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Abstract

Transfer learning between different language pairs has shown
its effectiveness for Neural Machine Translation (NMT) in
low-resource scenario. However, existing transfer methods
involving a common target language are far from success in
the extreme scenario of zero-shot translation, due to the lan-
guage space mismatch problem between transferor (the par-
ent model) and transferee (the child model) on the source
side. To address this challenge, we propose an effective trans-
fer learning approach based on cross-lingual pre-training. Our
key idea is to make all source languages share the same fea-
ture space and thus enable a smooth transition for zero-shot
translation. To this end, we introduce one monolingual pre-
training method and two bilingual pre-training methods to
obtain a universal encoder for different languages. Once the
universal encoder is constructed, the parent model built on
such encoder is trained with large-scale annotated data and
then directly applied in zero-shot translation scenario. Exper-
iments on two public datasets show that our approach signif-
icantly outperforms strong pivot-based baseline and various
multilingual NMT approaches.

Introduction

Although Neural Machine Translation (NMT) has domi-
nated recent research on translation tasks (Wu et al. 2016;
Vaswani et al. 2017; Hassan et al. 2018), NMT heavily relies
on large-scale parallel data, resulting in poor performance
on low-resource or zero-resource language pairs (Koehn
and Knowles 2017). Translation between these low-resource
languages (e.g., Arabic→Spanish) is usually accomplished
with pivoting through a rich-resource language (such as En-
glish), i.e., Arabic (source) sentence is translated to En-
glish (pivot) first which is later translated to Spanish (tar-
get) (Kauers et al. 2002; de Gispert and Mariño 2006).
However, the pivot-based method requires doubled decoding
time and suffers from the propagation of translation errors.

One common alternative to avoid pivoting in NMT is
transfer learning (Zoph et al. 2016; Nguyen and Chiang
2017; Kocmi and Bojar 2018; Kim et al. 2019) which lever-
ages a high-resource pivot→target model (parent) to ini-
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Figure 1: The circle and triangle dots represent source sen-
tences in different language l1 and l2, and the square dots
means target sentences in language l3. A sample of transla-
tion pairs is connected by the dashed line. We would like to
force each of the translation pairs has the same latent rep-
resentation as the right part of the figure so as to transfer
l1 → l3 model directly to l2 → l3 model.

tialize a low-resource source→target model (child) that is
further optimized with a small amount of available paral-
lel data. Although this approach has achieved success in
some low-resource language pairs, it still performs very
poorly in extremely low-resource or zero-resource transla-
tion scenario. Specifically, Kocmi and Bojar (2018) reports
that without any child model training data, the performance
of the parent model on the child test set is miserable.

In this work, we argue that the language space mis-
match problem, also named domain shift problem (Fu et al.
2015), brings about the zero-shot translation failure in trans-
fer learning. It is because transfer learning has no explicit
training process to guarantee that the source and pivot lan-
guages share the same feature distributions, causing that the
child model inherited from the parent model fails in such
a situation. For instance, as illustrated in the left of Fig-
ure 1, the points of the sentence pair with the same seman-
tics are not overlapping in source space, resulting in that
the shared decoder will generate different translations de-
noted by different points in target space. Actually, transfer
learning for NMT can be viewed as a multi-domain problem
where each source language forms a new domain. Minimiz-
ing the discrepancy between the feature distributions of dif-
ferent source languages, i.e., different domains, will ensure
the smooth transition between the parent and child models,
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as shown in the right of Figure 1. One way to achieve this
goal is the fine-tuning technique, which forces the model to
forget the specific knowledge from parent data and learn new
features from child data. However, the domain shift problem
still exists, and the demand of parallel child data for fine-
tuning heavily hinders transfer learning for NMT towards
the zero-resource setting.

