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Abstract

Anchor Link Prediction (ALP) across heterogeneous net-
works plays a pivotal role in inter-network applications. The
difficulty of anchor link prediction in heterogeneous net-
works lies in how to consider the factors affecting nodes
alignment comprehensively. In recent years, predicting an-
chor links based on network embedding has become the main
trend. For heterogeneous networks, previous anchor link pre-
diction methods first integrate various types of nodes asso-
ciated with a user node to obtain a fusion embedding vector
from global perspective, and then predict anchor links based
on the similarity between fusion vectors corresponding with
different user nodes. However, the fusion vector ignores ef-
fects of the local type information on user nodes alignment.
To address the challenge, we propose a novel type-aware an-
chor link prediction across heterogeneous networks (TALP),
which models the effect of type information and fusion in-
formation on user nodes alignment from local and global per-
spective simultaneously. TALP can solve the network embed-
ding and type-aware alignment under a unified optimization
framework based on a two-layer graph attention architecture.
Through extensive experiments on real heterogeneous net-
work datasets, we demonstrate that TALP significantly out-
performs the state-of-the-art methods.

Introduction

Anchor Link Prediction (ALP) aims to recognize the ac-
counts of the same natural person across different networks,
and the links between these accounts are anchor links (the
accounts are anchor nodes). Anchor links play a pivotal role
in inter-network applications, such as user profile modeling
(Zhan et al. 2017) and recommendation (Fan et al. 2019;
Lu et al. 2016). In reality, these networks (such as social
networks, academic networks and movie recommendation
networks) are heterogeneous networks, which contain vari-
ous types of nodes and edges. Predicting anchor link across
heterogeneous networks is a research hotspot in the industry
and academia at present.
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Figure 1: An example of anchor link prediction across het-
erogeneous networks

With the rise of network embedding, anchor link predic-
tion based on embedding has become the mainstream trend.
Based on this trend, the core of existing anchor link predic-
tion methods includes two parts: embedding and alignment.
The purpose of embedding part is to obtain the representa-
tion vectors of network nodes (accounts) based on network
embedding method for each network. The alignment part
obtains latent anchor links by estimating pairwise similar-
ity between the embedding representation vectors of nodes
in different networks. According to whether the two parts
are treated separately, the existing methods can be divided
into two categories: unified framework approaches (Liu et
al. 2016; Shang et al. 2019) and two-stage approaches (Man
et al. 2016; Zhou et al. 2018). All the approaches in above
two categories are used to predict anchor links across homo-
geneous networks which contain only one type of nodes and
one type of edges.

In practice, however, heterogeneous networks are ubiqui-
tous. At present, there are few methods for anchor link pre-
diction in heterogeneous networks, especially based on net-
work embedding (Wang et al. 2018; Feng et al. 2019). The
idea of anchor link prediction in heterogeneous networks is
the same as that in homogeneous networks, however, the dif-
ference is how to integrate various types of information into
the process of embedding and alignment. Previous methods
obtain the embedding vector (named fusion vector) of a user
node by fusing information of various types of nodes asso-
ciated with it from global perspective. Then, anchor links



are predicted based on the similarity of fusion vectors. The
researchers have verified the effectiveness of their methods,
however, there also exist defect: the fusion vector ignores
effect of the local type information (information for each
type of nodes associated with a user node) on user nodes
alignment. This effect is more obvious when there are incon-
sistent types of nodes in different heterogeneous networks.
Take the academic network as an example (Fig.1). G con-
tains three types of nodes: author, paper and conference. G
contains two types of nodes: author and paper. The fusion

vector f . of author v2; in G* contains three types of in-

formation, and the fusion vector f 1 of author vl in GT
contains only two types of information without conference

information. So, the information between f 1 and f;Tl is in-
consistent, which may lead to deviation in estimating their
similarity. In addition, for information of author and paper

which are included both in f , and fal, each type of infor-
mation has its own impact on user alignment.

To address the above mentioned challenge, in this paper,
we propose a unified framework of type-aware anchor link
prediction across heterogeneous networks (TALP) based on
graph attention architecture. TALP not only considers the
effect of fusion vector on users alignment from global per-
spective, but also considers the impact of type information
on alignment from local perspective. All the considering fac-
tors are formulated into a single objective function so that
minimizing it can allow network embedding and user nodes
alignment to be achieved simultaneously in heterogeneous
networks.

