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Abstract

Cross-modal retrieval aims to retrieve the relevant samples
across different modalities, of which the key problem is
how to model the correlations among different modalities
while narrowing the large heterogeneous gap. In this paper,
we propose a Semi-supervised Multimodal Learning Net-
work method (SMLN) which correlates different modalities
by capturing the intrinsic structure and discriminative cor-
relation of the multimedia data. To be specific, the labeled
and unlabeled data are used to construct a similarity matrix
which integrates the cross-modal correlation, discrimination,
and intra-modal graph information existing in the multime-
dia data. What is more important is that we propose a novel
optimization approach to optimize our loss within a neural
network which involves a spectral decomposition problem
derived from a ratio trace criterion. Our optimization enjoys
two advantages given below. On the one hand, the proposed
approach is not limited to our loss, which could be applied
to any case that is a neural network with the ratio trace cri-
terion. On the other hand, the proposed optimization is dif-
ferent from existing ones which alternatively maximize the
minor eigenvalues, thus overemphasizing the minor eigenval-
ues and ignore the dominant ones. In contrast, our method
will exactly balance all eigenvalues, thus being more compet-
itive to existing methods. Thanks to our loss and optimiza-
tion strategy, our method could well preserve the discrimina-
tive and instinct information into the common space and em-
brace the scalability in handling large-scale multimedia data.
To verify the effectiveness of the proposed method, extensive
experiments are carried out on three widely-used multimodal
datasets comparing with 13 state-of-the-art approaches.

Introduction

With the rapid growth of multimedia data such as image,
text, and audio on the Internet, there are increasing de-
mands on developing various applications to handle this
data, such as classification (Guan et al. 2015), clustering (Xu
et al. 2018; Peng et al. 2019; Xu et al. 2019), and re-
trieval (Deng et al. 2018; Hu et al. 2019b). Over the past
decades, more and more attention has been attracted by re-
trieving the interested contents across different modalities,
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namely cross-modal retrieval (Peng, Qi, and Yuan 2018;
Hu et al. 2019a). However, it is still challenging to correlate
different modalities because distinct modalities lie in com-
pletely disparate spaces. In other words, the different modal-
ities cannot be directly compared with each other due to the
large cross-modal gap among them, i.e., the so-called “het-
erogeneous gap”.

To narrow the heterogeneous gap, some multimodal ap-
proaches proposed projecting multimedia data into a latent
common space in which the similarity between any two
samples from different modalities can be calculated. These
methods can be roughly classified into three categories: un-
supervised (Xu, Tao, and Xu 2015; Zhang et al. 2018a;
Gu et al. 2018), supervised (Kan et al. 2016; Hu et al.
2019b), and semi-supervised (Zhai, Peng, and Xiao 2014;
Zhang et al. 2018b) approaches. The unsupervised methods
attempt to learn multiple modality-specific transformations
by maximizing the correlations among different modalities,
which ignore some semantic information in the multime-
dia data. To use the label information, some supervised and
semi-supervised methods are proposed to preserve the dis-
crimination into the latent common space (Kan et al. 2016;
Zhang et al. 2018b). Although supervised cross-modal meth-
ods have achieved promising performance by utilizing the
label information, they entirely rely on the labeled data and
have faced two problems: 1) it is time and cost-prohibitive
to collect well-annotated data (Zhang et al. 2018c; 2019).
Especially, considering the multimedia data, such a task is
more undesirable since multiple modalities will remarkably
increase the labeling workload; 2) a large number of unla-
beled data are much easier to obtain, but they cannot be
used by the supervised approaches. Therefore, it is partic-
ularly important to boost the cross-modal retrieval perfor-
mance by fully exploiting these unlabeled data. To the end,
some semi-supervised cross-modal methods have been pro-
posed to employ the intrinsic structure of the multimedia
data and show promising performance in cross-modal re-
trieval (Zhai, Peng, and Xiao 2014; Zhang et al. 2018b).
However, they have to compute the graph matrix based on
the whole training dataset, which leads to high computa-
tional and space complexity, thus making difficulty in han-
dling large-scale multimodal data. Furthermore, most ex-
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Figure 1: The framework of our SMLN for the data with m modalities which lie in distinct spaces. In the right part of the figure,
the solid items represent labeled samples and the hollow items denote unlabeled points. Different shapes represent different
classes, and different colors denote different modalities. Wkk is the intra-modality similarity matrix for the k-th modality. W
and Y are the similarity and representation matrices for all modalities, respectively. Moreover,