In this paper, we explore the transfer learning in
a common zero-shot scenario where there are a lot
of source↔pivot and pivot↔target parallel data but no
source↔target parallel data. In this scenario, we propose
a simple but effective transfer approach, the key idea
of which is to relieve the burden of the domain shift
problem by means of cross-lingual pre-training. To this
end, we firstly investigate the performance of two exist-
ing cross-lingual pre-training methods proposed by Lam-
ple and Conneau (2019) in zero-shot translation scenario.
Besides, a novel pre-training method called BRidge Lan-
guage Modeling (BRLM) is designed to make full use of the
source↔pivot bilingual data to obtain a universal encoder
for different languages. Once the universal encoder is con-
structed, we only need to train the pivot→target model and
then test this model in source→target direction directly. The
main contributions of this paper are as follows:

• We propose a new transfer learning approach for NMT
which uses the cross-lingual language model pre-training
to enable a high performance on zero-shot translation.

• We propose a novel pre-training method called BRLM,
which can effectively alleviates the distance between dif-
ferent source language spaces.

• Our proposed approach significantly improves zero-shot
translation performance, consistently surpassing pivot-
ing and multilingual approaches. Meanwhile, the perfor-
mance on supervised translation direction remains the
same level or even better when using our method.

Related Work

In recent years, zero-shot translation in NMT has attracted
widespread attention in academic research. Existing meth-
ods are mainly divided into four categories: pivot-based
method, transfer learning, multilingual NMT, and unsuper-
vised NMT.

• Pivot-based Method is a common strategy to obtain a
source→target model by introducing a pivot language.
This approach is further divided into pivoting and pivot-
synthetic. While the former firstly translates a source lan-
guage into the pivot language which is later translated
to the target language (Kauers et al. 2002; de Gispert
and Mariño 2006; Utiyama and Isahara 2007), the lat-
ter trains a source→target model with pseudo data gener-
ated from source-pivot or pivot-target parallel data (Chen
et al. 2017; Zheng, Cheng, and Liu 2017). Although the
pivot-based methods can achieve not bad performance, it
always falls into a computation-expensive and parameter-
vast dilemma of quadratic growth in the number of source
languages, and suffers from the error propagation prob-
lem (Zhu et al. 2013).

• Transfer Learning is firstly introduced for NMT by
Zoph et al. (2016), which leverages a high-resource par-
ent model to initialize the low-resource child model. On
this basis, Nguyen and Chiang (2017) and Kocmi and
Bojar (2018) use shared vocabularies for source/target
language to improve transfer learning, while Kim, Gao,
and Ney (2019) relieve the vocabulary mismatch by
mainly using cross-lingual word embedding. Although
these methods are successful in the low-resource scene,
they have limited effects in zero-shot translation.

• Multilingual NMT (MNMT) enables training a single
model that supports translation from multiple source lan-
guages into multiple target languages, even those unseen
language pairs (Firat, Cho, and Bengio 2016; Firat et al.
2016; Johnson et al. 2016; Al-Shedivat and Parikh 2019;
Aharoni, Johnson, and Firat 2019). Aside from sim-
pler deployment, MNMT benefits from transfer learning
where low-resource language pairs are trained together
with high-resource ones. However, Gu et al. (2019) point
out that MNMT for zero-shot translation easily fails, and
is sensitive to the hyper-parameter setting. Also, MNMT
usually performs worse than the pivot-based method in
zero-shot translation setting (Arivazhagan et al. 2018).

• Unsupervised NMT (UNMT) considers a harder setting,
in which only large-scale monolingual corpora are avail-
able for training. Recently, many methods have been pro-
posed to improve the performance of UNMT, including
using denoising auto-encoder, statistic machine transla-
tion (SMT) and unsupervised pre-training (Artetxe et
al. 2017; Lample et al. 2018; Ren et al. 2019; Lample
and Conneau 2019). Since UNMT performs well between
similar languages (e.g., English-German translation), its
performance between distant languages is still far from
expectation.

Our proposed method belongs to the transfer learning,
but it is different from traditional transfer methods which
train a parent model as starting point. Before training a par-
ent model, our approach fully leverages cross-lingual pre-
training methods to make all source languages share the
same feature space and thus enables a smooth transition for
zero-shot translation.

Approach

In this section, we will present a cross-lingual pre-
training based transfer approach. This method is designed
for a common zero-shot scenario where there are a lot
of source↔pivot and pivot↔target bilingual data but no
source↔target parallel data, and the whole training process
can be summarized as follows step by step:

• Pre-train a universal encoder with source/pivot monolin-
gual or source↔pivot bilingual data.

