we deliver the new route to the query. From Figure 1, we can
see that q1 and q2 match τ1, q2 matches τ2, and q3 matches
τ3.

Our C-RSL problem is applied in dynamic spatial net-
works. The reason is that in many real-life scenarios, edge
weights of networks (e.g., travel times, taxi fares) are chang-
ing over time (Pfoser, Tryfona, and Voisard 2006; Ding, Yu,
and Qin 2008; Hua and Pei 2010). We adopt aggregate-
cost measurement (i.e., the sum of (travel) costs between
query locations and a route) (Shang et al. 2014; 2017b;
Chen et al. 2010) to measure the similarity between a route
and query locations.

The C-RSL problem aims to feed a large number of C-
RSL queries with similar routes in a real-time fashion. It is
challenging due to its high computation complexity. When
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a new route is committed, we need to calculate the simi-
larity between the new route and each query, which is very
time consuming. To alleviate the computational cost, we de-
velop Query Location Expansion Matching (QLOE) algo-
rithm that explores the spatial network from each vertex con-
taining query locations through network expansion (Dijkstra
1959) and retrieve the C-RSL queries that match the new
route. Expansion from each vertex occurs in parallel. Our
QLOE algorithm substantially reduces the time cost of pro-
cessing a new route. In addition, we propose an optimization
for the QLOE algorithm (i.e., QLOE+) by developing vertex
filtering and group expansion techniques that are able to fil-
ter out “unqualified” queries in early stage and combine net-
work expansion results from different vertices, respectively.
Experimental study shows that QLOE+ outperforms QLOE
by at least an order of magnitude regarding the efficiency of
route processing.

Our contributions can be summarized as follows. First,
we study a novel problem, the C-RSL problem, that con-
tinuously feeds a large number of users with routes simi-
lar to their query locations, thus targeting applications such
as real-time route planning and recommendation, rideshar-
ing, and other location-based services that have real-time de-
mand. Second, we develop two efficient algorithms, QLOE
and QLOE+, to match routes with a large number of C-
RSL queries in a real-time fashion. Further, we extend our
QLQE series to support top-k C-RSL problem where each
query continuously maintains k most similar routes. Third,
we conduct experiments on large route datasets to compre-
hensively study the performance of the algorithms. Our ex-
periment results confirm the capability of QLOE+ to handle
C-RSL queries over real-world route streams.

Preliminaries and Problem Formulation

This section introduces road networks, routes, the RSL
query, and the C-RSL problem.

Road Networks and Routes

Following existing studies (Chen et al. 2019a; Shang et al.
2017b), we formulate road network by a connected, undi-
rected graph G = (V,E, F,W ), where V is a vertex set
and E ⊆ {{vi, vj}|vi, vj ∈ V ∧ vi �= vj} is an edge set.
A vertex vi ∈ V denotes an intersection or an end point,
and an edge e = {vi, vj} ∈ E denotes a road segment con-
necting between vi and vj . Function F maps a vertex to a
spatial point location with longitude and latitude and maps
an edge to a polyline that represents the road segment. Func-
tion W : (E, t) → R assigns a real-valued time-dependent
weight W (e, t) to an edge e that denotes the travel cost of
the road segment at time t. We use lc(vi, vj) to denote the
lowest cost between vi and vj and use LP(vi, vj) to denote
the path with the lowest cost between vi and vj . This model-
ing of road networks aligns with a number of previous stud-
ies (Chen et al. 2010; Shang et al. 2014; Chen et al. 2019a;
Shang et al. 2017b). Here, a route is defined by Definition 1.
Definition 1: (Route) Route τ is a sequence 〈p1, p2, ..., pn〉
that consists of at least 2 vertices (points), where pi and pi+1

(i ∈ [1, n− 1]) are adjacent vertices in V . �

RSL Query and Cost Measures

Given a query location o and a route τ , the network travel
cost c(o, τ) between them is defined by Equation 1.