Specifically, TALP consists of two parts: n-tuple repre-
sentation and type-aware alignment. For n-tuple represen-
tation, we conduct network embedding on each heteroge-
neous network to lean the n-tuple embedding vectors of each
user node. Considering that fusion vectors will lose type in-
formation, we use a two-layer Graph Attention architecture
(GAT) to learn the fusion vector and type-aware vectors si-
multaneously. The first layer of GAT aims to integrate the
embedding vector which belongs to the same type, and ob-
tain the local representation of the user node on this type
information, called type-aware embedding vector. The sec-
ond layer of GAT aims to fuse different type-aware vec-
tors of the user node to obtain the global embedding vector,
called type-fusion embedding vector. For type-aware align-
ment, we believe that type information and fusion informa-
tion work together to affect user nodes alignment. In other
words, we collaboratively measure the pairwise-similarity of
fusion embedding vectors and pairwise-similarity of type-
aware embedding vectors, which can guide the n-tuple em-
bedding process.

In a nutshell, the contributions of this paper can be sum-
marized as follows:

e In this paper, we propose a type-aware anchor link pre-
diction framework across heterogeneous networks. This
framework predicts anchor links not only based on the
pairwise-similarity between type-fusion vectors of user
nodes, but also considers the pairwise-similarity between
type-aware vectors associated with user nodes according
to types.
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Table 1: Notations

Notation Description

G5, GT the input source/target network

VI A% the node/edge set of G°

VT, AT the node/edge set of G*°

RY RT the node type set of G°/GT
[V],|E],|R] | the number of nodes/edges/node types
r,g a node type

D the dimension of embeddings

D', D" the dimension of type-aware/fusion embeddings
K the number of multi-head

NT the r-th type neighborhood set

f, U the type-fusion/aware embedding

z the initial embedding of a node

B the anchor links set

e For anchor link prediction across heterogeneous net-
works, this paper proposed a unified framework based on
graph attention, which can learn n-tuple embedding vec-
tors of each user node while predicting anchor links.

e We evaluate the proposed framework (TALP) on two pairs
of real-word heterogeneous networks. The results demon-
strate that our method constantly outperforms the state-
of-the-art approaches which predict anchor links by only
considering the pair-wise similarity between fusion vec-
tors.

Problem Formulation

In this section, we first introduce concepts in heterogeneous
networks, and then introduce the embedding representation
of nodes (type-aware embedding and type-fusion embed-
ding). Finally, a formal definition of the type-aware anchor
link prediction problem is given.

Definition 1. Heterogeneous network A heterogeneous net-
work is defined as a network with multiple types of nodes
and/or multiple types of links. It can be denoted as G =
{V, A, R}, where V is a set of nodes, A is a set of links, and
R represents the node type union.

Take the heterogeneous network G in Fig.1 as an exam-
ple G¥ = {VS AS RS} Ve = {Upla pz,US:Savflavfza
s _ s s .8 s .S s
c1a (:2}’ A ={(v al?vpl)ﬂ (UabUpQ)a( Vg1, Vg2)s (Vg1
s s .S s .S s .S s _
vcl)a (Ua27 UpQ)a (UaQ, Up3)7 (Ua2a Uc2)}’ R = {pa ¢, a}
Next, we will take G as an example to introduce the
type-aware embedding and type-fusion embedding respec-
tively.
PROBLEM 1. Type-aware embedding: Given a user node
v2 in GS(an author node), Ns represents the set of r-

th (r € R%) type nezghborhoods of v3.. For each node
v € N , its embedding vector is denoted as €;, integrat-
) of node
_can obtain the type-aware embedding vector of r-th
y S'r

ing each’ embedding vector €5 (j = 1,2..[Ns

. r
mn N’Uf

type information of v

fq, denoted as

PROBLEM 2. Type-fusion embeddmg: Given a user node
vfi in G, the type-fusion embedding problem is to integrate
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Figure 2: n-tuple representation

each type aware embedding vector @57 (r € R?) associated

S

with v5,, denoted as .

ai’
PROBLEM 3. Type-aware Anchor link prediction: Given
two heterogeneous networks G® = {V? A% R°} and
G ={VT, AT, R"}, (v5;,vL;) is an anchor link iff v3; €
VS and U:{j € VT identify the same nature person. Here,

the representations of v, and v:{j are n-tuples containing

type-fusion embedding vector and type- aware embedding
vectors, denoted as (f5,@57,...) and (f D), €
R%,g € RT. Type-aware anchor link predlctlon aims to pre-
dict the unobserved anchor links by matching n-tuple rep-
resentation vectors between each pair of user nodes across

G5 and GT.

aj"'

Proposed Model

In this paper, we propose a unified framework TALP to
align anchor user nodes across heterogeneous networks, this
framework leverages graph attention to help learn the type-
aware vectors and type-fusion vector associated with each
user node, and obtain the n-tuple representation of each user
node. On this basis, we can predict whether there is an an-
chor link between two user nodes by collaborative measur-
ing the pairwise-similarity of each element vector in their
n-tuple representations.

n-tuple Representation

In this section, we use two GAT (Graph Attention Network)
to learn n-tuple representation of each user node in G and
GT respectively. The parameters in two GATs are shared,
taking G as an example, we introduce the acquisition pro-
cess of n-tuple representation for each user node.

