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Abstract

In recent years, learning user preferences has received signif-
icant attention. A shortcoming of existing learning to rank
work lies in that they do not take into account the multi-
level hierarchies from social choice to individuals. In this pa-
per, we propose a multi-level model which learns both the
common preference or utility function over the population
based on features of alternatives to-be-compared, and pref-
erential diversity functions conditioning on user categories.
Such a multi-level model, enables us to simultaneously learn
a coarse-grained social preference function together with a
fine-grained personalized diversity. It provides us prediction
power for the choices of new users on new alternatives. The
key algorithm in this paper is based on Split Linearized Breg-
man Iteration (SplitLBI) algorithm which generates a dy-
namic path from the common utility to personalized prefer-
ential diversity, at different levels of sparsity on personaliza-
tion. A synchronized parallel version of SplitLBI is proposed
to meet the needs of fast analysis of large-scale data. The va-
lidity of the methodology are supported by experiments with
both simulated and real-world datasets such as movie and
dining restaurant ratings which provides us a coarse-to-fine
grained preference learning.

Introduction
In an era of data deluge, people often confront with the “in-
formation overload” dilemma over the last decades and it
is increasingly difficult for them to locate and access use-
ful information for making decisions, ranging from market-
ing and advertisements to competitions and election. Yet the
ubiquitous data flow of user behavior provides us a plethora
of preference revelation of participants: which movie does
a user like, which restaurant does a consumer like, and so
on. All of these examples yield comparisons without explic-
itly revealing an underlying utility function or ranking score.
That is, only the preference choice is observed, not neces-
sarily the strength of the preference. In such data flow, ad-
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ditional features or attributes of users and/or ranking can-
didates are often equipped with the preference choice in
applications. Such featured data have been seen widely in
E-commerce such as recommendations of books, movies,
and restaurants, based on their styles and categories of
users. These applications often generate discrete preferen-
tial choices leading to pairwise comparisons, together with
feature representations of candidates and users. Interesting
cases include, but are not limited to, the following motivat-
ing examples.

Example 1 In movie ratings such as MovieLens, the goal
is to find the potential movies that interest a user who did
not watch it yet. It is possible to derive a common global
ranking scores of movies based on the feedback provided
by all users, then recommend based on such population
preference or utility functions. However, in reality, movies
can be described as various genres (e.g., Action, Adventure,
Animation, Comedy, Drama, Romance) and users are with
different demographics, such as gender, ages and occupa-
tions. This may lead to diverse preferences for different user
groups/individuals. For example, users under the year of 24
may prefer Drama and Comedy. When users slowly waltz
into their 25-34, they begin to enjoy the love story best. Can
we simultaneously capture the common preference on so-
cial level and the preferential diversity over the variation of
movie genres and user groups?

Example 2 Another example can be found in dining restau-
rant and consumer datasets. Traditional dining prefer-
ence studies generally fit into a schema of aggregating
global rankings of restaurants for recommendation, such
as Michelin-stars. However, dining behavior, in fact, can
be easily influenced by user demographics (e.g., ages, oc-
cupations, living locations) and restaurant attributes (e.g.,
cuisine types, price) which are now available with online
crowdsourcing data. Can one predict which restaurant a
particular group/individual of consumers will come to dine?
It will be of great commercial value.

In all the examples above, we see the motivation to learn
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utility or ranking functions from preferential choice data,
where feature representations of the candidates in compar-
ison and the user types must be used as inputs which may
provide both preferential diversity and the common global
rank aggregation. Can we develop a framework to achieve
such goals simultaneously? Popular approaches for learning
to rank with feature representations for pairwise comparison
data include RankSVM (Joachims 2009), RankBoost (Fre-
und et al. 2003), RankNet (Burges et al. 2005), and Uni-
fied Robust Learning to Rank (URLR) (Fu et al. 2016), etc.
However, these methods are not a natural fit in the scenar-
ios mentioned above where the majority of users share some
common preference while some groups/users might deviate
from that significantly.