c(o, τ) = min
pi∈τ
{lc(o, pi)}, (1)

where lc(o, pi) denotes the lowest network travel cost be-
tween o and pi. Given a set O of query locations and
a route τ , the similarity Sim(O, τ) between them is de-
fined according to aggregate travel cost (Shang et al. 2014;
Chen et al. 2010; 2019a):

Sim(O, τ) =
∑

o∈O

e−c(o,τ) (2)

Based on the travel cost measures, we present the defini-
tion of RSL problem.
Definition 2: (RSL Problem) An RSL query q = {O, θ}
consists of set O of query locations {o1, o2, ..., on} and
a similarity threshold θ. Given a set R of routes, the
RSL query q finds a subset R′ of R such that ∀(τ ∈
R′) (Sim(q.O, τ) ≥ θ) and ∀(τ ∈ R \R′) (Sim(q.O, τ) <
θ). �

C-RSL Problem

Based on Definition 2, we formally define the C-RSL prob-
lem in Definition 3.
Definition 3: (C-RSL Problem) Given a set Q =
{q1, q2, ..., q|Q|} of continuous RSL (C-RSL) queries and a
stream of routes, the C-RSL problem aims to maintain an
up-to-date result for each RSL query in Q. �

In our applications, the typical arrival rate of travel routes
in a metropolitan area (e.g., New York City) is in the scale
of hundreds of thousands a day and we may serve tens of
thousands of C-RSL queries at one time. We aim to develop
an efficient and scalable solution to maintain the up-to-date
results for a large number of C-RSL queries over a stream
of routes. Routes and C-RSL queries can be easily main-
tained by the available memory of modern servers (Chen et
al. 2015; Chen and Cong 2015). As a result, our solution is
developed under in-memory setting.

Direct Route Matching

We propose a baseline algorithm, Direct Route Matching
(DRM), to answer the C-RSL problem. Its high-level idea
works as follows. When a user completes and commits a
trip, a new travel route τ is published. We compute the
similarity between each C-RSL query qi ∈ Q and τ (i.e.,
Sim(qi.O, τ)). If Sim(qi.O, τ) ≥ qi.θ, we deliver route τ to
qi and regard τ as a result of qi. To compute Sim(qi.O, τ),
we calculate the network travel cost between τ and each lo-
cation o in qi.O.

Algorithm 1 presents the pseudo code of DRM. The in-
puts are C-RSL query set Q and a new route τ . The output
is a subset of matched C-RSL queries D that route τ will be
delivered to. After initializing D (Line 1), we evaluate each
RSL query qi ∈ Q and check whether the new route τ can be
a result of Oi. Specifically, we visit each location o ∈ qi.O
and add e−c(o,τ) to s based on Equation 1 (Line 5). If the
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current accumulated similarity s is no less than qi.θ, we add
qi to D (Lines 6–7). After evaluating all qi ∈ Q, we return
D as the result and deliver τ to each query in D.

Complexity analysis To compute c(o, τ), we need to cal-
culate the lowest travel cost between o and each points in τ .
Because the travel cost on each edge is changing over time,
it is impossible to pre-compute the lowest costs between all
pairs of vertices in network. Consequently, we need to cal-
culate the lowest cost between two vertices online. In this
case, the time complexity of DRM is O(|Q| ·no · |τ | · (|E|+
|V | log |V |)), where |Q| is the cardinality of C-RSL queries,
no denotes the number of locations in each C-RSL query,
and |τ | is the number of points in route τ .