∑d
i=1 h(λi) is the proposed

eigenvalue-based objective function, which aims to push as much discriminative information as possible into all the dimension
of the common space by preserving the intrinsic structure and discrimination in the training stage. In the inference stage, the
corresponding trained modality-specific network is directly used to extract the representation of a test sample.

isting semi-supervised approaches are linear methods and
cannot handle the highly nonlinear complexity in real-world
datasets. Although they can be extended to kernel variants,
their performance is limited by the predefined kernel func-
tion and there lacks a golden criterion to choose a kernel
function as pointed in (Peng et al. 2016).

To overcome these problems, we propose a Semi-
supervised Multimodal Learning Network (SMLN) which
correlates different modalities by capturing the intrinsic
structure and discriminative correlation of the multimedia
data as shown in Figure 1. In brief, the labeled and unla-
beled data are used to construct a similarity matrix that en-
capsulates the cross-modal correlation, discrimination and
intra-modal graph information of the multiple modalities.

Different from the existing graph regularization meth-
ods, our loss can be optimized in a batch-by-batch man-
ner, thus being capable of handling large-scale multimedia
data. Another major contribution of this work is proposing
an effective ratio trace criterion optimizer. To be specific,
our loss will involve solving a ratio trace criterion problem
within a neural network. As shown in (Dorfer, Kelz, and
Widmer 2016), directly optimizing the ratio trace criterion
based losses including ours will lead an undesirable solu-
tion, namely, the dominant eigenvalues will be overempha-
sized and the information in the bottom eigenvalues will be
ignored. The optimizer of (Dorfer, Kelz, and Widmer 2016;
Hu et al. 2019a) could solve this problem, but faces a new
one, i.e., the dominant eigenvalues will be ignored as it tries
to maximize the lower bound of the eigenvalues over a given
threshold. As shown in our ablation study, there is useful dis-
criminative information in the directions of both the domi-
nant and minor eigenvalues for cross-modal retrieval. It is
therefore highly expected to consider all eigenvalues dur-

ing optimizing. To the end, we propose a novel optimiza-
tion strategy that could simultaneously weaken the domi-
nant eigenvalues and emphasize the minor ones. Thanks to
our optimization strategy, all the eigenvalues will be con-
sidered in the training stage and all the discriminative vari-
ances (i.e. eigenvalues) will be maximized without overem-
phasizing and ignoring any ones else. In other words, the dis-
criminative and instinct information in all dimensions could
be preserved into the learned common space. The main con-
tributions of this paper are summarized as follows:

• A semi-supervised multimodal learning method is pro-
posed to learn multiple nonlinear transformations by pro-
jecting multimedia data into a latent common space.
As a result, the highly nonlinear cross-modal discrep-
ancy could be eliminated and the common representations
could be used to compute the similarity for the cross-
modal retrieval.

• A cross-modal similarity matrix is proposed to measure
the similarity between any two samples of all modalities
by fully exploiting the discrimination of the labeled data,
the intrinsic geometric structures, and correlation in the
labeled and unlabeled data.

• A novel eigenvalue-based loss function is proposed to bal-
ance the eigenvalues instead of directly maximizing the
ratio trace. Through the proposed method, the discrimi-
native and instinct information in all dimensions can be
preserved in the common space without overemphasizing
the dominant eigenvalues and ignoring the minor or dom-
inant ones.
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Related Works

In this section, we will briefly review some related works
which are close to this work from the following two aspects:
unsupervised learning and supervised learning.