Recently, (Xu et al. 2016) proposes a parsimonious
mixed-effect HodgeRank, which considers that a majority
of users may follow the common social preferences while
some users may exhibit distinct personalized preferences
which should not be regarded as abnormal or outliers. Such
phenomena often show in social or psychological studies
equipped with crowdsourcing tasks (e.g. subjective quality
assessment of multimedia). However, it is restricted to de-
rive the ranking score only and does not aim to predict the
preferences (social or individual) based on features of alter-
natives to-be-compared and user categories as we need here.

To overcome this limitation, in this paper, we establish
a unified framework, combining the strength of both the
parsimonious mixed-effect HodgeRank in (Xu et al. 2016)
and learning to rank. In brief, we propose a hierarchical
model which learns both the common or social preference
functions based on features of alternatives to-be-compared
and preferential diversity conditioning on user categories.
Such a two-level model, enables us to simultaneously learn a
coarse-grained social preference function together with fine-
grained preferential diversity ranking functions, equipped
with the prediction power for the choices of new users on
new alternatives.

To initiate a task of preferential diversity rank aggrega-
tion, here we assume the majority of users share a com-
mon preference interest and behave rationally, while devi-
ations from that exist but are localized to different types of
users and thus sparse. Therefore a fine-grained learning to
rank model is adopted in this paper, with sparsity structure
on personalized preference deviations. Due to the unknown
amount of the sparse deviations in reality, it is natural to pur-
sue a model at a variety levels of sparsity. Statistical models
like Lasso (Tibshirani 1996) or BPDN (Chen, Donoho, and
Saunders 1998) are often chosen in literature. However, we
adopt a recently developed algorithm in machine learning,
Split Linearized Bregman Iteration (SplitLBI) (Huang et al.
2016), which is a simple iterative procedure generating a se-
quence of sparse models, evolving from the common global
ranking, to user’s personalized ranking till a full model.
One advantage of SplitLBI lies in its provable weaker in-
coherence requirement for model selection consistency than
Lasso, as well as the improved accuracy in variable selection
and prediction error (Sun et al. 2017). In practice when the
number of users is large and sample size is relatively small,
early stopping regularization is needed to prevent the over-

fitting in full model. To meet the needs of large-scale data
analysis, we further propose a synchronized parallel version
of SplitLBI for speedup.

Equipped with such a new scheme, given a small number
of item pairs and feature representation of items, we can not
only derive the common preference on a global population
level, but also estimate rapidly a multi-level family of user
preferential deviations in local groups.

As a summary, our main contributions in this new frame-
work are highlighted as follows:

(A) A novel multi-level learning-to-rank method is pro-
posed for user preference prediction based on sparse
pairwise comparison labels and features of alternatives
and user types. In the core of the framework lies the
two-level preference functions, which include both the
fixed effect of common preference, and the sparse ran-
dom effects of user’s preferential deviations.

(B) An iterative algorithm based on Split Linearized Breg-
man Iteration (SplitLBI), is developed for the estimates
of the preference deviation at different sparsity levels
along a regularization path, which allows an almost
linear speed-up with synchronized parallelization for
large-scale data.

Related Work
Existing studies propose various techniques to model anno-
tators’ behaviors in crowdsourcing (Li et al. 2016; 2017b;
2017a; Zheng et al. 2015a; 2017; Zheng, Li, and Cheng
2016; Hu et al. 2016; Zheng et al. 2015b; Sheshadri and
Lease 2013; Tang, Yin, and Ho 2019; Aldahari, Shandilya,
and Shiva 2018), etc. A typical way to exploit user behaviors
in the crowd is to characterize users’ quality using a cer-
tain type of user model. For example, user probability (Guo,
Parameswaran, and Garcia-Molina 2012; Liu et al. 2012)
models each user’s quality as a single parameter, indicating
the probability that the annotator correctly answers a task.
While these methods can model the quality of the workers,
they still fail to consider other potential biases, e.g., the ten-
dency for a worker to consistently over or underrate items.
Such biased labels can be captured in the form of a user’s
confusion matrix (Raykar et al. 2009; Whitehill et al. 2009;
Dawid and Skene 1979; Venanzi et al. 2014). For example,
Dawid and Skene’s (DS) (Dawid and Skene 1979) classic
approach models a confusion matrix for each user and a
class prior, using EM to simultaneously estimate labels, con-
fusion matrices, and the prior.