Algorithm 1: DRM
Data: C-RSL query set Q, new route τ
Result: matched C-RSL queries D

1 D ←∅;
2 for each qi in Q do
3 s← 0;
4 for each location o in qi.O do

5 s←s+ e−c(o,τ);
6 if s ≥ qi.θ then
7 D.add(qi);

8 return D;

Query Location Expansion Matching

Overview

To reduce the high complexity of DRM, we propose a Query
Location Expansion Matching (QLOE) algorithm. Initially,
we generate a subset of V , Vs, where for each vertex v ∈
Vs there exists at least one query q such that v ∈ q.O. We
regard each vertex in Vs as an expansion center. For each
center v, we perform network expansion (Dijkstra 1959) to
explore the network and to compute the travel cost between
v and the new route τ . Once we reach a vertex p such that
p ∈ τ , the expansion terminates and the travel cost between
v and τ is derived. Next, we aggregate the travel cost to each
query that contains v as one of its query location. The QLOE
terminates when the similarity between each C-RSL query
and τ are computed. Note that we define an upper bound
on network cost to prune unqualified query candidates. The
expansion of each vertex can be performed in parallel.

QLOE Algorithm

Pre-processing Given a C-RSL query set Q and the vertex
set V of network G, we first need to generate a subset Vs ⊆
V where each v ∈ Vs contains at least one query location.
This step requires O(|q.O|) when we insert each new C-RSL
query q to Q.

Before presenting the algorithm, we first define C-RSL tu-
ple, which will be used to record the visiting status and cur-
rent upper bound of similarity between the C-RSL query and

the new route. C-RSL tuples will be retrieved and updated
during network expansion from different query locations.
Definition 4: (C-RSL Tuple) Let τ be a new route. A C-RSL
tuple of query q is denoted by T (q) = 〈e, n, ub〉, which con-
sists of three elements: an entry e (identifier) of query q, the
number of visited query locations n in q.O, and the similar-
ity upper bound ub between q and τ . Let q.O+ ⊆ q.O be a
subset of q.O where for each oi ∈ q.O+, oi is scanned by
network expansion. We compute ub via Equation 3

T (q).ub = |q.O| − T (q).n+
∑

vi∈q.O+

e−c(vi,τ) (3)

�

At the beginning, we initialize a C-RSL tuple set T by
adding an initial tuple T (q) of each query q. Here, we set
T (q).n and T (q).ub to be 0 and |q.O|, respectively.

Algorithm 2 presents the pseudo code of QLOE. The in-
puts are expansion center v, new route τ , and C-RSL tuple
set T . The output is an updated tuple set T that filters out
unqualified tuples.2 We first initialize the current vertex we
scanned as null (Line 1). Next, we perform a network expan-
sion from vertex v (Lines 2–17). Specifically, if vc is null, it
indicates that the expansion has not been started, so we as-
sign v to vc (Lines 3–4); otherwise, we assign the next ver-
tex based on Dijkstra expansion to vc (Lines 5–6). If vc is
a point of τ , we terminate the expansion from v and evalu-
ate each query locations associated with v (Lines 7–16). For
each query q of which locations contain vc, we update its
tuple T (q) in T . In particular, we add T (q).n by one and
update the similarity upper bound of q (i.e., T (q).ub) based
on Definition 4 (Lines 10–11). If T (q).ub is less than the
similarity threshold θ defined by q, we remove tuple T (q)
from T because τ cannot be a result of q (Lines 12–13);
otherwise, we update T (q) to T (Line 15).

Note that the expansion of each vertex can be processed
in parallel. After running QLOE on each vertex, the C-RSL
tuples in T are queries that can include τ as their results.
Complexity analysis The worst-case time complexity of
running QLOE on all vertices is O((|E|+|V | log |V |)·|V |+
no · |Q|) where no is the number of query locations of each
query. Since the expansion from each vertex can be termi-
nated as soon as one of the points in route τ is reached, it is
unnecessary to scan all vertices in real scenario.

QLOE with Optimized Expansion

In QLOE, we need to run network expansion from each
non-empty vertex, which is very time consuming. To ad-
dress this problem, we develop an optimized network expan-
sion approach, QLOE+, to filtering unnecessary expansions.
Specifically, during the expansion from vertex v to new route
τ , we record the lowest cost between v and every vertex we
scanned. To avoid a vertex being scanned repeatedly by ex-
pansions from different vertices, we maintain global vertex
map M to record scanned vertices. Further, we define the
concept of vertex filtering condition (Theorem 1) to filter
“unqualified” queries associated with a particular vertex.