Type-aware Embedding The GAT we used contains two
attention layers: the first layer aims to learn the type-aware
embedding and the second layer aims to learn the type-
fusion embedding (Fig.2).

For a user node v?; in G, we initialize feature vectors of

v, and its each neighbor v; € N5 to the same dimension

D firstly. The initial feature vector is extracted according
to information contained in node. Specifically, Word2vec is
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used for nodes containing text information, and nodes with
unclear text information adopt random assignment method
to obtain their initial feature vectors. The initial feature vec-
tors of v3; and v; are denoted as &; and &; respectively To
learn the r-th type-aware embeddmg vector 05! of v, we
fed all #;,1 < j < \NZ)"S| and Z; into the first attention
layer. -

Specially, for each node-pair v; and its arbitrary neigh-
bor v;, we first use a linear transformatlon parameterized by

weight matrix W € RP" %P to transfer the initial features
into higher-level features, and then compute the importance
score of v; to v , with self-attention (Vaswani et al. 2017)
according to Eq. (1)

I, =0 [W'g||W"i)] (1)

where -7 represent transposition, || is the concatenation op-
eration, & € R2P "isa weight vector, D’ is the dimension of
each type-aware vector.

Then we compute attention coefficient between node v,
and its neighbor v;. We inject the adjacency matrix of G*°
into the attention mechanism by performing masked atten-
tion(Velickovic et al. 2017), and the normalized attention
coefficient is expressed as:

exp(LeakyReLU (I} ;))
a;’:j = ‘NTS | : (2)
> exp(LeakyReLU (I} ,))
The 7-th type-aware embedding vector @>!" of v2; is com-
puted as:
Wys |
—aST’ Z az y Wr (3)

where o is the Elu activation function.

To stabilize the learning process of self-attention, we em-
ploy multi-head attention on computing the type-aware em-
bedding vectors, and K is the number of attention mecha-
nisms. So, we represent the Eq.(3) as a form with multi-head
attention mechanisms:

N'
—'S T k ka T2 ) ( 4)
k: 1 j=1
where ak " is the normalized attention coefficient com-

puted by the k-th attention mechanism, and W*" is the
weighted matrix of k-th attention mechanism. In training,
K attention mechanisms are independent and parallel.

Type-fusion Embedding To obtain the type-fusion em-
bedding vector of v2;, we fed all type-aware embedding vec-
tors @57 (r € RS) and the initial feature Z; into the second
attention layer of GAT, and then aggregate these vectors with
attention coefficients.

Specially, for each vector-pair #; and @57, as their di-
mensions are different (D and D’ respectively), we adopt
additive-attention (Bahdanau, Cho, and Bengio 2015) to
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compute attention coefﬁ01ent between 7; and 45" First, the
importance score of 5! to the type-fusion vector is com-
puted as follows:

Qi = M tanh(Wy; + Wias!) (5)

where m € RP" is a weight vector, Wy € RDP"*D and

r D" xD'
WieR
the type-fusion vector of v3..

The attention coefficient can be computes as:

exp(gi,r)
ZteRS exp(qit)

The type-fusion embedding vector of v

are weight matrices, D" is the dimension of

Bir = 6

is denoted as
fm, and it can be computed according to the following equa-

tion:
B Z Bi, rﬂsr )
reRS
So far, we can obtain the n-tuple representation
(f2,asr,..) of v, r € RY. Similarly, the n-tuple repre-

sentation of each user node in G can be obtained. It’s im-
portant to note that the weight matrices W"*", W; and Wi

and the weight vector 0, 171 are shared in G*S and GT, which
ensures that the embedding vector tuples of user nodes in
two networks are in the same embedding space.

Type-aware Alignment

Given two heterogeneous networks G*% and G7,
and vl

vy € GY
i € GT, if there is an anchor link between v?;
and v

( rs "S’I"

ai’ az"'

., the embedded vector tuples corresponding to them

.) and ( f “ff ,...) should be as close as pos-

sible. Just as important, if v/ € G and v;; € G do
not identify to the same nature person, the distance between
their n-tuple embedding representation should be as far as
possible. In other words, the distances between aligned user
nodes should be minimized and those of unaligned user
nodes should be maximized. In practice, if the types of nodes
in two heterogeneous networks are inconsistent, for the het-
erogeneous network lacking a certain type of nodes, the cor-
responding type-aware embedding vector in n-tuple of a user
node in this network is supplemented to 0 when tuples align-
ment. That is to say, the tuple length must be the same when
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aligning, as shown in Fig.3. We use R’ to denote the length
of tuple on type-aware alignment, where R = RS U R”.
Therefore, the objective function is:

L= > > {wlddfa )+
(v T)EB(va“ o5)eB
€= d(fd Lo+ 3 Nl g+ ®
reRF
& — (" )}
where B3 is the set of known anchor links, (v, v] ve;) de-

note an anchor link and (v/3, 0L

VUps, Ugi) is not an anchor link.