• Train a pivot→target parent model built on the pre-trained
universal encoder with the available parallel data. Dur-
ing the training process, we freeze several layers of the
pre-trained universal encoder to avoid the degeneracy is-
sue (Howard and Ruder 2018).
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Figure 2: The overview of BRidge Language Modeling (BRLM). The BRLM extends MLM (Lample and Conneau 2019) to
pairs of parallel sentences and leverages explicit alignment information obtained by external aligner tool or additional attention
layer to encourage word representation alignment across different languages.

• Directly translate source sentences into target sentences
with the parent model, which benefits from the availabil-
ity of the universal encoder.

The key difficulty of this method is to ensure the intermedi-
ate representations of the universal encoder are language in-
variant. In the rest of this section, we first present two exist-
ing methods yet to be explored in zero-shot translation, and
then propose a straightforward but effective cross-lingual
pre-training method. In the end, we present the whole train-
ing and inference protocol for transfer.

Masked and Translation Language Model
Pretraining

Two existing cross-lingual pre-training methods, Masked
Language Modeling (MLM) and Translation Language
Modeling (TLM), have shown their effectiveness on XNLI
cross-lingual classification task (Lample and Conneau 2019;
Huang et al. 2019), but these methods have not been well
studied on cross-lingual generation tasks in zero-shot condi-
tion. We attempt to take advantage of the cross-lingual abil-
ity of the two methods for zero-shot translation.

Specifically, MLM adopts the Cloze objective of
BERT (Devlin et al. 2018) and predicts the masked words
that are randomly selected and replaced with [MASK] to-
ken on monolingual corpus. In practice, MLM takes dif-
ferent language monolingual corpora as input to find fea-
tures shared across different languages. With this method,
word pieces shared in all languages have been mapped into
a shared space, which makes the sentence representations

across different languages close (Pires, Schlinger, and Gar-
rette 2019).

Since MLM objective is unsupervised and only requires
monolingual data, TLM is designed to leverage parallel data
when it is available. Actually, TLM is a simple extension of
MLM, with the difference that TLM concatenates sentence
pair into a whole sentence, and then randomly masks words
in both the source and target sentences. In this way, the
model can either attend to surrounding words or to the trans-
lation sentence, implicitly encouraging the model to align
the source and target language representations. Note that al-
though each sentence pair is formed into one sentence, the
positions of the target sentence are reset to count form zero.

Bridge Language Model Pretraining

Aside from MLM and TLM, we propose BRidge Language
Modeling (BRLM) to further obtain word-level representa-
tion alignment between different languages. This method is
inspired by the assumption that if the feature spaces of dif-
ferent languages are aligned very well, the masked words
in the corrupted sentence can also be guessed by the con-
text of the correspondingly aligned words on the other side.
To achieve this goal, BRLM is designed to strengthen the
ability to infer words across languages based on alignment
information, instead of inferring words within monolingual
sentence as in MLM or within the pseudo sentence formed
by concatenating sentence pair as in TLM.

As illustrated in Figure 2, BRLM stacks shared encoder
over both side sentences separately. In particular, we design
two network structures for BRLM, which are divided into
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Hard Alignment (BRLM-HA) and Soft Alignment (BRLM-
SA) according to the way of generating the alignment infor-
mation. These two structures actually extend MLM into a
bilingual scenario, with the difference that BRLM leverages
external aligner tool or additional attention layer to explic-
itly introduce alignment information during model training.

• Hard Alignment (BRLM-HA). We first use exter-
nal aligner tool on source↔pivot parallel data to ex-
tract the alignment information of sentence pair. Dur-
ing model training, given source↔pivot sentence pair,
BRLM-HA randomly masks some words in source sen-
tence and leverages alignment information to obtain the
aligned words in pivot sentence for masked words. Based
on the processed input, BRLM-HA adopts the Trans-
former (Vaswani et al. 2017) encoder to gain the hid-
den states for source and pivot sentences respectively.
Then the training objective of BRLM-HA is to predict
the masked words by not only the surrounding words
in source sentence but also the encoder outputs of the
aligned words. Note that this training process is also car-
ried out in a symmetric situation, in which we mask some
words in pivot sentence and obtain the aligned words in
the source sentence.