Typical DS models consider user quality via per-user con-
fusion matrix separately. However, the practical annotation
process might include more complicated factors such as 1)
different levels of expertise among users; 2) different anno-
tation difficulty among items; 3) user-item interactions; etc.
Recently, there arises a new wave to exploit crowdsourcing
annotation in such complicated scenarios. (Whitehill et al.
2009), as a typical work, proposes a generalized probabilis-
tic model where both the users’ expertise and the items’ dif-
ficulties are explicitly modeled. To model user-item inter-
action, (Zhou et al. 2012) considers separate probabilistic
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distributions for each worker-item pair which is able to au-
tomatically infer item confusability and worker expertise.

Besides, there are also some recent work that can bet-
ter estimate the user bias via the grouping effect of work-
ers (Venanzi et al. 2014; Kamar, Kapoor, and Horvitz 2015;
Li, Rubinstein, and Cohn 2019). Instead of modeling per-
worker confusion matrix separately, such studies gener-
ate confusion matrix for each user from (a mixture of)
community-level priors. With this strategy, one can not only
share valuable information across similar users but also
avoid model over-fitting with smaller amount parameters.

Above all, we see that the confusion matrix serves as
the major element to capture user behavior in crowdsourced
probabilistic models for classification. However, in the con-
text of ranking, the confusion matrix is no longer available
since the ranking problem could not be simply regarded as a
process of choosing one class out of a list of candidates.

Different from above-mentioned studies, we propose a
pairwise learning model which can not only derive the con-
sensus on population level, but also estimate annotator’s
utility deviation at an individual level. Instead of adopting
the confusion matrix, we characterize personalized behavior
and user correlations with the parsimonious structure of the
model parameters, which is ignored by the majority of ex-
isting literature. Moreover, with an efficient implementation
of the SplitLBI method, our proposed method could mon-
itor the evolution dynamics of the model parameters which
evolves from a simple and consensus model to a complicated
and personalized model.

Methodology
In this section, we systematically introduce the methodology
for coarse-to-fine grained preference learning. Specifically,
we first start from the basic problem description, followed
by introducing the proposed multi-level preference learning
model in detail. After that, we present a simple iterative al-
gorithm to generate paths of sparse models at different spar-
sity levels. Finally, a synchronized parallel version of this
method is proposed to meet the needs of large-scale data.

Problem Description
Suppose there are n alternatives or items to be ranked,
represented by n data points with each of which having
a d-dimensional feature vector Xi. The pairwise compar-
ison labels collected from users can be naturally repre-
sented as a directed comparison graph G = (V ;E). Let
V = {1, 2, . . . , n} be the vertex set of n items and E =
{(u, i, j) : i, j ∈ V, u ∈ U} be the set of edges, where U
is the set of all users who take part in the annotation. User
u provides his/her preference between choice i and j, such
that yuij > 0 means u prefers i to j and yuij ≤ 0 otherwise.
Hence we may assume y : E → R with skew-symmetry
(orientation) yuij = −yuji. The magnitude of yuij can repre-
sent the degree of preference and it varies in applications.
The simplest setting is the binary choice, where yuij = 1 if
u prefers i to j and yuij = −1 otherwise. In applications,
users are often categorized by their classifications, such as
occupations and ages, hence yuij may be a summary statis-

tics of all the pairwise comparisons between i and j among
the same category of users.

Such kind of pairwise comparison data, together with fea-
ture representations of items, arise in a variety of applica-
tions, as is shown in the introduction section. In this paper,
we hope to learn a preference model to predict the prefer-
ence of users on the given dataset, taking into account both
the common consensus and users’ diversity.

A Multi-level Preference Learning Model
In this paper, we consider the following basic two-level lin-
ear preference model:

yuij = (Xi −Xj)
�(β + δu) + εuij , ε

u
ij

i.i.d∼ N (0, σ2). (1)

Here β is the population-level parameter which captures the
common coefficient weight vector of the feature shared by
all users. Practically, as the preference varies greatly across
different types of users, we allow each type of user to have
their personalized parameters. These personalized parame-
ters can be obtained by adding a random effect factor δu to
the population parameter β, representing personalized devi-
ations from the population behavior.