7S pIT .
o f i Jaj are the type-fusion embedding vector of
S T 1S =2Sr =Tr ﬂ/Sr —1Tr
Vais Vaj» Vai and v/ respectlvely Uy s Ug;  Ug, s Ug; are

their type-aware embeddlng vector of r-th type 1nf]orma-
tion. d(, ) is a distance formula, in this paper d(f5, faj) =

[l _}3 — f3;||1 ¢ is a margin hyper-parameter separating
anchor links and unanchored links. w and A" are hyper-
parameters balancing the importance between type-fusion
similarity and type-aware similarity for anchor link predic-

tion, here, w + 3 . p A" = 1.

Algorithm 1 The TALP algorithm.

Input: Heterogeneous network G and G7; Adjacency
matrix A% and AT: Anchor links set 3; Iteration T
Hyper-parameter w, A", £, K, D,D’,D"

Output: parameter set O* = {3, m, Wh" W, W}’},

1: Extract initial feature matrix E° and E7;
2: Learn initial parameter ©°;

3: Initial £ < 1

4: while ¢ < I"do

5 for v2. € G do
6: for r € RS do
7: update @57 with Eq.(4).
8: end for
9: update f7 w1th Eq.(7)
10: end for
11: for v/, € G do
12: for r € R do
13: update @1 with Eq.(4).
14: end for
15: update f7; with Eq.(7)
16: end for
17: updated £ with Eq.(8)
18: update parameter O with L.

19: end while

We summarize our algorithm in Algorithm.1. The time
complexity of our n-tuple representation on source and
target network are O(R*(|V®|DD’ + |ES|D')D") and
O(RT(|[VT|DD'+|ET|D")D") respectively, which are lin-
ear to the sum number of edges and nodes. Computing em-
bedding vectors of source network and target network are
parallel, the time complexity depends on the network with
a larger number of nodes and edges. Besides, as the time



complexity of type aware is caused by calculation similar-
ity, which can be ignored. Therefore, the time complexity
of TALP mainly depends on the sum of nodes number and
edges number in source network or target network.

Experiment
Experiment Setup

Datasets and Evaluation Metrics We conduct our exper-
iment on two pairs of real-word heterogeneous networks:
Aminer-Mag and Twitter-Foursquare. Aminer-Mag (Tang et
al. 2008) is a pair of citation networks. In Aminer, there are
three types of nodes: conference nodes, paper nodes and au-
thor nodes, while in Mag, the types of nodes are paper and
author. Twitter-Foursquare (Zhang and Yu 2015) is a pair of
social networks, the types of nodes in them are user, tweet
and location. Table 2 illustrates the statistics of these data
sets. We use Precision@k (P@k) and Mean Average Preci-
sion (MAP) (Zhou et al. 2018) to evaluate the performance
on ALP.

Table 2: Statistics of the Datasets

Datasets | Nodes #Nodes Rel.  #Rel. #Anc.
Conf. 280 C-P 9,490
Mag Paper 9,490 P-P 94312
Auth. 1,365 A-P 7,695 873
AMiner Auth. 1,456 A-P 8348
Paper 8,936 P-P 85,040
User 5,220 U-U 164,919
Twitter | Tweet 9,490,707 | U-T 9,490,707
Loc 297,183 U-L 615515 3148
User 5315 U-U 76,972
Foursq. | Tweet 48,755 U-T 48,756
Loc 38,921 U-L 48,756

Baselines and Settings

We compare our proposed model TALP with the following
recent anchor link predicting methods:

o MAG (Tan et al. 2014) MAG uses manifold alignment on
graph to map users for homogeneous network. The dataset
Twitter-Foursquare used in MAG is the same as that in
our paper, however the source code of MAG is not public,
so in our paper, we directly copy the experimental results
reported in MAG to compare with our method.

e IONE (Liu et al. 2016) IONE predicts anchor links by
learning the follower-ship embedding and followee-ship
embedding of a user simultaneously, it is also proposed
for homogeneous network. In this paper, for each hetero-
geneous network, we only keep user nodes and links be-
tween them, and input the directed sub-network into to
IONE.

