The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Understanding and Improving Proximity
Graph Based Maximum Inner Product Search

Jie Liu,” Xiao Yan,” Xinyan Dai, Zhirong Li, James Cheng, Ming-Chang Yang
The Chinese University of Hong Kong
{jliu, xyan, xydai, zrli6, jcheng, mcyang } @cse.cuhk.edu.hk

Abstract

The inner-product navigable small world graph (ip-NSW)
represents the state-of-the-art method for approximate max-
imum inner product search (MIPS) and it can achieve an
order of magnitude speedup over the fastest baseline. How-
ever, to date it is still unclear where its exceptional perfor-
mance comes from. In this paper, we show that there is a
strong norm bias in the MIPS problem, which means that
the large norm items are very likely to become the result of
MIPS. Then we explain the good performance of ip-NSW as
matching the norm bias of the MIPS problem — large norm
items have big in-degrees in the ip-NSW proximity graph and
a walk on the graph spends the majority of computation on
these items, thus effectively avoids unnecessary computation
on small norm items. Furthermore, we propose the ip-NSW+
algorithm, which improves ip-NSW by introducing an addi-
tional angular proximity graph. Search is first conducted on
the angular graph to find the angular neighbors of a query and
then the MIPS neighbors of these angular neighbors are used
to initialize the candidate pool for search on the inner-product
proximity graph. Experiment results show that ip-NSW+ con-
sistently and significantly outperforms ip-NSW and provides
more robust performance under different data distributions.

1 Introduction

For a query ¢, maximum inner product search (MIPS)
finds an item that maximizes ¢ ' x; in a dataset X = {z; €
R%|i=1,---,n} containing n items (Ram and Gray 2012).
MIPS has a number of applications in recommender sys-
tems, computer vision and machine learning. Examples in-
clude recommendation based on user and item embeddings
learned via matrix factorization (Koren, Bell, and Volinsky
2009), object matching with visual descriptor (Felzenszwalb
et al. 2010), memory network training (Chandar et al. 2016)
and reinforcement learning (Jun et al. 2017). In practice, it
is usually required to find the top-k items having the largest
inner product with g. When the dataset is large and the di-
mension (i.e., d) is high, exact MIPS is usually too costly

Copyright (©) 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

*Co-first authors are ranked alphabetically. Correspondence to
Xiao Yan.

139

and finding approximate MIPS (i.e., items with inner prod-
uct close to the maximum) suffices for most applications.
Therefore, we focus on approximate MIPS in this paper.

Related work. Due to its broad range of applications,
many algorithms for MIPS have been proposed. Tree-based
methods such as cone tree (Ram and Gray 2012) and PCA
tree (Bachrach et al. 2014) were first used but they suffer
from poor performance on high dimensional datasets. Local-
ity sensitive hashing (LSH) based methods are widely used
for similarity search (Li et al. 2018). ALSH (Shrivastava and
Li 2014), Simple-LSH (Neyshabur and Srebro 2015) and
Norm-Range LSH (Yan et al. 2018), transform MIPS into
Euclidean or angular similarity search and reuse existing
hash functions. LEMP (Teflioudi, Gemulla, and Mykytiuk
2015) and FEXIPRO (Li et al. 2017) target exact MIPS and
adopt various pruning rules to avoid unnecessary computa-
tion. Maximus (Abuzaid et al. 2019) shows that the pruning-
based methods do not always outperform brute-force linear
scans using optimized computation libraries.

ip-NSW. In a proximity graph, each item is connected to
some items that are most similar to it w.r.t. a given similar-
ity function (Hajebi et al. 2011). A similarity search query
is processed by a walk in the graph, which keeps moving
towards items that are most similar to the query. Proxim-
ity graph based methods achieve excellent recall-time per-
formance! for Euclidean distance nearest neighbor search
(Euclidean NNS) and an number of variants have been
proposed (Fu et al. 2019; Harwood and Drummond 2016;
Wang et al. 2013). Among them, the navigable small word
graph (NSW) (Malkov et al. 2014) and its hierarchical ver-
sion (HNSW) (Malkov and Yashunin 2018) represent the
state-of-the-art and we introduce NSW in greater details in
Section 3. Morozov and Babenko (2018) showed that NSW
also works well for MIPS. They proposed the ip-NSW algo-
rithm, which directly uses inner product as similarity func-
tion to construct and search NSW. ip-NSW outperforms all
existing MIPS algorithms (including those mentioned in the
related work) by a large margin in terms of recall-time per-
formance and the speedup can be an order of magnitude for
achieving the same recall (Morozov and Babenko 2018).

'Recall-time performance measures the time taken to reach a
given recall for query processing.

In spite of its excellent performance, there lacks a good
understanding why ip-NSW works well for MIPS. Moro-
zov and Babenko (2018) proved that a greedy walk in the
proximity graph will find the exact MIPS of a query if the
graph is the Delaunay graph for inner product. Neverthe-
less, the ip-NSW graph is only an approximation of the De-
launay graph, which contains much more edges than the
ip-NSW graph. It is not clear how accurately the ip-NSW
graph approximates the Delaunay graph and how the qual-
ity of the approximation affects the performance of ip-NSW.
Moreover, their theory does not provide insights on how to
improve the performance of ip-NSW. For proximity graph
based similarity search algorithms, a rigorous theoretical
justification is usually difficult due to the complexity of real
datasets. In this case, an intuitive explanation is helpful if it
leads to a better understanding of the algorithm and provides
insights for performance improvements.