Now we could formulate the preference score based on β
and δu. First, we adopt the inner product of β with the ith

feature, i.e., X�
i β as the common preference score on item

i. Meanwhile, we employ θui = X�
i (β + δu) as user u’s

personalized preference score, which adds a personalized re-
sponse X�

i δu to the common result. From this viewpoint,
preference functions containing only the common prefer-
ence parameter β can be called “coarse-grained” patterns,
while functions with β and δu thus provide “fine-grained”
patterns. The remaining term εuij in (1) measures the random
noise in sampling which is of zero mean and variance σ2.

So far, we have finished the definition of our model. In the
next two remarks, we proceed further with some important
properties of the proposed model.

Remark 1 This model can be straightforwardly extended to
multi-level models with more than two levels, by considering
hierarchies of user types for example, which are particularly
appropriate for research designs where user information are
organized at more than two levels. Another extension is to
the family of generalized linear models.

Remark 2 After obtaining these two sets of parameters, we
can not only predict the preference for seen items rated by
different users but also solve the cold-start problem in the
following sense. When a new item (which have not yet re-
ceived any judgments from the community) comes, given
the low-level feature xnew we can use a linear function
x�
new(β+δu) to predict his preference score. Besides, when

a new active user comes, we can use the common score
f(x) = x�β to predict the user’s preference.

Sparse Regularization Paths with Split Linearized
Bregman Iteration
So far we have finished the elaboration of our model. In this
subsection, our goal is to learn the model parameter β and
δu properly such that the predicted score (Xi −Xj)

�(β +
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δu) approximates the ground-truth yuij . For the whole train-
ing set, the linear model Eq.(1) can be rewritten in its matrix
form

y = Xω + ε, (2)
where ω = [β, δ] ∈ R

d(1+|U |), and X ∈ R
|E|×d(1+|U |)

is the corresponding matrix for the linear operator X :
R

d(1+|U |) → R
E such that X (w(u, i, j)) = (X�

i β +
X�

i δu) − (X�
j β + X�

j δu). To make the predicted score
Xω consistent with the true labels in y, we adopt a squared
loss function:

�(y,ω) =
1

2m
||y −Xω||22.

Now we turn our focus to finding a proper penalty scheme
against overfitting. Practically, the feature dimension d can
be very large, which may lead to the notorious curse of di-
mensionality. As a standard remedy, one might adopt the
LASSO model which poses an �1 norm on ω to directly
penalize a dense parameter. However, in this setting, the re-
duction of dimensionality is always accompanied by the loss
of weak-signals. In contrast, inspired by a recent method
named SplitLBI (Huang et al. 2016), we then provide an al-
ternative penalization scheme which preserves weak-signals
together with a sparse parameter. Instead of directly penal-
izing the dense parameter ω, we here exert the �1 penalty
on an auxiliary variable γ. Moreover, γ is forced to pre-
serve the discriminative power of ω with a proximity penalty
1
2ν ||ω − γ||22. Putting all together, we come to an objective
function:

L(ω,γ) =
1

2m
‖y −Xω‖22 +

1

2ν
‖ω − γ‖22. (3)

According to the SplitLBI method, we could find a solution
with the following iteration scheme:

zk+1 = zk − α∇γL(ω
k,γk), (4a)

γk+1 = κ · prox||·||1(zk+1), (4b)

ωk+1 = ωk − κα∇ωL(ω
k,γk), (4c)

where ω0 = γ0 = z0 = 0, k is the iteration index, variable
z is an auxiliary parameter used for gradient descent, z =
ρ+γ/κ,ρ ∈ ∂||γ‖|1, and the proximal map associated with
the penalty function is given by

proxP (z) = arg min
v∈Rd(1+|U|)

(
1

2
‖v − z‖2 + ||v||1

)
,

=: Shrinkage(z). (5)

We now summarize this in Algorithm 1.

Remark 3 We have the following remarks for the imple-
mentation details:
• To accelerate the convergence, the update rule in (4c) can

be replaced by the closed-form solution:

ωk+1 = argmin
ω
L(ω,γk+1), (6)

which yields:

ωk+1 = (
ν

m
X�X + I)−1(

ν

m
X�y + γk+1). (7)

Thus (4a) can be further written as zk+1 = zk+αH(y−
Xγk), where H = (νX�X +mI)−1X�. And the (4c)
subroutine could thus be canceled out from the update
rule.
• As ωk is the mixture of Least Square solution and sparse

estimator γ, it is usually not sparse. We will use γk as the
final sparse estimator.