e DeepLink (Zhou et al. 2018) As a ALP method for ho-
mogeneous networks, DeepLink employs unbiased ran-
dom walk to generate embeddings, and then uses MLP to
map users. Similarly to MAG, we directly copy the ex-
perimental results reported in DeepLink to compare with
our method because of the source code is not public and
the shared Twitter-Foursquare datasets between our paper
and DeepLink.
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e HAN (Wang et al. 2019) HAN is a heterogeneous network
embedding model which is based on GAT. In this paper,
we use it to obtain a embedding vector for each user node
in heterogeneous network, and then map user nodes by es-
timating the pairwise similarity between their embedding
vectors.

e PME (Chen et al. 2018) PME is also a heterogeneous
network embedding method which projects various types
of links into different sub-spaces and eventually gets an
overall embedding vector for each node. In this paper, we
use PME to obtain the embedding vectors and then map
them.

e HHNE (Wang, Zhang, and Shi 2019) HHNE uses naive
active learning to obtain the embedding vector of each
node in heterogeneous network. In this paper, we use
HHNE to obtain the embedding vectors and then align
them.

e TALP; and TALP, are the variants of TALP. TALP;
only uses the type-fusion embedding vector to align user
nodes across heterogeneous networks. TALP, only uses
various types of type-aware embedding vectors to align
user nodes. We take them as baseline methods to analyze
the importance of type-fusion vector and type-aware em-
bedding vectors for anchor link prediction respectively.

Performance Comparison

In the experiment, all the hyper-parameters of both com-
pared methods and our method TALP are tuned to perform
the best on test set. For our model, D = 300, D' = D" =
128, & = 3, w = 0.4 and K = 3, and for all baseline meth-
ods we set the parameters the same as original works.

Table 3 gives the convinced results of anchor link pre-
diction. From this table, we can observe that our model
TALP consistently outperforms all baselines on two pairs
of datasets. More specially:

e TALP is significantly better than previous anchor links
prediction methods (HAN, PME, HHNE ) for heteroge-
neous networks. The reason lies in that previous meth-
ods align anchor user nodes only based on the pairwise-
similarity of fusion vectors. By comparison, TALP uti-
lizes type-aware embedding vectors and type-fusion em-
bedding vector to align anchor user nodes simultaneously.
This precisely shows the effect of type information match-
ing on anchor links. In addition, same as HAN, PME,
HHNE, the variant TALP; also only uses the fusion vec-
tor to align users, but its performance are better than them.
The reason for this is that our graph attention architec-
ture can better model fusion vectors of user nodes. Mean-
while, HAN,PME and HHNE outperform homogeneous
networks ALP methods (MAG, IONE, DeepLink), which
indicates that the embedding vector of a user node in het-
erogeneous network includes richer information than ho-
mogeneous networks.

e TALP performs better than TALP and TALP, . For TALP
and TALP/, the only difference between them is whether
the matching of type-aware vectors is introduced. Obvi-
ously, introducing matching of type-aware vectors can im-



Table 3: Performance comparison on anchor link prediction

Dataset Twitter-Foursquare Aminer-Mag

Metrics(%) | P@] P@5 P@9 P@2] P@30 MAP@30 | P@/ P@5 P@9 P@2] P@30 MAP@30
MAG 638 13.62 17.05 27.08 3229 - - - - - - -
IONE 2238 4033 4638 5571 59.70 32.79 3418 3927 4956 57.81 6342 39.19
DeepLink | 3447 5942 66.09 70.00 70.48 47.78 - - - - - -
HAN 38.69 6038 71.16 7549 7833 50.22 4290 6433 70.27 7691 80.16 53.25
PME 40.51 59.89 73.18 7854 80.95 52.42 4591 65.81 7392 7938 8297 55.96
HHNE 3872 6045 69.92 7596 79.13 51.28 42.65 65.19 7287 7534 8196 53.35
TALP; 42,66 6232 8850 90.40 93.79 55.89 50.56 7034 90.07 9523  97.68 66.25
TALP, 4337 69.82 89.96 9257 9427 57.68 63.85 7649 9572 9523 98.81 79.49
TALP 4379 7232 9322 9520 98.69 59.33 71.19 77.68 96.32 96.89 99.87 82.39

precision@10(%)

—&— Aminer — Magra.p
| —=— Twitter — Foursquarera.p

0.2 0.8

0.4 0.6
different 1 - w

Figure 4: Performance of TALP on different (1 — w)

prove the performance of anchor user nodes alignment.
For TALP and TALP,, the difference between them is
whether the matching of fusion vectors is introduced.
From table 2, we can see clearly that TALP is better than
TALP,, showing that type-fusion information is also ben-
eficial for ALP.

e TALP, outperforms TALP. By contrast, TALP, has bet-
ter performance than TALP, which indicates that type-
aware information is more efficient than information of
type-fusion for anchor links prediction across heteroge-
neous networks.

e The performance improvement on Aminer-Mag is obvi-
ously higher than Twitter-Foursquare. The difference be-
tween the two pairs of datasets is that the data types of
Aminer and Mag are inconsistent. This proves that our
model TALP can better predict anchor links in heteroge-
neous networks with inconsistent data types.