Unsupervised cross-modal methods attempt to project
multimodal data into a latent common space by maximiz-
ing the correlations between different modalities. One typi-
cal method is the well-known Canonical Correlation Analy-
sis (CCA) which maximizes the cross-modal correlation to
learn two linear transformations (Hotelling 1936). Similarly,
another method, called Partial Least Squares (PLS), attempts
to learn two linear transformations by maximizing the co-
variance of two modalities (Sharma and Jacobs 2011). To
extend CCA to deal with more than two modalities, Multi-
set CCA (MCCA) was proposed to learn a common space
by maximizing the correlations between all possible pair-
wise modalities (Rupnik and Shawe-Taylor 2010). Further-
more, some kernel methods are proposed to extend CCA to
nonlinear models (Lopez-Paz et al. 2014; Wang and Livescu
2016). However, the predefined kernel function will limit the
performance and are difficult to choose (Peng et al. 2018).
Then, some researches extend CCA with Deep Neural Net-
work (DNN). For example, (Andrew et al. 2013) proposed
Deep Canonical Correlation Analysis (DCCA) to learn com-
plex nonlinear transformations of two-modality data so that
the learned representations are highly linearly correlated. In-
spired by both DCCA and reconstruction-based objectives,
Deep Canonically Correlation Autoencoders (DCCAE) was
proposed in (Wang et al. 2015) by adding an autoencoder
regularization term into DCCA.

Supervised cross-modal methods exploit the label infor-
mation to learn the common representations, which are supe-
rior to unsupervised methods. With the well-know Fisher’s
criterion, some approaches were proposed to learn a dis-
criminative common space by simultaneously maximizing
the between-class variations and minimizing the within-
class variations (Sharma et al. 2012; Kan et al. 2016). In
(Wang et al. 2017), a novel Adversarial Cross-modal Re-
trieval method (ACMR) is presented to seek an effective
common space based on adversarial learning, which con-
sists of a feature projector, a modality classifier, and a triplet
constraint. In (Hu et al. 2019b), a novel Scalable Deep Mul-
timodal Learning method (SDML) is proposed to separately
project different modalities into a predefined common space.

Although supervised methods can achieve considerable
performance for cross-modal retrieval, they ignore the
cross-modal correlation information in a large amount
of unlabeled multimedia data. Furthermore, it will be
more challengeable for supervised methods when the label
noise (Gong et al. 2019b; 2019a) is considered. During past
decades, some methods try to use the graph regularization
to extract useful information in the unlabeled data (Zhai,
Peng, and Xiao 2014; Zhang et al. 2018b; Liu et al. 2016).
However, they have to compute the graph matrix based on
the samples of the whole training dataset, which are with
very high computation and space complexity, thus hinder-
ing them to handle large-scale multimodal datasets. Further-
more, they are linear methods and cannot handle the highly
nonlinear complexity in many real-world applications. In

this paper, we proposed a deep semi-supervised multimodal
learning method, which can be trained in a batch-by-batch
manner and tackle large-scale databases.

The Proposed Method

Notations

For ease of presentation, some definitions are given as be-
low. For the training set X consisting of m modalities, i.e.,
X = {X 1,X 2, · · · ,Xm}, let X k denote the k-th modal-
ity. In practice, it is often time and cost-prohibitive to an-
notate the large-scale multimedia data due to the heteroge-
neous semantic gap and a huge amount of data. Therefore, it
is highly expected to utilize the labeled and unlabeled mul-
timodal data together to boost the cross-modal retrieval per-
formance. Consequently, the k-th modality X k = {X̌ k, X̂ k}
includes both labeled data X̌ k = {x̌k

1 , x̌
k
2 , · · · , x̌k

ň} and un-
labeled data X̂ k = {x̂k

1 , x̂
k
2 , · · · , x̂k

n̂}, where x̌k
i ∈ R

dk×pk

and x̂k
i ∈ R

dk×pk denote the i-th labeled and unlabeled sam-
ples from the k-th modality with dk × pk dimensionality.
Here, xk

i is a vector input when pk = 1, and ň and n̂ are
the numbers of the labeled and unlabeled samples for each
modality, respectively.