Contributions. We make three main contributions in this
paper. Firstly, we identify an important property of the MIPS
problem — strong norm bias, which means large norm items
are much more likely to be the result of MIPS. Although it
is common sense that MIPS is biased towards large norm
items, the interesting thing is the intensity of the norm bias
we observed. In the four datasets we experimented, items
ranking top 5% in norm occupy at least 87.5% and as high
as 100% of the top-10 MIPS result. We also found that a
skewed norm distribution, in which some items have much
larger norm than others, is not a must for the strong norm
bias to appear, and the large cardinality of modern datasets
is also an important reason behind the strong norm bias.

Secondly, we explain the excellent performance of ip-
NSW as matching the norm bias of the MIPS problem.
We found that items with large norm have much higher in-
degree than the average in the proximity graph built by ip-
NSW and a graph walk spends a dominant portion of its
computation on these items. Therefore, ip-NSW performs
well for MIPS because it effectively avoids unnecessary
computation on small-norm items, which are unlikely to be
the results of MIPS.

Thirdly and most importantly, we propose the ip-NSW+
algorithm, which significantly improves the performance of
ip-NSW. We found that the norm bias in ip-NSW can harm
the performance of MIPS by spending computation on many
large norm items that do not have a good inner product with
the query. To tackle this problem, we introduce an additional
angular proximity graph in ip-NSW+ and utilize the fact that
items pointing to similar direction are likely to share similar
MIPS neighbors. By retrieving the MIPS neighbors of the
angular neighbors of the query, ip-NSW+ avoids computa-
tion on both small norm items and large norm items that do
not have a good inner product with the query. To our knowl-
edge, ip-NSW+ is the first similarity search algorithm that
uses two proximity graphs constructed from different sim-
ilarity functions. Experimental results show that ip-NSW+
not only significantly outperforms ip-NSW but also provides
more robust performance under different data distributions.

140

Table 1: Dataset statistics

DATASET # ITEMS # DIMENSIONS
YAHOO!MUSIC 136,736 300
WORDVECTOR 1,000,000 300

IMAGENET 2,340,373 150

TINY5M 5,000,000 384

2 Norm Bias in MIPS

In this section, we show that there exists strong norm bias
in the MIPS problem. We also argue that large dataset cardi-
nality also contributes to the norm bias.

To find out to what extent norm affects an item’s chance of
being the result of MIPS, we conducted the following exper-
iment. We used four datasets, i.e., Yahoo!Music, WordVec-
tor, ImageNet and Tiny5M. Some statistics of the datasets
can be found in Table 1 and more details are given in Sec-
tion 5. For each dataset, we found the exact top-10 MIPS 2
result of 1,000 randomly selected queries using linear scan,
which gave us a result set containing 10,000 items (dupli-
cate items exist as an item can be in the results of multiple
queries). We also partitioned the items into groups accord-
ing to their norm, e.g., items ranking top 5% in norm and
items ranking top 20%-25% in norm. Finally, for items in
each norm group, we calculated the percentage they occupy
in the result set, which is plotted in Figure 1.

Figure 1 shows that items with large norm are much more
likely to be the result of MIPS. Specifically, items ranking
top 5% in norm take up 89.5%, 87.5%, 93.1% and 100%
in the ground truth top-10 MIPS results for Yahoo!Music,
WordVector, ImageNet and Tiny5M, respectively. One may
conjecture that the norm bias is caused by skewed norm dis-
tribution, in which the top ranking items have much larger
norm than the others. We plot the norm distribution of the
datasets in Figure 2 and it shows that this conjecture does
not hold for Yahoo!Music and Tiny5M, in which most items
have a norm close to the maximum. In fact, the 95% per-
centile® of the norm distribution is only 1.16 times of the
median norm for Yahoo!Music (1.37 for TinySM). Theo-
rem 1 also shows that skewed norm distribution alone is not
enough to explain the strong norm bias we observed.

Theorem 1. For two independent random vectors x and y
in RY, the entries of x are independent and x; ~ N (0, a)
fori=1,2,--- dwith o > 1, the entries of y are also in-
dependent and y; ~N(0,1) fori=1,2,--- ,d. For a query
q € RY we have PlgTz > qTy | qTa > 0,qTy > 0] =
a2 a 2

\/7?27f0+00 e 2 [o e~z dbda.

The proof can be found in the supplementary material *.
Intuitively, Theorem 1 quantifies how likely larger norm

2Choosing top-10 MIPS is not arbitrary as it is widely adopted
in related works.

*We define 7;, the 1% percentile of the norm distribution, as

_ HeeX. |zl <n}]
t= L x 100.