Algorithm 1 Sparse regularization path
Input: Data (X,y), damping factor κ,
step size α.
Initialization: γ0 = 0, z0 = 0, t0 = 0
H ← (νXTX +mI)−1X�.
for k = 0, . . . ,K do

zk+1 ← zk + αH(y −Xγk).

γk+1 ← κ · Shrinkage(zk+1).

tk+1 ← (k + 1)α.

end for
Output: Solution path {tk, γk}k=0,1,...,K .

Regularization Path Property and Cross Validation.
From a dynamical point-of-view, if we regard the stepsize
as α = Δt a discrete time difference, Eq.(4a)-(4c) can ac-
tually be considered as a discretization of a dynamic system
(realized when Δt→ 0):

dzt

dt
= −∇γL(ωt,γt), (9)

zt − γt

κ
∈ ∂||γt||1, (10)

dωt

dt
= −κ · ∇ωL(ωt,γt). (11)

Such dynamics are known as inverse-scale spaces (Burger
et al. 2013; 2005), leveraging a regularization path con-
sisting of sparse models at different levels from the null
(supp(γ) = φ) to the full (supp(γ) = [d(1 + |U |)]) . At
iteration k, the cumulating time τk = kα (recall α = Δt in
each iteration) can be regarded as the inverse of the Lasso
regularization parameter λ: the larger is τk, the smaller is
the regularization and hence the more nonzero parameters
enter the model. Following the dynamic system, the model
gradually grows from sparse to dense models with increas-
ing complexity. This provides us a chance to obtain diverse
models. However, without a stopping time control mecha-
nism, we will finally encounter τk →∞, where the dynam-
ics may reach some over-fitting models when noise exists
like our case. To prevent such overfitting models, early stop-
ping is necessary to find an optimal model at an intermedi-
ate time. To this end, we adopt a standard cross-validation
scheme to choose the stopping time t:

• Given the training data, fix κ and α, then split the data S
into S1, · · · ,SK , where Si∪Sj = φ, i �= j,

⋃K
i=1 Si = S .

• for k = 1, . . . ,K do
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1. Run SplitLBI on the training data S\Sk to get the so-
lution path.

2. For pre-decided parameter list of t, use a linear inter-
polation to get γt.

3. Use the estimator γt to predict on Sk, and then com-
pute prediction error.

end for
• Return the optimal tcv with minimal average prediction

error.
Compatibility toward Weak Signals. In our method, the
dense parameter ω coexists with the sparse parameter γ.
This scheme provides possibilities to embrace the weak sig-
nals that are missed by the LASSO model, which could be
explained as follows. Let the support set of γ be defined as
Supp(γ) = {(i, j) : γij �= 0}. We can naturally decompose
ω into ωsupp(γ)+ωsupp(γ)⊥ . Here ωA denotes the entry-wise
projection onto the set A:

ωAi,j =

{
ωi,j (i, j) ∈ A

0 otherwise
.

ωsupp(γ) then captures the strong signals that are supported
by the sparse parameter γ. Such strong signals induce
a sharp reduction of the loss and dominate the sparse
penalty function ||γ||1. By contrast, ωsupp(γ)⊥ consists of
parameters that fail to give a significant reduction of the loss
function, that can be of either weak signals (the users are
not of much difference to the common) or random noise.

Synchronized Parallel SplitLBI. To meet the needs of
large-scale data analysis, we provide a synchronized paral-
lel version of our method. According to (4a)-(4c) and Re-
mark 3, we implement a parallel computation on resk =
y −Xγk and H · resk, where multiple threads simultane-
ously compute z,γ on different sample subsets Ii and fea-
ture subsets Ji. Subsequently, res is updated synchronously
before the next parallel iteration. We summarize this process
in Algorithm 2.

Experiments
In this section, three examples are exhibited with both simu-
lated and real-world data to illustrate the validity of the anal-
ysis above and applications of the methodology proposed.
The first example is with simulated data while the latter two
exploit real-world data. Because of the page limit, we only
show the first two in the main body, while remaining the
third one in the supplementary materials1.