For the k-th modality, the label of the i-th sample x̌k
i is de-

noted as ľki ∈ R
c, where c is the class number of the dataset.

All modalities share the same c categories but follow differ-
ent distributions. If x̌k

i belongs to the j-th category, ľkij is set
to 1, otherwise 0. For the single-label data, each label vector
contains only one nonzero value. Moreover, for the multi-
label data, each sample belongs to multiple classes and then
its label vector contains more than one nonzero value.

As the aforementioned discussion, different modalities lie
in different spaces, so it is impossible to directly calculate
the similarity between two cross-modal samples. As shown
in Figure 1, we aim at learning m modality-specific neural
networks to project different modalities into a latent com-
mon space in which the heterogeneous samples can be com-
pared with each other. The k-th modality-specific network
can be denoted as a nonlinear function fk(·,Θk) ∈ R

d,
where Θk denotes the parameters of the network and q is
the dimensionality of the common space. Then, the common
representation of the k-th modality is formulated as

yk
i = fk(x

k
i ) (1)

where xk
i ∈ X k is the i-th samples from the k-th modality.

Objective Function

First, we use the heat kernel and labeled data to estimate the
intra-modality similarity between any two samples, xk

i and
xk
j , in the same modality as follows

W kk
ij =

⎧⎪⎪⎨
⎪⎪⎩

g(xk
i ,x

k
j )

{
xk
i ,x

k
j

} ⊂ X̌ k

e
‖xk

i −xk
j ‖2

τ xk
i ∈ Nr(x

k
j ) or xk

j ∈ Nr(x
k
i )

0 otherwise
(2)

where Nr(x
k
j ) and Nr(x

k
i ) denote the r nearest neighbors

of xk
j and xk

i , respectively. Moreover, g(·, ·) is a function
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to compute the semantic similarity between the samples xk
i

and xl
j . Formally,

g(xk
i ,x

l
j) =

{
1 �(xk

i )
T �(xl

j) � 1

0 otherwise,
(3)

where �(xk
i ) is the label vector of the point xk

i . For a labeled
point x̌k

i , �(x̌k
i ) = ľki .Based on the intra-similarity matrices{

Wkk
}m

k=1
, the inter-similarity between two samples from

different modalities (k �= l) can be computed by the follow-
ing formulation:

W kl
ij =

{
g(xk

i ,x
k
j ) xk

i ∈ X̌ k and xl
j ∈ X̌ l

1
2 (W

kk
ij +W ll

ij) otherwise.
(4)

Therefore, we can obtain the final similarity matrix W for
the multimodal data as a block matrix, which is defined as
following

W =

⎡
⎢⎢⎢⎢⎣

W11 W12 · · · W1m

W21 W22 · · · W2m

...
...

. . .
...

Wm1 Wm2 · · · Wmm

⎤
⎥⎥⎥⎥⎦ . (5)

The obtained similarity matrix W can be regarded as the
weighted graph with edges connecting space- and semantic-
nearby points to each other. Here, in the graph, the weight
of the connected edge is the computed similarity Wij be-
tween two corresponding points based on the labels and the
input multimodal data. Based on the spectral graph theory,
the connected points should be as close as possible in the
latent common space. Following (Belkin and Niyogi 2003;
Zhang et al. 2018c), a reasonable criterion for choosing the
transformations is to minimize the following objective func-
tion:

[f∗
1 , f

∗
2 , · · · , f∗

m] = argmin
f1,f2,··· ,fm

m∑
k=1
l=1

n∑
i=1
j=1

(yk
i − yl

j)
2W kl

ij

= argmin
f1,f2,··· ,fm
YTDY=I

Tr(YTLY)

= argmin
f1,f2,··· ,fm

Tr
(
YTLY

YTDY

)
(6)

where Tr(·) is the trace operator, I ∈ R
d×d is an iden-

tity matrix; D is a diagonal matrix whose entries are the
row/column sums of W, i.e., Dii =

∑mn
j Wij ; L = D−W

is the Laplacian matrix. Moreover, Y denotes the represen-
tation matrix for all modalities with the following formula-
tion:

Y = [f1(X 1), f2(X 2), · · · , fm(Xm)]

= [y1
1, · · · ,y1

n,y
2
1, · · · ,yk

i , · · · ,ym
n ].