“See https://arxiv.org/pdf/1909.13459.pdf for the supplemen-
tary material

o
o

WordVector

o
=)

Yahoo!Music

o

o
o
o

o
S

Percentage
°
=

Percentage

°
N
o
N

0.0

o
=)

0-5% 5-10% 10-15% 15-20% 20-25% 25-100%

Norm Ranking Norm Ranking

Figure 1:

0-5% 5-10% 10-15% 15-20% 20-25% 25-100%

o o
o o

I

Percentage
S

o
N

0.0

=
=)

ImageNet Tiny5M

Percentage
I o o
B (=) =2

o
)

o
o

0-5% 5-10% 10-15% 15'20:% 20-25% 25-100%
Norm Ranking

0-5% 5-15% 15-20% 20-25% 25-100%

Norm Ranking

The percentage that items in each norm group occupy in the result set

12K 350K] 350K
Yahoo!Music| ImageNet
104 WordVector | 300K 9 300K
> >.250K >.250K
2 & 2 2
3 200k & 200K
o oK = >
S T 150k 150K
T 4K i frs
= 100K] 100K
2K 50K 50K
075304 05 06 07 08 09 10 00 02 04 06 08 10 0 02 04 06 08 10 0
Norm Norm Norm

Figure 2: Norm distributions (maximum norm normalized to 1)

o
3

=g
>

Probability
8
Top5% Percentage

o
o
a

S
o

100% 1%

2 3 4 5 6 7 8 9

25% 10%
o Sampling Rate

(a) Norm bias vs. « (b) Norm bias vs. candinality

Figure 3: Analysis of the norm bias

will result in larger inner product. As E[||x]|?] = ad and
E[||ly||?] = d, the norm of x is roughly /& times of y. We
constrain the inner products to be non-negative because neg-
ative inner product is not interesting for many practical ap-
plications such as recommendation. Plg Tz > ¢Ty | ¢Ta >
0,¢Ty > 0] is a function of « and we plot its curve in Fig-
ure 3a using numerical integration. The results show that
larger norm only brings a modest probability (comparing
with 0.5) of having larger inner product. For example, the
probability of having larger inner product is only 0.56 with
o =1.35. Recall that the 95% percentile norm is 1.16 times
of the median for Yahoo!Music and v/1.35 ~ 1.16. How-
ever, the observed norm bias (items ranking top 5% in norm
take up 89.5% of the top-10 MIPS result for Yahoo!Music)
is much stronger than that is predicted by the norm distri-
bution and this is also true for WordVector, ImageNet and
Tiny5SM.

We find that large dataset cardinality also contributes to
the norm bias. Consider an item x with modest norm and
there are m items having larger norm than z in the dataset.
Item z only has a probability of p = [, p; to be the MIPS
of a query (if we assume all items are independent), in which
pi = PlgTx > qTz" | qTz > 0,qT2° > 0] and 2° is the

141

¢-th item that has larger norm than x. As p; < 0.5 and m is
large for large datasets, the probability p is very small. This
explanation suggests that the norm bias is stronger for larger
datasets even if the norm distribution is the same. To vali-
date, we uniformly sample the ImageNet dataset and plot the
percentage that items ranking top 5% in norm occupy in the
top-10 MIPS result in Figure 3b. Note that uniform sampling
ensures that the shape of the norm distribution is the same
across different sampling rate but a lower sampling rate re-
sults in smaller dataset cardinality. The results show that the
top norm items take up a greater portion of the MIPS results
under larger dataset cardinality, which validates our analy-
sis. Our explanation justifies the extremely strong norm bias
observed on the TinySM dataset even if its norm distribu-
tion is not skewed. Moreover, this explanation also implies
that strong norm bias may be a universal phenomenon for
modern datasets as they usually have large cardinality.

3 Understanding the Performance of ip-NSW

In this section, we briefly introduce the ip-NSW algorithm
and show that ip-NSW has excellent performance because it
matches the strong norm bias of the MIPS problem.

3.1 NSW

The query processing and index construction procedures of
NSW are shown in Algorithm 1 and Algorithm 2, respec-
tively. In Algorithm 1, a graph walk for a similarity search
query ¢ starts at an entry vertex vg (chosen randomly or
deterministically) and keeps probing the neighbors of the
unchecked vertex that is most similar to ¢ in the candidate
pool C. The size of the candidate pool, [, controls the quality
of the search results and the graph walk is more likely to get
stuck at local optimum under small [3.

SA graph walk with [= 1 is usually called greedy search.

For index construction, NSW does not require each item
to connect to its exact top-M neighbors in the dataset. Items
are inserted sequentially into the graph in Algorithm 2 and
Algorithm 1 is used to find the approximate top-M neigh-
bors for an item in the current graph. Therefore, construct-
ing NSW is much more efficient than constructing an ex-
act k-nearest neighbor graph (knn graph). ip-NSW builds
and searches the graph using inner product s(z,y) = 2"y
as the similarity function. We omit some details in Algo-
rithm 1 and Algorithm 2 for conciseness, for example, ip-
NSW actually adopts multiple hierarchical layers of NSW
(known as HNSW) to improve performance. Readers may
refer to (Malkov and Yashunin 2018) for more details.