2We say that T (q) is an unqualified tuple if q cannot match τ
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Algorithm 2: QLOE
Data: Vertex v, new route τ , C-RSL tuples T
Result: Updated C-RSL tuples T

1 vc ← null;
2 do
3 if vc is null then
4 vc ← v;
5 else
6 vc ←DijkstraExpansion(v).next();
7 if vc ∈ τ then
8 for each query q that contains v do
9 if T (q) exists in T then

10 T (q).n← T (q).n+ 1;
11 T (q).ub← T (q).ub− 1 + e−lc(v,vc);
12 if T (q).ub < q.θ then
13 T .remove(T (q));
14 else
15 Update T (q) in T ;

16 break;

17 while DijkstraExpansion(v).hasNext();

Theorem 1: Let Qv be a set of queries associated with ver-
tex v and vc be the current vertex being visited by network
expansion. All queries in Qv can be safely filtered if the fol-
lowing inequality is satisfied.
max
qi∈Qv

{|qi.O|} − 1 + exp(−lc(v, vc)) < min
qi∈Qv

{qi.θ}. (4)

Proof: Because the expansion terminates when we reach
the new route τ , we have lc(v, vc) ≤ min

vi∈τ
{lc(v, vi)}. Based

on Equations 1 and 2, we have lc(v, vc) ≤ c(v, τ). Thus,
if Inequality 4 is satisfied, we can deduce that ∀(qi ∈
Qv) (Sim(qi.O, τ) ≤ qi.θ). We complete the proof.

Algorithm 3 presents the pseudo code of QLOE+. First,
we initialize H , vc, and Qv (Lines 1–3). Here, H is used to
record scanned vertices vc and the lowest cost between v and
vc (i.e., 〈vc, lc(v, vc)〉) in network expansion from v. Then
we perform the network expansion. When we reach a new
vertex vc, we check if query set Qv satisfies vertex filtering
condition (Theorem 1). If so, we add v toM, remove all tu-
ples of queries in Qv from T , and terminate the expansion
(Lines 9–12). If there exists at least one query associated
with vc and it has never been scanned, we add 〈vc, lc(v, vc)〉
to H (Line 14). If vc ∈ τ , we evaluate queries associated
with each vi in H . Specifically, we first add vi toM denot-
ing that vi has been scanned (Line 17). Then we update the
C-RSL tuples of each query q that contains vi (Lines 18–25).
The steps are the same as those in QLOE (Algorithm 2).

The expansion of each vertex can be processed in paral-
lel. Recall that QLOE+ maintains global vertex map M to
record scanned vertices. We do not need to perform expan-
sion from a scanned vertex. Thus, when an expansion thread
is completed, we randomly pick a vertex v ∈ V \M and per-
form expansion from v. When M = V , which means that
all vertices have been scanned, we return T as the result.

Algorithm 3: QLOE+
Data: Vertex v, new route τ , C-RSL tuples T , vertex

mapM
Result: Updated C-RSL tuples T , updated vertex map

M
1 H ← ∅;
2 vc ← null;
3 Qv ← set of queries associated with v;
4 do
5 if vc is null then
6 vc ← v;
7 else
8 vc ←DijkstraExpansion(v).next();
9 if Qv satisfies vertex filtering condition then

10 M.add(v);
11 T .removeAll(T (Qv));
12 break;

13 if there exists a query that contains vc then
14 H .add(〈vc, lc(v, vc)〉);
15 if vc ∈ τ then
16 for each 〈vi, ·〉 ∈ H do
17 M.add(vi);
18 for each query q that contains vi do
19 if T (q) exists in T then
20 T (q).n← T (q).n+ 1;
21 T (q).ub←