(7)

Obviously, Eq. (6) can be equivalent to solve the follow-
ing problem:

[f∗
1 , f

∗
2 , · · · , f∗

m] = argmax
f1,f2,··· ,fm

Tr
(
YTDY

YTLY

)

= argmax
f1,f2,··· ,fm

d∑
i=1

λi

(8)

where λi is the i-th largest eigenvalue of the following gen-
eralized eigenvalue problem

YTDYwi = λYTLYwi. (9)

From Eq. (8), we can see that the objective function aims
to maximize the individual eigenvalues. In particular, each
eigenvalue λi quantifies the magnitude of the discriminative
variance (separation) in the direction of the corresponding
eigenvector wi. However, directly solving the problem in
Eq. (8) (or Eq. (6)) would yield trivial solutions consider-
ing the plugged-in neural network, e.g., maximizing only the
largest eigenvalue since this will produce the highest reward
of back-propagation. To solve the problem, (Dorfer, Kelz,
and Widmer 2016) attempts to maximize the lower bound
of the eigenvalues with a threshold, which will ignore some
discriminative information in the dominant eigenvalues. Dif-
ferent from the aforementioned works, we propose a method
that balances all the eigenvalues rather than the eigenvalues
of lower bound as in (Dorfer, Kelz, and Widmer 2016). To
refrain from overemphasizing the dominant eigenvalues, our
method weakens the dominant eigenvalues and emphasizes
the minor eigenvalues with the following rewritten objective
function

[f∗
1 , f

∗
2 , · · · , f∗

m] = argmin
f1,f2,··· ,fm

d∑
i=1

h(λi), (10)

where h(x) = e−αx and α is a balance parameter. To elim-
inate and automatically adapt the hyper-parameter α, we set
α = 1

�min{λi|λi>0; i=1,··· ,d}� , where �·� rounds the element
to the nearest integer that is not less than that element.

Figure 2: A toy example to illustrate how balanced spectral
decomposition h(x) works. The graph of y = h(x) with
respect to different α.

Figure 2 shows a toy example to illustrate why h(x) could
work well. From the figure, one could see that this function
is a decreasing function as y = −x, which explains that it
can achieve the same goal, i.e., minimizing the objective.
With the input value increasing, h(x) is becoming smoother
and reduces the differential coefficient. Moreover, when the
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input value is small, it will produce a larger differential coef-
ficient than the larger inputs. That is to say h(x) can reduce
the reward of back-propagation of the dominant eigenvalues
and emphasize the minor eigenvalues. Therefore, the pro-
posed method can address the overemphasizing problem of
directly optimizing Eq. (8) (or Eq. (6)). We will further ex-
perimentally show its effectiveness in the following ablation
study.

Algorithm 1 Optimization procedure of SMLN
Input: The training data X k|mk=1, the objective dimensional-
ity of the common representation d, batch size Nb, the num-
ber of nearest neighbors r, and learning rate β.
Output: Optimized SMLN model.

1: while not converge do
2: Randomly select Nb samples from all modalities to

construct a multimodal mini-batch.
3: Compute the intra- and inter-modality similarity ma-

trix to construct the similarity matrix W for all
modalities.

4: Compute the common representation y through its
corresponding modality-specific network to construct
the representation matrix Y for all modalities.