Algorithm 1 NSW: Query Processing via Graph Walk (Fu
et al. 2019)

1: Input: graph G, similarity function s(x,y), query g,
entry vertex vy, candidate pool size [
2: Initialize ¢ = 0, candidate pool C = () and C.add(vg)
while < [do
Set vy, as the first unchecked vertex in C and set 7
as its index in C, mark v, as checked
for every neighbour v of vy, in G5 do
If v is not checked, calculate s(g, v) and C.add(v)
Sort C in descending order of s(g,v)
If C.size()>1, execute C.resize(l) by removing items
with small s(q, v)
9: return the top k vertexes in C

W

PR

Algorithm 2 NSW: Graph Construction (Morozov and
Babenko 2018)

1: Input: dataset X, similarity function s(x, y), maximum
vertex degree M

2: Initialize G5 = ()

3: foreach z in X do

4: Use Algorithm 1 to find M items most similar to x
w.r.t. s(x,y) in the current graph G

5. Add x to G4 by connecting it to the M items using
directed edges

6: return G,

3.2 Norm Bias in ip-NSW

We built ip-NSW graphs for the four datasets in Table 1 and
plot the average in-degree for items in each norm group in
Figure 4. The results show that the large norm items have
much higher in-degrees than the average. To be more spe-
cific, the average in-degrees for items ranking top 5% in
norm are 3.2, 8.0, 11.1 and 19.8 times of the dataset aver-
age for Yahoo!Music, WordVector, ImageNet and Tiny5M,
respectively. This is not surprising as the large norm items
are more likely to have large inner product with other items
as shown in Section 2. The insertion based graph construc-
tion procedure of ip-NSW may also contribute to the skewed
in-degree distribution. A new item builds its connections by

142

checking the neighbors of existing items and the initially in-
serted items are likely to connect to the large norm items,
which means that graph construction tend to amplify the
in-degree skewness. Having large in-degrees means that the
large norm items are well-connected in the ip-NSW graph,
which makes it more likely for a graph walk to reach them.

To better understand a walk in the ip-NSW graph, we con-
ducted MIPS using ip-NSW for 1,000 randomly selected
queries. We recorded the id of the item when inner prod-
uct was computed, and plot the percentage of inner prod-
uct computation conducted on items in each norm group in
Figure 5. The results show that most of the inner product
computation was conducted on the large norm items. For
Yahoo!Music, WordVector, ImageNet and Tiny5M, items
ranking top 5% in norm take up 80.7%, 93.1%, 88.6% and
100% of the inner product computation. Compared with the
in-degree distributions in Figure 4, the computation distri-
butions are even more biased towards the large norm items.
This suggests that a walk in the ip-NSW graph reaches the
large norm items very quickly and keeps moving among
these items. With these results, we can conclude that ip-
NSW is also biased towards the large norm items, in terms
of both connectivity and computation. The norm bias of
ip-NSW allows it to effectively avoid unnecessary compu-
tation on small norm items that are unlikely to be the re-
sult of MIPS. Therefore, ip-NSW has excellent performance
mainly because it matches the strong norm bias of the MIPS
problem.

4 The ip-NSW+ Algorithm

In this section, we present the ip-NSW+ algorithm, which
is motivated by an analysis indicating that the norm bias of
ip-NSW can lead to inefficient MIPS.

4.1 Motivation

We have shown in Section 3 that ip-NSW has a strong norm
bias, which helps to avoid computation on small norm items.
However, this norm bias can result in inefficient MIPS and
we illustrate this point with an example in Figure 6a, in
which y is an MIPS neighbor of « and z is an MIPS neighbor
of y. As y and z are the MIPS neighbors of some item, they
usually have large norm due to the norm bias of the MIPS
problems but the angles (¢ and w) are not necessarily small,
especially when the norm of y and z are very large. Suppose
that z is the query and the graph walk is now at y, in the next
step, the graph walk will compute 2 " z but z may not have a
good inner product with x due to the large angle (i.e., ¢ +w)
between them. This example shows that ip-NSW may spend
computation on many large norm items that do not have a
good inner product with the query because the large norm
items are well connected in the ip-NSW graph.

The problem of ip-NSW is caused by the rule it adopts —
the MIPS neighbor of an MIPS neighbor is also likely to be
an MIPS neighbor, which is not necessarily true. To improve
ip-NSW, we need a new rule that satisfies two requirements.
First, it should match the norm bias of the MIPS problems
and avoid computation on small norm items, which ip-NSW
does well. Second, it should also avoid computation on large