Discussion

In this section, we evaluate how different choices of param-
eters affect our model’s performance. In the following ex-
periments, except for the parameter being tested, the rest pa-
rameter are set as the optimal configurations.

Performance on different . and \” In our model, w is to
weight the importance of type-fusion similarity for ALP, and
A" is to weight the importance of r-th type-aware similarity
for ALP. Asw+) . cr A" = 1, we only evaluate the effect of
the change in w on alignment performance of TALP. From
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Aminer — Magracp,

Twitter — Foursquareracp,
-4+ Twitter — Foursquarera.p,

—+— Twitter — Foursquarera.p

--®- Aminer — Magra.p,
—&— Aminer — Magra.p

1 2 5 6

3 4
different head K

Figure 5: Performance of TALP on different number of K

Fig.4, we found that (1) TALP achieves the worst perfor-
mance under (1 — w = 0) setting, which indicates that only
using type-fusion similarity (w = 1) is not enough for an-
chor link prediction, it is necessary to introduce type-aware
information; (2) With the growth of (1—w), the performance
of TALP increase firstly, which indicates that type-aware in-
formation indeed can predict anchor links more accurately.
However, with (1 — w) further increase, the performance
drops gradually, and this shows that it is very important to
balance the information of type-aware and the information
of type-fusion.

Performance on different X' For learning type-aware
vectors, we use multi-head attention mechanism. The num-
ber of head K also affect the performance on anchor links
prediction. From Fig.5, we can see that TALP, TALP, and
TALP; on two pairs of datasets achieve the best perfor-
mance when K = 3, indicating that K = 3 best express
the type-aware information of user nodes and delivers align-
ment characteristics of user nodes across heterogeneous net-
works. The performance on all datasets begins to gradually
rise to the highest point and then declines as the number of
head K grows. This mainly because that too small K can
not capture the richer type-aware information and larger K
may introduce noisy.

Performance on different training ratio For differ-
ent training-to-test ratios, as observed from Fig.6(a) and
Fig.7(a), TALP outperforms all the baselines on two pairs
of datasets. Even for the ratio as low as 10% to 20%, the
performance of them still superior to the baselines. In addi-
tion, TALP, TALP, and TALP; achieve best results when
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Figure 7: Detailed performance on Aminer-Mag

the ratio rose to 70% while other baselines achieve good
performance when the training ratio is around 90%, which
demonstrates the robustness of our model.

Performance on different embedding dimension For
different embedding dimension, according to Fig.6(b) and
Fig.7(b), we observe that a low dimensionality is sufficient
for all the methods except MAG. It is well known that the
complexity of the learning algorithm is highly dependent on
spatial dimensions. In this paper, we select 128 as the opti-
mal dimension.

Performance on different training iteration Fig.6(c)
and Fig.7(c) show how the performance of our model and
baselines methods changes with different training iterations.
We observe that the performance of all the methods con-
sistently achieve better results as the iteration number in-
creases. The number of training iterations reflects the con-
vergence speed of algorithms. TALP converges to the best
result sooner than all baselines.

A case study

To better understand and gain deeper insights into the effect
of node type information difference on alignment process,
we randomly sample two pairs of real anchor users and show
their neighbors in Fig.8. The yellow and white rows repre-
sent Aminer and Mag datasets respectively. In particular, we
observe that:

o Type-aware alignment could predict anchor users that
type-fusion method can not. For the neighbors of paper

type, user “I**r Ivanov”” has both the same papers and dif-
ferent papers in two datasets. The role of different papers
will be magnified. For example, “I**r Ivanov” links a pa-
per “5-Selenization of salicylic acid ***” in Aminer but
links another paper “Experimental ionization of atomic
*#*%%” in Mag. This difference leads to the similarity of
this user’s type-fusion vectors in two datasets are only
0.49, which is hard to determine whether there exists an
anchor link. By comparison, considering type informa-
tion difference with type-aware method, the similarity is
0.61, which makes it easier to determine an anchor link.
This again verifies why our method can improve align-
ment precision.

e For the anchor links that can be predicted by both meth-
ods, type-aware alignment achieves higher similarity than
that of type-fusion. Although user “E**er Zartzer” has the
same paper information in two datasets, the author in-
formation is different. In specific, author “A**sM. Yin-
non” in Aminer is different from that in Mag (“A**s.M.
Yinnon”). Besides, conference information in Mag is
“NULL” which is different from that in Aminer. Type-
fusion method ignores these type information differences
which was focused on by the type-aware method, so the
similarity between anchor users are lower.