5: Compute the eigenvalues and eigenvectors by Eq. (9).
6: Update the parameters of the modality-specific net-

works by minimizing the objective function in
Eq. (10) with descending their stochastic gradient:
Θk = Θk − β

∂
∑d

i=1 h(λi)

∂Θk (k = 1, · · · ,m)
7: end while

Based on the new loss and the above discussions, the pro-
posed model could be optimized in an end-to-end manner
using any one stochastic gradient descent-based optimiza-
tion algorithm. The detailed optimization process is summa-
rized in Algorithm 1.

Experiment Study

In this section, we elaborate on the used datasets, implemen-
tation details, comparing methods as well as the experimen-
tal configurations.

Datasets and Features Three multimodal datasets
are adopted in our experiments, including the
Wikipedia dataset (Rasiwasia et al. 2010), the NUS-
WIDE dataset (Chua et al. July 8 10 2009), and
the XMediaNet dataset (Peng, Qi, and Yuan 2018;
Peng, Huang, and Zhao 2017). The statistics of the three
datasets are summarized in Table 1.

We randomly selected 5%, 10% and 30% samples from
the training set as labeled data, and the rest samples as unla-
beled data. Therefore, there are three groups for each dataset
as shown in our experimental results.

The image features in our experiments are extracted from
the fc7 layer of a 19-layer VGGNet (Krizhevsky, Sutskever,
and Hinton 2012) with a dimension of 4, 096. The text rep-
resentation is extracted by a Doc2Vec model (Lau and Bald-
win 2016) pre-trained on Wikipedia with a dimension of
300.

Dataset Label Modality Instance Feature

Wikipedia 10 Image 2,173/231/462 4,096D VGG
Text 2,173/231/462 300D Doc2Vec

NUS-WIDE 10 Image 42,941/5,000/23,661 4,096D VGG
Text 42,941/5,000/23,661 300D Doc2Vec

XMediaNet 200 Image 32,000/4,000/4,000 4,096D VGG
Text 32,000/4,000/4,000 300D Doc2Vec

Table 1: General statistics of the three datasets used in the
experiments, where “*/*/*” in the “Instance” column stands
for the size of training/validation/test subsets.

Implementation Details The proposed method would
train multiple modality-specific neural networks to handle
the multimodal data. For each modality, the network has
three fully-connected layers with each layer following a
Rectified Linear Unit (ReLU) (Nair and Hinton 2010) ac-
tive function except the last layer. We employ a four-layer
feed-forward neural network to nonlinearly project differ-
ent modalities into a latent common space, i.e., 4096 →
4096 → 4096 → c for image modality and 300 → 4096 →
4096 → c for text modality. In the inference process, the
outputs of the corresponding modality-specific networks are
the common representations of the samples.

The batch size Nb is set to 128 for the Wikipedia and
NUS-WIDE datasets, and 512 for the XMediaNet dataset.
The number of nearest neighbors is set to 2, 3, and 3 for
Wikipedia, NUS-WIDE, and XMediaNet, respectively. The
dimensionality of the common space is set to c for all
the datasets. The learning rate α is set to 10−4 in all the
experiments on all datasets. For training, we employ the
ADAM (Kingma and Ba 2014) optimizer with the maximal
epoch of 200. Furthermore, for the supervised methods, only
the corresponding percentage of the labeled data are used to
train their models. Note that, for the semi-supervised and un-
supervised methods, all the unlabeled and labeled multime-
dia data are used to train their models. The proposed model
is trained on two Nvidia GTX 2080Ti GPUs in PyTorch.

Evaluation Metric and Compared Methods To evaluate
the performance of the methods, we perform cross-modal re-
trieval tasks, i.e., retrieving one modality by another modal-
ity query, such as retrieving text by image query (Img2Txt)
and retrieving image by text query (Txt2Img). We adopt
mean average precision (mAP) as the evaluation metric
which is calculated on all returned results for a comprehen-
sive evaluation following (Wang et al. 2017; Peng, Qi, and
Yuan 2018). The cosine similarity is used to measure the dis-
tance between two samples in the obtained common space.