[
=}

20.0

25 Yahoo!Music WordVector| 2> ImageNet 17 Tiny5M
$ 20 §40 20 $15.0
2 2 2 2
$1s gao g1s g2
o (s} [a] 0 10.0
910 920 o10 o 75
< < < < 50
5 10 5
2.5
0 0-5% 5-10% 10-15% 15-20% 20-25% 25-100% o 0-5% 5-10% 10-15% 15-20% 20-25% 25-100% o 0-5% 5-10% 10-15% 15-20% 20-25% 25-100% 0.0 0-5% 5-10% 10-15% 15-20% 20-25%25-100%
Norm Ranking Norm Ranking Norm Ranking Norm Ranking
Figure 4: The average in-degree distribution for items in each norm group
0.8) 1.0
0.7 Yahoo!Music s WordVector 0.8 ImageNet Tiny5M
©0.6 o ° 008
o [=)} 0.6 =
gos goe g Sos
c c c c
oo Soa Soa §04
0.3 (U [@
o a a o
0.2 02 02 02
0.1
0.0 0-5% 5-10% 10-15% 15-20% 20-25% 25-100% 0.0 0-5% 5-10% 10-15% 15-20% 20-25% 25-100% 0.0 0-5% 5-10% 10-15% 15-20% 20-25% 25-100% 0.0 0-5% 5-10% 10-15% 15-20% 20-25% 25-100%
Norm Ranking Norm Ranking Norm Ranking Norm Ranking
Figure 5: The percentage of inner product computation conducted on items in each norm group
norm items that do not have a good inner product with the 7
. . . . y r
query, which is the main problem of ip-NSW. [.
We propose an alternative rule — the MIPS neighbor of W’ 7
an angular neighbor is likely to be an MIPS neighbor, which /
. . . . o
satisfies the two requirements. We define the angular simi- w
larity between two vector x and y as s,(z,y) = W and Vi y .
say that y is an angular neighbor of x if s,(x,y) is large. @
Specifically, this rule says that for a query « and its angular X X
neighbor y in a dataset, if z is an MIPS neighbor of y in the ‘ >) >
dataset, then x " 2 is likely to be large. We provide an illus- (a) MIPS neighbour (b) Angular neighbour

tration of this rule in Figure 6b. In the figure, z is an MIPS
neighbor of y, thus z usually has large norm, meeting the
first requirement. The angle ¢ + w is usually not too large
as y is an angular neighbor of = and ¢ is small, and thus
x "z is likely to be large, meeting the second requirement.
Theorem 2 formally establishes that an MIPS neighbor of
an angular neighbor is a good MIPS neighbor with an as-

sumption about z.

Theorem 2. For two vectors x and y in R? having an
Hjl\Tﬁ’ a third vector z € RY
and the entries of z are independent and z; ~ N (0,1) for
i=1,2,---,d giveny' z =, we have x " = | ylz=r~

N (2L iz j2(1 — 62)).

vl >
The proof can be found in the supplementary material.
If = is a query and y is the angular neighbor of z in the

angular similarity § =

dataset, which means that 8 = HIIIITW is large. If y and
z are both in the dataset and z is an MIPS neighbor of ,
we have y 'z = p||y|\||z|| in which p is large Given these
conditions and using Theorem 2, we have 272 | y'z =
pllyllll=ll ~ (pﬁ\lxllllzll J][2(1 ~ 52)). which means the
inner product between x and z follows a Gaussian distribu-
tion. The mean of the distribution (pg||x|||z||) is large as
both p and 3 are large. Moreover, the variance of the distri-
bution (||z||?(1 — 3?)) is small as /3 is large. Therefore, there

143

Figure 6: Example of MIPS neighbor and angular neighbor

is a good chance that 2" z is a large.

Theorem 2 is also supported by empirical results from the
following experiment. We conducted search for 1,000 ran-
domly selected queries on Yahoo!Music and ImageNet. For
each query, we find its ground truth top-10 angular neigh-
bors in the dataset and for each of these angular neigh-
bors, we find its ground truth top-10 MIPS neighbors in the
dataset. This procedure gives us a result set containing 100
candidates (with possible duplication) for each query, which
can be used to calculate the recall for top-10 MIPS. The av-
erage recalls were 82.67% and 97.22% for Yahoo!Music and
ImageNet, respectively, which suggests that aggregating the
MIPS neighbors of the angular neighbors can obtain a good
recall for MIPS. In contrast, aggregating the MIPS neigh-
bors of the ground-truth top-10 MIPS neighbors of a query
only provide a recall of 67.21% for ImageNet.

4.2 ip-NSW+

Based on the new rule presented in Section 4.1, we present
the query processing procedure of ip-NSW+ in Algorithm 3.

To find the angular neighbors of the query, ip-NSW+
searches an angular NSW graph 4 because NSW provides

Algorithm 3 ip-NSW+: Query Processing via Graph Walk

1: Input: an angular NSW graph A,, an inner product
NSW graph G, query g, starting vertex vg in Ag
2: Conduct search on A using Algorithm 1 to find the top-
k' angular neighbors of ¢
for each item v in the top-k’ angular neighbors do
for each edge (v, u) in the ip-NSW graph G, do
C.add(u)
Conduct search on G, with C using Algorithm 1 to find
the top-k inner product neighbors of ¢

AN A

excellent performance on many similarity search problems.
Instead of finding the exact inner product neighbors of the
angular search results, ip-NSW+ uses their neighbors in the
inner product graph G, as an approximation. After the ini-
tialization (line 2-5 in Algorithm 3), the candidate queue C
already contains a good portion of the MIPS result for the
query and the time spent to find them by graph walk on ip-
NSW can be saved. To further refine the result in C, a stan-
dard graph walk on the inner product graph G, is conducted
in line 6 of Algorithm 3.