• Soft Alignment (BRLM-SA). Instead of using external
aligner tool, BRLM-SA introduces an additional atten-
tion layer to learn the alignment information together with
model training. In this way, BRLM-SA avoids the effect
caused by external wrong alignment information and en-
ables many-to-one soft alignment during model training.
Similar with BRLM-HA, the training objective of BRLM-
SA is to predict the masked words by not only the sur-
rounding words in source sentence but also the outputs of
attention layer. In our implementation, the attention layer
is a multi-head attention layer adopted in Transformer,
where the queries come from the masked source sentence,
the keys and values come from the pivot sentence.

In principle, MLM and TLM can learn some implicit align-
ment information during model training. However, the align-
ment process in MLM is inefficient since the shared word
pieces only account for a small proportion of the whole cor-
pus, resulting in the difficulty of expanding the shared in-
formation to align the whole corpus. TLM also lacks effort
in alignment between the source and target sentences since
TLM concatenates the sentence pair into one sequence, mak-
ing the explicit alignment between the source and target in-
feasible. BRLM fully utilizes the alignment information to
obtain better word-level representation alignment between
different languages, which better relieves the burden of the
domain shift problem.

Transfer Protocol

We consider the typical zero-shot translation scenario in
which a high resource pivot language has parallel data with
both source and target languages, while source and target
languages has no parallel data between themselves. Our pro-
posed cross-lingual pretraining based transfer approach for
source→target zero-shot translation is mainly divided into
two phrases: the pretraining phase and the transfer phase.

Corpus Language Train Dev Test

Europarl
De-En,En-Fr 1M,1M 2,000 2,000
Fr-En,En-Es 1M,1M 2,000 2,000
Ro-En,En-De 0.6M,1.5M 2,000 1,000

MultiUN Ar-En,En-Es
En-Ru

9.7M,11.3M
11.6M 4,000 4,000

Table 1: Data Statistics.

In the pretraining phase, we first pretrain MLM on mono-
lingual corpora of both source and pivot languages, and con-
tinue to pretrain TLM or the proposed BRLM on the avail-
able parallel data between source and pivot languages, in
order to build a cross-lingual encoder shared by the source
and pivot languages.

In the transfer phase, we train pivot→target NMT model
initialized by the cross-lingually pre-trained encoder, and
finally transfer the trained NMT model to source→target
translation thanks to the shared encoder. Note that during
training pivot→target NMT model, we freeze several layers
of the cross-lingually pre-trained encoder to avoid the de-
generacy issue.

For the more complicated scenario that either the source
side or the target side has multiple languages, the encoder
and the decoder are also shared across each side languages
for efficient deployment of translation between multiple lan-
guages.

Experiments

Setup

We evaluate our cross-lingual pre-training based transfer ap-
proach against several strong baselines on two public datat-
sets, Europarl (Koehn 2005) and MultiUN (Eisele and Chen
2010), which contain multi-parallel evaluation data to assess
the zero-shot performance. In all experiments, we use BLEU
as the automatic metric for translation evaluation.1

Datasets. The statistics of Europarl and MultiUN cor-
pora are summarized in Table 1. For Europarl corpus, we
evaluate on French-English-Spanish (Fr-En-Es), German-
English-French (De-En-Fr) and Romanian-English-German
(Ro-En-De), where English acts as the pivot language, its
left side is the source language, and its right side is the target
language. We remove the multi-parallel sentences between
different training corpora to ensure zero-shot settings. We
use the devtest2006 as the validation set and the test2006 as
the test set for Fr→Es and De→Fr. For distant language pair
Ro→De, we extract 1,000 overlapping sentences from new-
stest2016 as the test set and the 2,000 overlapping sentences
split from the training set as the validation set since there is
no official validation and test sets. For vocabulary, we use
60K sub-word tokens based on Byte Pair Encoding (BPE)
(Sennrich, Haddow, and Birch 2015).