Related Work
Heterogeneous Network Embedding

Heterogeneous network embedding refers to learning repre-
sentation of nodes/edges in heterogeneous network. In re-
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Figure 8: A case of type-fusion and type-aware alignment. In order to protect the privacy of authors, we use “**” instead of the

real letter of authors’ and papers’ name

cent years, many researchers have done a lot of work in this
area. PME (Chen et al. 2018) and (Sun, Zhao, and Liu 2015)
project various relations into different embedding subspace
and then map them into the same embedding space via trans-
lation or coordinate matrix. HAN (Wang et al. 2019) pro-
vides a meta-path based GAT model to learn the embed-
ding vectors through node-level and semantic-level attention
mechanism. EGNN (Gong and Cheng 2018) jointly encodes
both nodes and edges into an unified low-dimensional space
via GCN. GaAN (Zhang et al. 2018) apply attention mech-
anism into gated neural network to solve node classification
problem. Unlike the traditional multi-head attention mech-
anism, which equally consumes all attention heads, GaAN
uses a convolution sub-network to control the importance of
each attention head. EOE(Xu et al. 2017) learns the embed-
ding representation of two networks,and incorporates a har-
monious embedding matrix to transform the representation
of different networks into the same space.

Anchor Link Prediction

The traditional ALP methods mainly compute pair-wise
similarity based on well-design hand-crafted features, for
example, MNA (Kong, Zhang, and Yu 2013) extracts fea-
tures from the social structural and text content information.
(Koutra, Tong, and Lubensky 2013) extracts features form
various node attributes, e.g., user-name, typing patterns and
language patterns, etc. Though achieving great performance,
they are time-consuming, labor expensive and usually suffer
from inflexible extension.

Different from the above hand-crafted features methods,
the embedding based methods could learn node’s features
automated, which includes embedding and alignment parts.
According to whether the two parts are treated separately,
existing methods can be divided into two categories: the
first category is to predict anchor links by taking those
two parts as two independent steps, such as PALE (Man
et al. 2016) firstly learns network embedding via capturing
each node’s major structural regularity, and then learning a
mapping function across the two learned low-dimensional
spaces. DeepLink (Zhou et al. 2018) samples the networks
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and learns to encode network nodes into vector representa-
tion to capture local and global network structures which, in
turn, can be used to align anchor nodes through deep neural
networks. The second category is to solve embedding and
alignment process simultaneously based on a unified frame-
work. For example, IONE (Liu et al. 2016) considers both
follower/followee-ship in network and anchor users across
networks via formulating them into a single objective func-
tion. PAAE (Shang et al. 2019) devices an auto-encoder to
capture major structural regularity in one network via an ad-
versarial regularization and then formulates both embedding
and alignment problem into a single objective function.

Besides, there are some works about anchor link predic-
tion across heterogeneous networks. LHNE (Wang et al.
2018) embeds cross-network structural and content informa-
tion into a unified space by jointly capturing the friend-based
and interest-based user co-occurrence in intra-network and
inter-network, respectively. And then align users based on
those embedding vectors. DPLink (Feng et al. 2019) pro-
poses an end-to-end deep neural network, which solves an-
chor link prediction based on heterogeneous mobile data
collected from services with different natures.

Conclusion

In this paper, we present a type-aware anchor link prediction
framework across heterogeneous networks, which considers
the effects of the local type information on user nodes align-
ment. This framework predicts anchor links not only based
on the pairwise-similarity between type-fusion vectors of
user nodes, but also considering the pairwise-similarity be-
tween type-aware vectors of different types of nodes as-
sociated with user nodes. For each user node, TALP can
learn a n-tuple representation based on two-layer graph at-
tention architecture. Anchors are used to supervise the ob-
jective function which aims to minimizing the distance be-
tween anchors. On this basis, we can predict whether there
is an anchor link between two user nodes via measuring
the pairwise-similarity of each element vector in their n-
tuple representations. Experiments on real-world heteroge-
neous network datasets demonstrate the effectiveness and



efficiency of TALP. In future, we plan to extend our model
to anchor link prediction across multiple (more than two)
heterogeneous networks.

Acknowledgments

This work is supported by the National Key R& D Problem
of China (NO.2018YFB1004703), the National Natural Sci-
ence Foundation of China (NO.U1736106, NO.61602466).
We thank all authors for their contributions and all anony-
mous reviewers for their constructive comments.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural machine
translation by jointly learning to align and translate. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Chen, H.; Yin, H.; Wang, W.; Wang, H.; Nguyen, Q. V. H.; and
Li, X. 2018. PME: projected metric embedding on heteroge-
neous networks for link prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, KDD 2018, London, UK, August 19-23, 2018,
1177-1186.