For index construction, ip-NSW+ builds A and G, si-
multaneously and the items are inserted sequentially (in a
random order) into the two graphs. For an item v, it is first
inserted into A, with Algorithm 2 using angular similarity
as the similarity function. Then, v is inserted into G5 and
the neighbors of v in G, are found using ip-NSW+ (Algo-
rithm 3) instead of ip-NSW (Algorithm 1). Empirically, we
found that this provides more accurate inner product neigh-
bors for the items and hence better search performance. One
subtlety of ip-NSW+ is controlling the time spent on angular
neighbor search (ANS). Spending too much time for ANS
means only a short time is left for result refinement by a
graph walk on the inner product graph G, which harms per-
formance. As the time consumption of a graph walk in NSW
is controlled by the maximum degree M (the complexity of
each step) and the candidate pool size [(how many steps will
be taken), we use smaller M and [for the angular graph A,
than for the inner product graph Gs. We show in Section 5
that ip-NSW+ using fixed M and [without dataset-specific
tuning already performs significantly better than ip-NSW.

The index construction complexity of ip-NSW+ is ap-
proximately twice of ip-NSW as ip-NSW+ constructs two
proximity graphs. The index size of ip-NSW+ is less than
twice of ip-NSW because we use small M for the angu-
lar graph A,. These additional complexities will not be a
big problem because the insertion-based graph construction
of NSW is efficient and the memory of a single machine
is sufficient for most datasets. However, ip-NSW+ provides
significantly better recall-time performance than ip-NSW
(see Section 5), which benefits many applications. Exist-
ing proximity-graph-based algorithms use a single proxim-
ity graph and the same similarity function is used for both
index construction and query processing. In contrast, ip-
NSW+ uses two proximity graphs constructed from differ-
ent similarity functions jointly, which is a new paradigm for
proximity-graph-based similarity search and may inspire fu-

144

ture research.

S Experimental Results

Datasets and settings. We used the four datasets listed
in Table 1. Yahoo!Music is obtained by conducting ALS-
based matrix factorization (Yun et al. 2013) on the user-
item ratings in the Yahoo!Music dataset. We used the item
embeddings as dataset items and the user embeddings as
queries. WordVector is sampled from the word2vec embed-
dings released in (Mikolov et al. 2013), and ImageNet con-
tains the visual descriptors of the ImageNet images (Deng
et al. 2009). Tiny5M is sampled from the Tiny80M dataset
and contains visual descriptors of the Tiny images. Unless
otherwise stated, we test the performance of top-10 MIPS
and use recall as the performance metric. For top-k MIPS,
an algorithm only returns the & best items it finds. Denote
the results an algorithm returns for a query as S’ and the
ground truth top-k MIPS of the query as S, recall is defined
as r = |S' N'S|/|S|. We report the average recall of 10,000
randomly selected queries. We used M = 10 and [= 10 for
the angular graph A, in ip-NSW+ in all experiments and the
parameter configurations of G in ip-NSW+ is the same as
the inner product graph in ip-NSW. The experiments were
conducted on a machine with Intel Xeon E5-2620 CPU and
48 GB memory in a single-thread mode. For ip-NSW+, the
reported time includes searching both the angular graph A,
and the inner product graph G;. We implemented ip-NSW+
by modifying the code of ip-NSW and did not introduce ex-
tra optimizations to make ip-NSW-+ run faster 6.

Direct comparison. We report the recall-time perfor-
mance of ip-NSW and ip-NSW+ in Figure 7. We also tested
Simple-LSH (Neyshabur and Srebro 2015), the state-of-the-
art LSH-based method for MIPS. We used the implementa-
tion provided in (Yu et al. 2017) and tuned the parameters
following (Morozov and Babenko 2018). However, the per-
formance of Simple-LSH is significantly poorer and plotting
its recall-time curve in Figure 7 will make the figure hard to
read, and thus we report its curve in the supplementary ma-
terial. As an example, Simple-LSH takes 598ms to reach a
recall of 0.732 for WordVector and 1035ms to reach a recall
of 0.735 for ImageNet. This is actually worse than the ex-
act MIPS method, FEXIPRO (Li et al. 2017), which uses
multiple pruning rules to speed up linear scan, and takes
20.9ms, 196.3ms and 179.5ms on average for each query
on Yahoo!Music, WordVector and ImageNet, respectively ’.
FEXIPRO, however, is at least an order of magnitude slower
than ip-NSW and ip-NSW+, as shown in Figure 7, which
confirms the results in (Morozov and Babenko 2018) that
ip-NSW outperforms existing algorithms. Importantly, ip-
NSW+ is able to further make significant improvements over
ip-NSW. For example, ip-NSW+ reaches a recall of 0.9 at a
speed that is 11 times faster than ip-NSW (0.5 ms vs 5.5
ms) on the ImageNet dataset. Even on the Tiny5M dataset,
which has the strongest norm bias and items ranking top 5%

8See https://github.com/jerry-liujie/ip-nsw/tree/GraphMIPS for
all experiment code and data.

"We did not provide the performance for FEXIPRO on Tiny5M
as it goes out of memory.