For MultiUN corpus, we use four languages: English
(En) is set as the pivot language, which has parallel data

1We calculate BLEU scores with the multi-bleu.perl script.
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Europarl Fr → En → Es De → En → Fr Ro → En → De
Direction Fr → Es En → Es De → Fr En → Fr Ro → De En → De

Baselines
Cross-lingual Transfer (Kim, Gao, and Ney 2019) 18.45 34.01 9.86 34.05 2.02 23.61

MNMT(Johnson et al. 2016) 27.12 34.69 21.36 33.87 9.31 24.09
MNMTAgreement (Al-Shedivat and Parikh 2019) 29.91 33.80 24.45 32.55 - -

Pivoting 32.25 34.01 27.79 34.05 14.74 23.61
Proposed Cross-lingual Pretraining Based Transfer

MLM 35.96 34.83 27.61 35.66 12.64 22.04
MLM+TLM 36.78 34.73 29.45 35.33 14.39 24.96

MLM+BRLM-HA 36.30 34.98 29.91 34.99 14.21 24.26
MLM+BRLM-SA 37.02 34.92 30.66 35.91 15.62 24.95

Table 2: Results on Europarl test sets. Three pivot settings are conducted in our experiments. In each setting, the left column
presents the zero-shot performances (source→target), and the right column denotes the performances in the supervised parent
model direction (pivot→target).

with other three languages which do not have parallel data
between each other. The three languages are Arabic (Ar),
Spanish (Es), and Russian (Ru), and mutual translation be-
tween themselves constitutes six zero-shot translation di-
rection for evaluation. We use 80K BPE splits as the vo-
cabulary. Note that all sentences are tokenized by the tok-
enize.perl2 script, and we lowercase all data to avoid a large
vocabulary for the MultiUN corpus.

Experimental Details. We use traditional transfer learn-
ing, pivot-based method and multilingual NMT as our base-
lines. For the fair comparison, the Transformer-big model
with 1024 embedding/hidden units, 4096 feed-forward fil-
ter size, 6 layers and 8 heads per layer is adopted for all
translation models in our experiments. We set the batch size
to 2400 per batch and limit sentence length to 100 BPE to-
kens. We set the attn drop = 0 (a dropout rate on each at-
tention head), which is favorable to the zero-shot translation
and has no effect on supervised translation directions (Gu
et al. 2019). For the model initialization, we use Facebook’s
cross-lingual pretrained models released by XLM3 to initial-
ize the encoder part, and the rest parameters are initialized
with xavier uniform. We employ the Adam optimizer with
lr = 0.0001, twarm up = 4000 and dropout = 0.1. At decod-
ing time, we generate greedily with length penalty α = 1.0.

Regarding MLM, TLM and BRLM, as mentioned in the
pre-training phase of transfer protocol, we first pre-train
MLM on monolingual data of both source and pivot lan-
guages, then leverage the parameters of MLM to initialize
TLM and the proposed BRLM, which are continued to be
optimized with source-pivot bilingual data. In our experi-
ments, we use MLM+TLM, MLM+BRLM to represent this
training process. For the masking strategy during training,
following Devlin et al. (2018), 15% of BPE tokens are se-
lected to be masked. Among the selected tokens, 80% of
them are replaced with [MASK] token, 10% are replaced

2https://github.com/moses-smt/mosesdecoder/blob/RELEASE-
3.0/scripts/tokenizer/tokenizer.perl

3https://github.com/facebookresearch/XLM

with a random BPE token, and 10% unchanged. The predic-
tion accuracy of masked words is used as a stopping cri-
terion in the pre-training stage. Besides, we use fastalign
tool (Dyer, Chahuneau, and Smith 2013) to extract word
alignments for BRLM-HA.

Main Results

Table 2 and 3 report zero-shot results on Europarl and
Multi-UN evaluation sets, respectively. We compare our ap-
proaches with related approaches of pivoting, multilingual
NMT (MNMT) (Johnson et al. 2016), and cross-lingual
transfer without pretraining (Kim, Gao, and Ney 2019). The
results show that our approaches consistently outperform
other approaches across languages and datasets, especially
surpass pivoting, which is a strong baseline in the zero-
shot scenario that multilingual NMT systems often fail to
beat (Johnson et al. 2016; Al-Shedivat and Parikh 2019;
Arivazhagan et al. 2018). Pivoting translates source to
pivot then to target in two steps, causing inefficient trans-
lation process. Our approaches use one encoder-decoder
model to translate between any zero-shot directions, which
is more efficient than pivoting. Regarding the comparison
between transfer approaches, our cross-lingual pretraining
based transfer outperforms transfer method that does not use
pretraining by a large margin.