Simulated Study
Settings. We validate the proposed algorithm on simulated
data with n = |V | = 50 labeled by 100 users. Specif-
ically, we first generate the feature matrix for each node:
X = [X�

i ]ni=1 ∈ R
n×d, where Xi is a d-dimensional

(d = 20 in this experiment) column feature vector drawn
randomly fromN (0, 1) representing node i. Then each entry

1https://github.com/qianqianxu010/AAAI2020/tree/master/
supplementary

Algorithm 2 SynPar-SplitLBI of Algorithm 1
Initialization: Given parameter κ, α
and thread number P , k = 0, z0 = 0, γ0 = 0,
res0 = y.
H ← (νXTX +mI)−1X�.
Split data and variables:
{1, . . . ,m} = ⋃P

i=1 Ii, {1, . . . , d(1 + |U |)} =
⋃P

i=1 Ji.
Iteration: For each thread i

zk+1
Ji
← zk

Ji
+

α

ν
HJires

k. (12a)

γk+1
Ji
← κShrinkage(zk

Ji
). (12b)

tempi ←XJi
γJi

. (12c)

Synchronize.

resk+1
Ii
← yIi −

P∑
i=1

tempi
Ii . (13)

Stopping: exit when stopping rules are
met.

Table 1: Coarse-grained vs. fine-grained model (i.e., Ours)
on test error (i.e. mismatch ratio) in simulated data.

min mean max std
RankSVM 0.1774 0.2547 0.3591 0.0521
RankBoost 0.1886 0.2638 0.3665 0.0504
RankNet 0.1741 0.2569 0.3633 0.0525
gdbt 0.1903 0.2648 0.3728 0.0529
dart 0.1896 0.2633 0.3715 0.0517
HodgeRank 0.1754 0.2537 0.3574 0.0520
URLR 0.1756 0.2561 0.3626 0.0535
Lasso 0.1745 0.2533 0.3560 0.0523
Ours 0.1189 0.1448 0.1722 0.0169

of the common coefficient β has a probability p1 = 0.4 with
nonzero value and they are drawn randomly from N (0, 1).
Besides, for each user u, each entry of his personalized devi-
ation coefficient δu has a probability p2 = 0.4 to be nonzero
and is drawn randomly from N (0, 1). At last, we draw Nu

samples for each user randomly with binary response yuij
following the model P (yuij = 1) = Ψ((X�

i β +X�
i δu) −

(X�
j β + X�

j δu)), where Ψ(t) = 1/(1 + e−t). The sam-
ple number Nu uniformly spans in [N1, N2] = [100, 500].
Finally, we obtain a multi-edge graph labeled by 100 users.
Competitors. We compare our fine-grained model with 8
competitors: RankSVM (Joachims 2009), RankBoost (Fre-
und et al. 2003), RankNet (Burges et al. 2005), gdbt
(Friedman 2001), dart (Vinayak and Gilad-Bachrach 2015),
HodgeRank (Jiang et al. 2011), URLR (Fu et al. 2016), and
Lasso (Tibshirani 1996).
Comparative Results. To see whether our proposed
method could provide more precise preference function for
users by introducing individual-specific parameters (i.e.,
δu), we randomly split the whole data samples into train-
ing set (70% of the total comparisons) and testing set (the
remaining 30%). To ensure the statistical stability, we re-
peat this procedure 20 times. Tab.1 shows the experimental
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M T(M)(s) M T(M)(s)
1 559.99 9 66.66
2 277.98 10 59.40
3 185.64 11 55.05
4 139.74 12 49.95
5 115.23 13 48.13
6 95.72 14 44.14
7 82.56 15 42.57
8 72.22 16 38.97

Figure 1: Left: Mean running time (20 times repeat) of SynPar-SplitLBI with thread number changing from 1 to 16 on simulated
data. Middle: The linear speedup of parallel SplitLBI on simulated data. Right: The efficiency of parallel SplitLBI on simulated
data.

results of the proposed fine-grained model compared with
other 8 coarse-grained models with only the common prefer-
ence parameter β, which indicates that our method exhibits
smaller test error (i.e. mismatch ratio) with an average of
0.1448± 0.0169 due to its fine-grained property.
Speedup of SynPar-LBI. We then demonstrate the linear
speedup of the synchronized parallel SplitLBI. In evaluat-
ing a parallel system, two performance measures of partic-
ular interest are speedup and efficiency. Speedup is defined
as the ratio of the elapsed time when executing a program
on a single thread (the single thread execution time) to the
execution time when M threads are available. Let T (M) be
the time required to complete the task on M threads. The
speedup S(M) is the ratio: S(M) = T (1)

T (M) . Efficiency is de-
fined as the average utilization of the M allocated threads:
E(M) = T (1)

MT (M) =
S(M)
M .