T (q).ub− 1 + e−lc(vi,vc);
22 if T (q).ub < q.θ then
23 T .remove(T (q));
24 else
25 Update T (q) in T ;

26 break;

27 while DijkstraExpansion(v).hasNext();

Extension of Processing Top-k C-RSL Queries

This section discuss how to extend our QLOE series to sup-
port top-k continuous RSL query, which is defined by Defi-
nition 5.
Definition 5: (Top-k C-RSL Problem) A top-k C-RSL
query q = 〈O, k〉 consists of set O of query locations
{o1, o2, ..., on} and the number of results k. Given a set R
of routes, the top-k RSL query q finds k routes that has the
highest similarities to O. Given a set Q = {q1, q2, ..., q|Q|}
of top-k C-RSL queries and a stream of routes, the C-RSL
problem aims to maintain a top-k result for each query inQ.
�

Recall that for threshold-based C-RSL problem, the route
matching is solely based on a static similarity threshold q.θ
specified by each query q. While for top-k C-RSL prob-
lem, we need to maintain a dynamic set of k most sim-
ilar routes. To solve the problem, for each top-k C-RSL
query q we regard the similarity between q and the q.τk
(i.e., the k-th result route maintained by q) as the “similar-
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ity threshold”. Specifically, we a new route τn arrives, for
each query q we compute the similarity between q.O and τ .
If Sim(q.O, τn) > Sim(q.O, q.τk), we replace τk by τn and
update q’s result set; Otherwise, we discard τn. Note that
when the result of q is updated, we also need to update the
“similarity threshold” because the original q.τk is changed.
As a result, both QLOE and QLOE+ can support the pro-
cessing of top-k C-RSL queries by regarding q.τk in top-k
C-RSL as q.θ in threshold-based C-RSL.

Experimental Study

This section reports our experiments conducted on real road
networks and route data sets. The results offer insight into
the efficiency and scalability of the proposed algorithms.

Experiment Settings

Data sets and query generation We use two datasets in
our experiments: Beijing Road Network (BJR) and the New
York Road Network (NYR)3. BJR consists of a road network
of Beijing and a real taxi trajectory data set collected by the
T-drive project (Yuan et al. 2013). NYR consists of a road
network of New York City and a taxi trip data set from New
York3, which only contains pick-up and drop-off locations
of a taxis. To generate the route of a taxi trip by deriving the
shortest path from the pick-up location to the drop-off loca-
tion. To simulate dynamic edge weights on road networks,
we let d% of edges change by a random ratio ranging from
0.8x to 1.2x each time we complete the processing of a new
route (Shang et al. 2016). Note that d is a parameter set as 1.
The efficiency of our methods is not influenced by d.

A C-RSL query location set q.O is generated as follows:
First, we sample 100K routes and calculate the number of
routes passing each vertex. Next, we pick vertices based on
the following probability formulation:

P (v) =
nv∑

τ∈S

|τ | ,

where P (v) is the probability that v is picked, S is a set of
sampled routes, and nv denotes the number of routes passing
v.

Implementations The road network graphs, routes, and
C-RSL queries are memory resident. All algorithms are im-
plemented in Java and run on a server with two Intel�
Xeon� Processors Gold 5120 (2.20GHz) and 64GB RAM.
The performance metric is runtime of processing a new route
(i.e., finding a subset of queries that match a new route).
We evaluate the following three methods: DRM, QLOE, and
QLOE+. To enhance the efficiency of DRM, we let the com-
putation of similarity between a new route and each query
be processed in parallel (Algorithm 1, Lines 3–7). The pa-
rameter settings are listed in Table 1.