1.00 1.00 10 1.00
Ak
0.99) st 0.98 [0.9 0.99) .
. . a— .
- 0.9 et 08 . 0.98 \ '
= 0.98 & Yahoo!Music| & 094 = > WordVector| = . ImageNet | =097 . Tiny5M
o ; o 0. o W 8] ;
@ e R 07 : @ £
097 oo * 4 . @ 0.96
06 * 0.95)
0.96 0.90
) = ip-NSW+ - ip-NSW+] - ip-NSW+ 0.94] = ip-NSW+
a-ip-NSW ossy ¢ 4 ip-NSW 05 H = ip-NSW i 4 ip-NSW
0.95 093 !
02 04 06_08 10 12 14 16 1 2 3 7 5 0 T 2 3 3 5 T 2 3 7 5
Time (ms) Time (ms) Time (ms) Time (ms)

Figure 7: Recall-time performance comparison between ip-NSW and ip-NSW+

1.00]
0.95]

1.00]

0.95] I
e

0.90, 0.90 f I__ R
— 0.85] _ 0.85] s .__.i“'
E Foso | 21
s 0.80) by g 0.80) P
0.75 -: - ip-NSW+ Top5 0.75 ‘k:
0.70) H = ip-NSW Top5 0.70| i = ip-NSW+ ‘= ip-NSW ImageNet
0.65 = ip-NSW-+ 06 = -+ ip-NSW+ Top20 0.65 * -+-ip-NSW+ -4~ ip-NSW ImageNet A
i 4-ip-NSW i - ip-NSW Top20 0.60 , -*-ip-NSW+ -e-ip-NSW ImageNet B
0.60! . E
0 5000 10000 15000 20000 0 5 10 15 20 0 2 8 10

of Computations

Time

4 6
(ms) Time (ms)

(a) # computation vs. recall

(b) Different values of k

(c) ImageNet Variants

Figure 8: Additional experimental results on the ImageNet dataset (best viewed in color)

in norm occupy 100% of top-10 MIPS result, ip-NSW+ still
outperforms ip-NSW.

More experiments. We conducted this set of experiments
on the ImageNet dataset to further examine the performance
of ip-NSW+. In Figure 8a, we compare the recall of ip-NSW
and ip-NSW+ with respect to the number of similarity func-
tion evaluations since similarity function evaluation is usu-
ally the most time-consuming part of an algorithm. We count
as one similarity function evaluation when ip-NSW com-
putes inner product with one item and ip-NSW+ computes
angular similarity or inner product with one item. The results
show that ip-NSW+ spends much less computation than ip-
NSW for the same recall, suggesting the performance gain
of ip-NSW+ indeed comes from a better algorithm design.
In Figure 8b, we compare ip-NSW and ip-NSW+ for top-5
MIPS and top-20 MIPS, which shows that ip-NSW+ consis-
tently outperforms ip-NSW for different k.

One surprising phenomenon is that ip-NSW+ provides
more robust performance than ip-NSW under different
transformations of the norm distribution. We created two
variants of the ImageNet dataset, i.e., ImageNet-A and
ImageNet-B, by scaling the items without changing their di-
rections. ImageNet-A and ImageNet-B add 0.18 and 0.36
to the Euclidean norm of each item, respectively. The norm
distributions of the transformed datasets can be found in the
supplementary material. We define the tailing factor (TF) of
a dataset as the ratio between the 95% percentile of the norm
distribution and the median norm and say that the norm dis-
tribution is more skewed when the TF is large. The TFs of
ImageNet, ImageNet-A and ImageNet-B are 2.05, 1.55 and
1.37, respectively. We report the performance of ip-NSW
and ip-NSW+ on the three datasets in Figure 8c. The re-
sults show that ip-NSW+ has almost identical performance
on the three ImageNet variants and consistently outperforms

145

—-L=10
~+L=20
+1=100

0 1

5 6 0 1 2_ 3 3 5 3
Time (ms)

(b) Changing [with M =10

3 3
Time (ms)

(a) Changing M with [=10

Figure 9: Performance under different M and [on ImageNet

ip-NSW. In contrast, the performance of ip-NSW varies a
lot, the best performance is achieved on ImageNet-B (with
the smallest TF) while the worst performance is observed on
ImageNet (with the largest TF). We tried more datasets and
another method to scale the items in the supplementary ma-
terial and the results show that ip-NSW+ consistently pro-
vides more robust performance than ip-NSW. Moreover, ip-
NSW usually performs better when the TF is small.

We try to explain this phenomenon as follows. The norm
bias in ip-NSW is more severe when the norm distribution is
more skewed. Therefore, ip-NSW will compute inner prod-
uct with more large norm items that do not have a good inner
product with the query and hence its performance worsens.
In contrast, ip-NSW+ collects the MIPS neighbors of the
angular neighbors and these neighbors are shown to have a
good inner product with the query in Theorem 2. The stable
performance of ip-NSW indicates that it effectively avoids
computing inner product with items having large norm but
not likely to be the results of MIPS.

We report the performance of ip-NSW+ when using dif-
ferent configurations of M and [for the angular graph A in

Figure 9. Both M and [control the time spent on searching
the angular neighbors, and setting a large value for them pro-
duces more accurate angular neighbors at the cost of using
more time. The results show that the performance gap be-
tween different configurations is small and hence ip-NSW+
is robust to the choice of M and /. The curves in Figure 9b
start at different time because the time spent on angular
neighbor search varies a lot under different [(but not the
case for M), and ip-NSW+ produces MIPS results only af-
ter switching to the inner product graph. The results also
show that using both too small values (e.g., M =1orl=1,
producing angular neighbors of poor quality) and too large
values (e.g., M =20 or [=100, spending too much time for
angular neighbor search) for the two parameters degrades
performance. Therefore, we recommend to use the defualt
setting with M =10 and [=10.