In our setting, M = 1, 2, 3, ..., 16. Fig.1 (Left) shows the
mean running time for 20 times repeat of SynPar-SplitLBI
with thread number changing from 1 to 16 in a 16-core
server with Intel(R) Xeon(R) E5-2670 2.60GHz CPU and
384GB of RAM. The server runs Linux 4.2.0 64bit. Further-
more, Fig.1 (Middle) shows the error bar of speedup with
confidence interval [0.25, 0.75]. It is easy to find that the
parallel SplitLBI could speed up the running time almost in
a linear manner. Moreover, Fig.1 (Right) illustrates the par-
allel efficiency of the method. We can find that the efficiency
is close to 1 in most cases. Note that Algorithm 2 is a syn-
chronized parallel version of Algorithm 1, thus the test er-
rors obtained by Algorithm 2 are exactly the same with the
results in Tab.1.

Movie Preference Prediction

Dataset. The MovieLens 1M DataSet 2 is comprised of
3952 movies rated by 6040 users. Each movie is rated on
a scale from 1 to 5, with 5 indicating the best movie and 1
indicating the worst movie. There are a total of one million
ratings in this dataset. Moreover, demographic information
is provided voluntarily by the users, including gender, age
range, occupation. Each movie titles is identical to titles

2https://grouplens.org/datasets/movielens/

Table 2: Coarse-grained vs. fine-grained (i.e., Ours) model
in movie dataset.

min mean max std
RankSVM 0.4039 0.4304 0.4532 0.0131
RankBoost 0.4318 0.4554 0.4776 0.0131
RankNet 0.4056 0.4403 0.4625 0.0157
gbdt 0.3653 0.3850 0.4060 0.0115
dart 0.3704 0.3856 0.4023 0.0102
HodgeRank 0.4065 0.4303 0.4590 0.0126
URLR 0.4064 0.4300 0.4553 0.0124
Lasso 0.4089 0.4301 0.4557 0.0118
Ours 0.1204 0.1473 0.1814 0.0163

provided by the IMDb 3 and each can be represented as
a 18-dimensional genre feature vector, including Action,
Adventure, Animation, Children’s, Comedy, Crime, Doc-
umentary, Drama, Fantasy, Film-Noir, Horror, Musical,
Mystery, Romance, Sci-Fi, Thriller, War, Western.

Settings. We then select a subset of this dataset containing
100 movies rated by 420 users, ensuring that each user has
at least 20 ratings while each movie has been rated by at
least 10 users. Since the proposed algorithm is designed for
pairwise comparisons, we convert the rating information
into a set of pairwise comparisons. More specifically, we
create a pairwise comparison (i, j) if item i is rated higher
by user u than item j. Note that no pairwise comparison
data is generated if two items are given the same rating.

Individual Preference. Following the experiment design
in simulated study, we also split the dataset into training
set and testing set. All the experiments were repeated 20
times with different training/testing partitions to reduce
variance. Similar to the simulated dataset, the proposed
fine-grained method could produce significant performance
improvement than other 8 coarse-grained models with
smaller mean test error, shown in Tab.2. Moreover, Fig.2
shows the running time, together with speedup ratio and
efficiency of SynPar-SplitLBI on this movie dataset.

Occupation and Age Preference. Movie preference behav-

3http://www.imdb.com/
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M T(M)(s) M T(M)(s)
1 3155.63 9 380.09
2 1575.51 10 337.28
3 1054.71 11 308.54
4 794.88 12 282.12
5 648.38 13 268.97
6 543.54 14 249.66
7 466.64 15 241.45
8 410.50 16 218.84

Figure 2: Experimental results of SynPar-SplitLBI with thread number changing from 1 to 16 in movie dataset.