Experimental Results

Effect of the number of queries Figure 2 presents the
performance of the algorithms when varying the number

3https://publish.illinois.edu/dbwork/open-data/

Table 1: Parameter Settings

BJR NYR

Number of queries 20,000–100,000
/ default 20,000

20,000–
100,000 /
default 20,000

Cardinality of
query location set
|q.O|

3–7 / default 5 3–7 / default 5

Similarity thresh-
old θ (×|q.O|)

0.80–0.95 / de-
fault random

0.80–0.95 / de-
fault random

Number of results
k

5–30 / default
10

5–30 / default
10

Thread count m 16–48 / default
48

16–48 / default
48
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of C-RSL queries from 20K to 100K. We can see that the
time cost of processing a new route increases for all three
methods when we increase the number of queries. In par-
ticular, QLOE outperforms DRM by approximately an or-
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Figure 6: Effect of the number of locations in a query (top-k)
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Figure 7: Effect of the number of results
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Figure 8: Effect of thread counts

der of magnitude for both BJR and NYR. Such significant
performance discrepancy can be explained as follows: (1)
The time complexity of QLOE is lower than that of DRM;
(2) For QLOE, each expansion thread completes as soon as
one of the point (vertex) of new route τ is scanned, which
substantially improves the efficiency of route processing. In
addition, compared with QLOE, QLOE+ further improves
the route processing efficiency by at least an order of magni-

tude. Such conspicuous performance improvement confirms
the effectiveness of our vertex filtering technique and opti-
mized network expansion.

Figure 3 reports the maximum arrival rate (number of
routes per hour) of the route stream that can be supported
by each method given the number of subscriptions varying
from 20K to 100K. We can see that when we have 20K
queries, QLOE+ can support the data stream with the rates
of 15K routes/h and 6K routes/h on BJR and NYR, respec-
tively. In contrast, DRM can only support the stream with
the rates of 83 routes/h and 16 routes/h on BJR and NYR,
respectively. Even if we increase the number of queries to
100K, QLOE+ can still support the data stream with the
rates of 6.1K routes/h and 2.2K routes/h on BJR and NYR,
respectively, which are 12x and 21x better than the perfor-
mances of QLOE on BJR and NYR, respectively. In the
real-world scenario, the average route arrival rate in NYC
is ∼15K/h4. Theoretically, QLOE+ is able to handle 100K
C-RSL queries over the real route data stream if we deploy
∼7 modern servers. In contrast, QLOE requires more than
140 servers to handle the real route data stream in NYC.

Effect of the number of locations in a query |q.O| Fig-
ure 4 shows the effect of varying |q.O| on the efficiency of
the algorithms. A larger |q.O| implies: (1) A larger num-
ber of vertices to be expanded and evaluated for QLOE and
QLOE+; (2) A larger number shortest path computations oc-
cur for DRM. Thus, when we increase the number of loca-
tions in C-RSL query, the runtime of route processing in-
creases for all methods.

Effect of similarity threshold θ This set of experiments
investigates the effect of similarity threshold θ. Figure 5
shows the results when we vary the similarity threshold θ.
We can see that the performance of DRM and QLOE is con-
sistent as we vary θ from 0.8 to 0.95. However, the runtime
of QLOE+ exhibits a decreasing trend as we increase the
value of θ. The reason is that the value of θ has little influ-
ence on the number of shortest path computations and search
space. However, the vertex filtering power in QLOE+ be-
comes stronger and more queries will be filtered out when
we increase θ. As a result, the efficiency of QLOE+ im-
proves substantially when we increase θ.

Extension of processing top-k C-RSL queries Figure 6
shows the performance of the three methods for processing
top-k C-RSL queries when we vary the number of queries
from 20K to 100K. Compared with the performance of pro-
cessing threshold-based C-RSL queries, we observe a in-
crement of time cost for processing top-k C-RSL queries.
In particular, the runtime of DRM, QLOE, and QLOE+
are increased by factors of ∼1.1, 1.2–1.6, and 2.5–4.0, re-
spectively. The significant performance contrast regarding
QLOE+ can be explained by the fact that QLOE+ requires
extra time cost for maintaining the dynamic value of the sim-
ilarity between q.O and q.τk for each query q, which may
lower the effectiveness of the vertex filtering condition.