Results on Europarl Dataset. Regarding comparison be-
tween the baselines in table 2, we find that pivoting is the
strongest baseline that has significant advantage over other
two baselines. Cross-lingual transfer for languages without
shared vocabularies (Kim, Gao, and Ney 2019) manifests the
worst performance because of not using source↔pivot par-
allel data, which is utilized as beneficial supervised signal
for the other two baselines.

Our best approach of MLM+BRLM-SA achieves the sig-
nificant superior performance to all baselines in the zero-
shot directions, improving by 0.9-4.8 BLEU points over the
strong pivoting. Meanwhile, in the supervised direction of
pivot→target, our approaches performs even better than the
original supervised Transformer thanks to the shared en-
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MultiUN Ar,Es,Ru ↔ En
Direction Ar → Es Es → Ar Ar → Ru Ru → Ar Es → Ru Ru → Es A-ZST A-ST

Baselines
Cross-lingual Transfer 10.26 12.44 4.58 4.42 13.80 7.93 8.90 44.73

MNMT(Johnson et al. 2016) 27.40 20.18 15.12 16.19 17.88 27.93 20.78 43.95
Pivotingm 42.29 30.15 27.23 26.16 29.57 40.08 32.58 43.95

Proposed Cross-lingual Pretraining Based Transfer
MLM 16.50 23.41 9.61 14.23 22.80 23.66 18.36 44.25

MLM+TLM 25.98 26.55 16.84 20.07 25.91 29.52 24.14 43.71
MLM+BRLM-HA 29.05 27.58 18.10 20.42 25.39 30.96 25.25 44.67
MLM+BRLM-SA 36.01 31.08 25.49 25.06 30.47 36.01 30.68 44.54

Adding Back Translation
MNMT* (Gu et al. 2019) 39.72 28.05 24.67 24.43 27.41 38.01 30.38 43.98

MLM 40.98 31.53 26.06 26.69 31.28 40.02 32.76 44.28
MLM+TLM 41.15 29.77 27.61 27.74 31.02 40.37 32.39 44.14

MLM+BRLM-HA 41.74 31.89 27.24 27.54 31.29 40.34 33.35 44.52
MLM+BRLM-SA 44.17 33.20 29.01 28.91 32.53 41.93 34.95 45.49

Table 3: Results on MultiUN test sets. The six zero-shot translation directions are evaluated. The column “A-ZST” reports av-
eraged BLEU of zero-shot translation, while the column “A-ST” reports averaged BLEU of supervised pivot→target direction.

(a) Fr-En (b) De-En (c) Ro-En

Figure 3: Cosine similarity between sentence representation of each encoder layer across all source-pivot sentence pairs in the
Europarl validation set.

coder trained on both large-scale monolingual data and par-
allel data between multiple languages.

MLM alone that does not use source↔pivot parallel data
performs much better than the cross-lingual transfer, and
achieves comparable results to pivoting. When MLM is
combined with TLM or the proposed BRLM, the perfor-
mance is further improved. MLM+BRLM-SA performs the
best, and is better than MLM+BRLM-HA indicating that
soft alignment is helpful than hard alignment for the cross-
lingual pretraining.

Results on MultiUN Dataset. Like experimental results
on Europarl, MLM+BRLM-SA performs the best among
all proposed cross-lingual pretraining based transfer ap-
proaches as shown in Table 3. When comparing systems
consisting of one encoder-decoder model for all zero-shot
translation, our approaches performs significantly better
than MNMT (Johnson et al. 2016).