6 Conclusions

In this paper, we identified an interesting phenomenon for
the MIPS problem — norm bias, which means that large
norm items are much more likely to be the results of MIPS.
We showed that ip-NSW achieves excellent performance for
MIPS because it also has a strong norm bias, which means
that the large norm items have large in-degrees in the ip-
NSW graph and the majority of computation is conducted
on them. We also proposed the ip-NSW+ algorithm, which
avoids computation on large norm items that do not have
a good inner product with the query. Experimental results
show that ip-NSW+ significantly outperforms ip-NSW and
is more robust to different data distributions.

Acknowledgments. This work was supported by ITF
6904945, and GRF 14208318 & 14222816, and the National
Natural Science Foundation of China (NSFC) (Grant No.
61672552).

References

Abuzaid, F.; Sethi, G.; Bailis, P.; and Zaharia, M. 2019.
To index or not to index: Optimizing exact maximum inner
product search. In ICDE, 1250-1261.

Bachrach, Y.; Finkelstein, Y.; Gilad-Bachrach, R.; Katzir, L.;
Koenigstein, N.; Nice, N.; and Paquet, U. 2014. Speeding
up the xbox recommender system using a euclidean transfor-
mation for inner-product spaces. In Recsys, 257-264. ACM.

Chandar, S.; Ahn, S.; Larochelle, H.; Vincent, P.; Tesauro,
G.; and Bengio, Y. 2016. Hierarchical memory networks.
arXiv preprint arXiv:1605.07427.

Deng, J.; Dong, W.; Socher, R.; Li, L. J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In CVPR, 248-255.

Felzenszwalb, P. F.; Girshick, R. B.; McAllester, D. A.; and

Ramanan, D. 2010. Object detection with discriminatively
trained part-based models. IEEE TPAMI 32:1627-1645.

Fu, C.; Xiang, C.; Wang, C.; and Cai, D. 2019. Fast approxi-
mate nearest neighbor search with the navigating spreading-
out graph. VLDB 12(5):461-474.

146

Hajebi, K.; Abbasi-Yadkori, Y.; Shahbazi, H.; and Zhang,
H. 2011. Fast approximate nearest-neighbor search with
k-nearest neighbor graph. In IJCAI, 1312-1317.

Harwood, B., and Drummond, T. 2016. Fanng: Fast approx-
imate nearest neighbour graphs. In CVPR, 5713-5722.

Jun, K.-S.; Bhargava, A.; Nowak, R.; and Willett, R. 2017.
Scalable generalized linear bandits: Online computation and
hashing. In NeurIPS, 99—-1009.

Koren, Y.; Bell, R. M.; and Volinsky, C. 2009. Matrix fac-
torization techniques for recommender systems. /EEE Com-
puter 42:30-37.

Li, H.; Chan, T. N.; Yiu, M. L.; and Mamoulis, N. 2017.
FEXIPRO: fast and exact inner product retrieval in recom-
mender systems. In SIGMOD, 835-850.

Li, J.; Yan, X.; Zhang, J.; Xu, A.; Cheng, J.; Liu, J.; Ng,
K. K.;and Cheng, T. C. 2018. A general and efficient query-
ing method for learning to hash. In SIGMOD, 1333-1347.

Malkov, Y. A., and Yashunin, D. A. 2018. Efficient and ro-
bust approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE TPAMI.

Malkov, Y.; Ponomarenko, A.; Logvinov, A.; and Krylov,
V. 2014. Approximate nearest neighbor algorithm based on
navigable small world graphs. Information Systems 45:61—
68.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NeurIPS, 3111-3119.

Morozov, S., and Babenko, A. 2018. Non-metric similar-
ity graphs for maximum inner product search. In NeurlPS,
4726-4735.

Neyshabur, B., and Srebro, N. 2015. On symmetric and
asymmetric Ishs for inner product search. In ICML, 1926—
1934.

Ram, P, and Gray, A. G. 2012. Maximum inner-product
search using cone trees. In SIGKDD, 931-9309.

Shrivastava, A., and Li, P. 2014. Asymmetric LSH (ALSH)
for sublinear time maximum inner product search (MIPS).
In NeurIPS, 2321-2329.

Teflioudi, C.; Gemulla, R.; and Mykytiuk, O. 2015. LEMP:
fast retrieval of large entries in a matrix product. In SIG-
MOD, 107-122.

Wang, J.; Wang, J.; Zeng, G.; Gan, R.; Li, S.; and Guo, B.
2013. Fast neighborhood graph search using cartesian con-
catenation. In /CCV, 2128-2135.

Yan, X.; Li, J.; Dai, X.; Chen, H.; and Cheng, J. 2018.
Norm-ranging LSH for maximum inner product search. In
NeurIPS, 2956-2965.

Yu, H.-F.; Hsieh, C.-J.; Lei, Q.; and Dhillon, I. S. 2017.
A greedy approach for budgeted maximum inner product
search. In NeurIPS, 5453-5462.

Yun, H.; Yu, H. F; Hsieh, C.; Vishwanathan, S. V. N.; and
Dhillon, I. S. 2013. NOMAD: non-locking, stochastic multi-
machine algorithm for asynchronous and decentralized ma-
trix completion. CoRR.