Figure 7 presents the effect of the number of result routes
maintained by each query. We can see that the performance

4https://data.cityofnewyork.us/browse?q=trips
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of DRM remains consistent as we vary the value of k. As
for QLOE series, we observe a slight increasing trend re-
garding the time cost as we increase k. The reason is that
higher value of k is likely to lower the value of the similarity
between q.O and q.τk for each query q. Therefore, each time
a new route arrives, the average number of queries that have
their result set updated will increase, which may increase
the time cost of route matching. Nevertheless, even though
we increase k from 5 to 30, the average runtime of QLOE
and QLOE+ only increases by a factor of ∼1.2 and ∼1.4,
respectively.

Effect of thread counts We study the effect of thread
count on the efficiency of the algorithms. The results in Fig-
ure 8 show that QLOE+ consistently outperforms QLOE
and DRM by at least an order of magnitude and two or-
ders of magnitude, respectively, when we vary the number
of threads from 16 to 48.

Related Work

Route search based on locations Route search based
on locations aims at finding routes that have the high-
est relevances to query arguments (Frentzos, Gratsias, and
Theodoridis 2007; Zheng et al. 2013; Shang et al. 2012;
Zheng et al. 2016; Shang et al. 2017a; 2019). Existing stud-
ies define different ranking functions to measure the rel-
evancy between query locations and routes. Specifically,
ranking functions may consider spatial (Chen et al. 2010),
temporal (Shang et al. 2014), textual (Shang et al. 2012;
Zheng et al. 2013), and density elements. However, exist-
ing studies regard routes or trajectories as a collection of
static data and their query is performed in one-time fashion.
In contrast, the C-RSL query is continuous and the routes
are modeled as data streams instead of a collection of data.

Route similarity joins This line of research focuses on
the problem of finding route pairs or trajectory pairs with
similarities higher than a threshold (Ding, Trajcevski, and
Scheuermann 2008; Ray et al. 2015; Chen and Patel 2009;
Bakalov et al. 2005; Bakalov and Tsotras 2006; Ta et al.
2017; Shang et al. 2017b; 2018). Existing studies solve the
problem of trajectory similarity join by the following steps:
(1) similarity definition step and (2) join processing step. In
similarity definition step, a ranking function that evaluates
the similarity between two trajectories is defined. Basically,
the function takes spatial proximity and temporal relevancy
into account. For join processing step, efficient searching al-
gorithm is proposed to find all trajectory pairs whose simi-
larities are above a user-defined threshold. However, existing
studies on route similarity joins take a collection of trajec-
tories or routes as input while our problem takes a stream
of routes as input. As a result, the aforementioned proposals
cannot be applied to solve our C-RSL problem.

Location-based continuous query Different from “one-
time” queries that find items based on a snapshot of a
database, continuous queries receive items that satisfy their
query predicates over data streams in a real-time fash-
ion (Chen et al. 2019b). A host of studies exist that aim
at developing query indexing structures and streaming item

processing algorithms to handle a large number of location-
based continuous queries over data streams (Li et al. 2013;
Guo et al. 2015; Wang et al. 2015; Chen et al. 2018;
Xu et al. 2017; Yang et al. 2019). The data handled by these
studies is a stream of individual geo-tagged items (e.g., geo-
tagged tweets). In contrast, the input data of the C-RSL
problem is a stream of location sequences, which calls for
different purposeful query indices and matching algorithms.

Conclusions
We propose and study C-RSL problem to enable continuous
route-search-by-locations for a large number of users over
route data streams. We develop two parallel route matching
algorithms: Query Location Expansion Matching (QLOE)
and QLOE with optimized expansion techniques (QLOE+),
which substantially reduce the time complexity of answer-
ing the C-RSL problem in comparison to the baseline. Ex-
tensive experiment with real data demonstrates that QLOE
and QLOE+ are capable of achieving high efficiency and
scalability in answering C-RSL problem.
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