Although it is challenging for one model to translate all
zero-shot directions between multiple distant language pairs
of MultiUN, MLM+BRLM-SA still achieves better perfor-
mances on Es → Ar and Es → Ru than strong pivotingm,
which uses MNMT to translate source to pivot then to tar-
get in two separate steps with each step receiving supervised
signal of parallel corpora. Our approaches surpass pivotingm
in all zero-shot directions by adding back translation (Sen-
nrich, Haddow, and Birch 2015) to generate pseudo parallel
sentences for all zero-shot directions based on our pretrained
models such as MLM+BRLM-SA, and further training our
universal encoder-decoder model with these pseudo data.
Gu et al. (2019) introduces back translation into MNMT,
while we adopt it in our transfer approaches. Finally, our
best MLM+BRLM-SA with back translation outperforms
pivotingm by 2.4 BLEU points averagely, and outperforms
MNMT (Gu et al. 2019) by 4.6 BLEU points averagely.
Again, in supervised translation directions, MLM+BRLM-
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SA with back translation also achieves better performance
than the original supervised Transformer.

Analysis

Sentence Representation. We first evaluate the represen-
tational invariance across languages for all cross-lingual pre-
training methods. Following Arivazhagan et al. (2018), we
adopt max-pooling operation to collect the sentence rep-
resentation of each encoder layer for all source-pivot sen-
tence pairs in the Europarl validation sets. Then we calcu-
late the cosine similarity for each sentence pair and aver-
age all cosine scores. As shown in Figure 3, we can ob-
serve that, MLM+BRLM-SA has the most stable and similar
cross-lingual representations of sentence pairs on all layers,
while it achieves the best performance in zero-shot transla-
tion. This demonstrates that better cross-lingual representa-
tions can benefit for the process of transfer learning. Besides,
MLM+BRLM-HA is not as superior as MLM+BRLM-
SA and even worse than MLM+TLM on Fr-En, since
MLM+BRLM-HA may suffer from the wrong alignment
knowledge from an external aligner tool. We also find an in-
teresting phenomenon that as the number of layers increases,
the cosine similarity decreases.

Contextualized Word Representation. We further sam-
ple an English-Russian sentence pair from the MultiUN
validation sets and visualize the cosine similarity between
hidden states of the top encoder layer to further investi-
gate the difference of all cross-lingual pre-training meth-
ods. As shown in Figure 4, the hidden states generated by
MLM+BRLM-SA have higher similarity for two aligned
words. It indicates that MLM+BRLM-SA can gain bet-
ter word-level representation alignment between source and
pivot languages, which better relieves the burden of the do-
main shift problem.

The Effect of Freezing Parameters. To freeze parame-
ters is a common strategy to avoid catastrophic forgetting in
transfer learning (Howard and Ruder 2018). Table 4 shows
the performance of transfer learning with freezing different
layers on MultiUN test set, in which En→Ru denotes the
parent model, Ar→Ru and Es→Ru are two child models,
and all models are based on MLM+BRLM-SA. We can find
that updating all parameters during training will cause a no-
table drop on the zero-shot direction due to the catastrophic
forgetting. On the contrary, freezing all the parameters leads
to the decline on supervised direction because the language
features extracted during pre-training is not sufficient for
MT task. Freezing the first four layers of the transformer
shows the best performance and keeps the balance between
pre-training and fine-tuning.

Conclusion

In this paper, we propose a cross-lingual pretraining based
transfer approach for the challenging zero-shot translation
task, in which source and target languages have no parallel
data, while they both have parallel data with a high resource

(a) MLM (b) MLM+TLM

(c) MLM+BRLM-HA (d) MLM+BRLM-SA

Figure 4: Cosine similarity visualization at word level given
an English-Russian sentence pair from the MultiUN valida-
tion sets. Brighter indicates higher similarity.

Freezing Layers En → Ru Ar → Ru Es → Ru
None 37.80 16.09 19.80

2 37.79 21.47 28.35
4 37.55 25.49 30.47
6 35.31 22.90 28.22

Table 4: BLEU score of freezing different layers. The num-
ber in Freezing Layers column denotes that the number of
encoder layers will not be updated.

pivot language. With the aim of building the language in-
variant representation between source and pivot languages
for smooth transfer of the parent model of pivot→target di-
rection to the child model of source→target direction, we in-
troduce one monolingual pretraining method and two bilin-
gual pretraining methods to construct an universal encoder
for the source and pivot languages. Experiments on public
datasets show that our approaches significantly outperforms
several strong baseline systems, and manifest the language
invariance characteristics in both sentence level and word
level neural representations.
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