(a) Common preference with six representative
group preferences

(b) Regularization path of SplitLBI

Figure 3: A two-level preference learning on movie dataset.

ior may be influenced by the occupation and age factors.
Tab.3 in supplementary materials show the occupation cate-
gories and the age ranges in this dataset. To exhibit the oc-
cupation influence of movie preference behavior, users from
the same occupation are treated as a group. To further inves-
tigate the characteristics of groups with personalized pref-
erence, Fig.3 shows a two-level movie preference functions
learned from this dataset: the common preference and 21
group preferences. Fig.3 (a) illustrates this two-level hierar-
chical model with six representative groups, among which
farmer, artist, academic or educator are the top 3 groups
exhibiting a large deviation from the common preferences,
while the self-employed, writer, homemaker are those show-
ing similar preference with the common. These are just the
results derived from Fig.3 (b) using the methodology pro-
posed in this paper. The purple curve represents the com-
mon preference, while the remaining 21 curves there repre-
sent the 21 occupation group preferences in regularization
paths, of which the earlier popping up to be nonzero, the
larger deviation is the group preference from the common.
The purple curve indicates the path of the common prefer-
ence parameter, being the first popping up. The red curves
represent the top 3 groups (i.e., farmer, artist, and academic

(a) Common preference. (b) Preference of 7 groups
with different age ranges.

Figure 4: Experimental results on movie dataset.

or educator) who jumped out early. Groups who jumped
out earlier are those with a large deviation from the com-
mon ranking. Besides, the blue curves indicate the bottom 3
groups (i.e., homemaker, writer, and self-employed) jumped
out later, and those often show similar preference with the
common. Moreover, The red dotted line indicates the opti-
mal t (i.e., tcv) obtained via cross-validation.

In particular, Fig.4(a) illustrates the common preference
on this movie dataset, where the bars are the proportions of
movie genres among top 50% movies ranked by common
consensus preference. One can see that the top five genres
in the common (social) preference are Drama, Comedy, Ro-
mance, Animation, and Children, respectively. Furthermore,
user preferences on movies also change with age. Fig.4(b)
illustrates the evolution of preference over age groups. One
can see that users under the year of 18 and between 18-24
both prefer Drama and Comedy best. When users slowly
waltz into their 25-34, they begin to enjoy the love story.
However, when they get to their 40s, it happened that they
grew to like the thriller movie best. Not surprisingly, as they
continue into old age such as beyond 56, their retrospect on
whole life cherishes love in a deep way and Romance movie
returns to be their favorite again.

Conclusions
In this paper, we propose a preference learning model that
takes into account of both the common consensus prefer-
ence and users’ preferential diversity. Inspired by the newly
developed Split Linearized Bregman Iteration, we establish
a dynamic path from the common preference to personalized
diversity, with different levels of sparsity on personalization.
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A synchronized parallel version of our method is proposed
to meet the needs of large-scale data analysis. Moreover, the
basic two-level linear preference model can be easily ex-
tended to scenarios with multi-level groups. The effective-
ness of our model has been validated on the movie pref-
erence prediction and dining restaurant preference datasets.
It provides a coarse-to-fine grained characterization of user
preferences with better precision in prediction.

Acknowledgment
This work was supported in part by National Natural Sci-
ence Foundation of China: 61620106009, 61861166002,
61931008, U1636214, 61836002, 61672514 and 61976202,
in part by Key Research Program of Frontier Sciences,
CAS: QYZDJ-SSW-SYS013, in part by the Science and
Technology Development Fund of Macau SAR (File no.
0001/2018/AFJ) Joint Scientific Research Project, in part
by Beijing Natural Science Foundation (No. 4172068
and 4182079), in part by the Strategic Priority Research
Program of Chinese Academy of Sciences, Grant No.
XDB28000000, in part by Youth Innovation Promotion As-
sociation CAS, and in part by Hong Kong Research Grant
Council (HKRGC) grant 16303817.

References
Aldahari, E.; Shandilya, V.; and Shiva, S. G. 2018. Crowdsourcing
multi-objective recommendation system. In WWW, 1371–1379.
Burger, M.; Osher, S.; Xu, J.; and Gilboa, G. 2005. Nonlinear
inverse scale space methods for image restoration. In VLSM, 25–
36.
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