Fan, S.; Zhu, J.; Han, X.; Shi, C.; Hu, L.; Ma, B.; and Li, Y. 2019.
Metapath-guided heterogeneous graph neural network for intent
recommendation. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019., 2478-2486.

Feng, J.; Zhang, M.; Wang, H.; Yang, Z.; Zhang, C.; Li, Y.; and Jin,
D. 2019. Dplink: User identity linkage via deep neural network
from heterogeneous mobility data. In The World Wide Web Con-
ference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019,
459-469.

Gong, L., and Cheng, Q. 2018. Adaptive edge features guided
graph attention networks.

Kong, X.; Zhang, J.; and Yu, P. S. 2013. Inferring anchor links
across multiple heterogeneous social networks. In 22nd ACM In-
ternational Conference on Information and Knowledge Manage-
ment, CIKM’13, San Francisco, CA, USA, October 27 - November
1, 2013, 179-188.

Koutra, D.; Tong, H.; and Lubensky, D. 2013. BIG-ALIGN: fast
bipartite graph alignment. In 2013 IEEE 13th International Con-
ference on Data Mining, Dallas, TX, USA, December 7-10, 2013,
389-398.

Liu, L.; Cheung, W. K.; Li, X.; and Liao, L. 2016. Aligning users
across social networks using network embedding. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, 1774—
1780.

Lu, C.; Xie, S.; Shao, W.; He, L.; and Yu, P. S. 2016. Item rec-
ommendation for emerging online businesses. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intel-
ligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, 3797—
3803.

Man, T.; Shen, H.; Liu, S.; Jin, X.; and Cheng, X. 2016. Predict
anchor links across social networks via an embedding approach. In
Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, 1823-1829.

155

Shang, Y.; Kang, Z.; Cao, Y.; Zhang, D.; Li, Y.; Li, Y.; and Liu,
Y. 2019. PAAE: A unified framework for predicting anchor links
with adversarial embedding. In /IEEE International Conference on
Multimedia and Expo, ICME 2019, Shanghai, China, July 8-12,
2019, 682-687.

Sun, M.; Zhao, Y.; and Liu, Z. 2015. Representation learning
for measuring entity relatedness with rich information. In Interna-
tional Conference on Artificial Intelligence.

Tan, S.; Guan, Z.; Cai, D.; Qin, X.; Bu, J.; and Chen, C. 2014. Map-
ping users across networks by manifold alignment on hypergraph.
In Proceedings of the Twenty-Eighth AAAI Conference on Artifi-
cial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,
159-165.

Tang, J.; Zhang, J.; Yao, L.; Li, J.; Zhang, L.; and Su, Z. 2008.
Arnetminer: extraction and mining of academic social networks. In
Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Las Vegas, Nevada,
USA, August 24-27, 2008, 990-998.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems

2017, 4-9 December 2017, Long Beach, CA, USA, 5998-6008.

Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; and
Bengio, Y. 2017. Graph attention networks. CoRR abs/1710.10903.
Wang, Y.; Feng, C.; Ling, C.; Yin, H.; Guo, C.; and Chu, Y. 2018.
User identity linkage across social networks via linked heteroge-
neous network embedding. World Wide Web-internet & Web Infor-
mation Systems (2):1-22.

Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; and Yu, P. S.
2019. Heterogeneous graph attention network. In The World Wide
Web Conference, WWW 2019, San Francisco, CA, USA, May 13-
17, 2019, 2022-2032.

Wang, X.; Zhang, Y.; and Shi, C. 2019. Hyperbolic heteroge-
neous information network embedding. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019., 5337-5344.

Xu, L.; Wei, X.; Cao, J.; and Yu, P. S. 2017. Embedding of embed-
ding (EOE): joint embedding for coupled heterogeneous networks.
In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, WSDM 2017, Cambridge, United King-
dom, February 6-10, 2017, 741-749.

Zhan, Q.; Zhang, J.; Yu, P.; and Xie, J. 2017. Community detection
for emerging social networks. World Wide Web-internet & Web
Information Systems 20(6):1409-1441.

Zhang, J., and Yu, P. S. 2015. Integrated anchor and social link
predictions across social networks. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, 1J-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015, 2125-2132.
Zhang, J.; Shi, X.; Xie, J.; Ma, H.; King, I.; and Yeung, D. 2018.
Gaan: Gated attention networks for learning on large and spa-
tiotemporal graphs. In Proceedings of the Thirty-Fourth Confer-
ence on Uncertainty in Artificial Intelligence, UAI 2018, Monterey,
California, USA, August 6-10, 2018, 339-349.

Zhou, E; Liu, L.; Zhang, K.; Trajcevski, G.; Wu, J.; and Zhong,
T. 2018. Deeplink: A deep learning approach for user identity
linkage. In 2018 IEEE Conference on Computer Communications,
INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, 1313—
1321.