To demonstrate the effectiveness, we investigate the
performance of 13 state-of-the-art cross-modal retrieval
methods including six traditional cross-modal meth-
ods, namely MCCA (Rupnik and Shawe-Taylor 2010),
GMLDA (Sharma et al. 2012), GMMFA (Sharma et al.
2012), JRL (Zhai, Peng, and Xiao 2014), MvDA (Kan et al.
2016), MvDA-VC (Kan et al. 2016) and GSS-SL (Zhang et
al. 2018b), five DNN-based cross-modal methods, namely
DCCA (Andrew et al. 2013), DCCAE (Wang et al. 2015),
ACMR (Wang et al. 2017), SDML (Hu et al. 2019b), and
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Method 5% labeled Data 10% labeled Data 30% labeled Data
Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

MvDA (Kan et al. 2016) 0.208 0.205 0.206 0.219 0.208 0.213 0.287 0.265 0.276
MvDA-VC (Kan et al. 2016) 0.205 0.199 0.202 0.259 0.238 0.249 0.324 0.296 0.310
GMLDA (Sharma et al. 2012) 0.208 0.201 0.205 0.219 0.207 0.213 0.231 0.276 0.254
GMMFA (Sharma et al. 2012) 0.207 0.210 0.209 0.212 0.197 0.204 0.196 0.193 0.194
JRL (Zhai, Peng, and Xiao 2014) 0.223 0.218 0.220 0.289 0.271 0.280 0.375 0.334 0.355
GSS-SL (Zhang et al. 2018b) 0.258 0.244 0.251 0.307 0.274 0.291 0.345 0.306 0.326
MCCA (Rupnik and Shawe-Taylor 2010) 0.143 0.141 0.142 0.143 0.141 0.142 0.143 0.141 0.142
PLS (Sharma and Jacobs 2011) 0.353 0.334 0.344 0.353 0.334 0.344 0.353 0.334 0.344
DCCA (Andrew et al. 2013) 0.230 0.223 0.227 0.230 0.223 0.227 0.230 0.223 0.227
DCCAE (Wang et al. 2015) 0.260 0.250 0.255 0.260 0.250 0.255 0.260 0.250 0.255
ACMR (Wang et al. 2017) 0.219 0.212 0.216 0.294 0.271 0.282 0.390 0.354 0.372
SDML (Hu et al. 2019b) 0.267 0.233 0.250 0.347 0.291 0.319 0.450 0.393 0.421
FGCrossNet (He, Peng, and Xie 2019) 0.247 0.239 0.242 0.322 0.286 0.304 0.427 0.384 0.406
Ours 0.389 0.359 0.374 0.407 0.362 0.385 0.459 0.413 0.436

Table 2: Performance comparison in terms of mAP scores on the Wikipedia dataset. The highest score is shown in boldface.

Method 5% labeled Data 10% labeled Data 30% labeled Data
Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

MvDA (Kan et al. 2016) 0.467 0.492 0.479 0.270 0.257 0.264 0.580 0.606 0.593
MvDA-VC (Kan et al. 2016) 0.530 0.556 0.543 0.324 0.310 0.317 0.575 0.604 0.590
GMLDA (Sharma et al. 2012) 0.392 0.430 0.411 0.252 0.247 0.249 0.531 0.512 0.521
GMMFA (Sharma et al. 2012) 0.504 0.526 0.515 0.271 0.236 0.253 0.260 0.227 0.243
JRL (Zhai, Peng, and Xiao 2014) 0.545 0.548 0.547 0.563 0.568 0.566 0.597 0.603 0.600
GSS-SL (Zhang et al. 2018b) 0.258 0.244 0.251 0.554 0.566 0.560 0.567 0.580 0.574
MCCA (Rupnik and Shawe-Taylor 2010) 0.556 0.562 0.559 0.556 0.562 0.559 0.556 0.562 0.559
PLS (Sharma and Jacobs 2011) 0.589 0.606 0.598 0.589 0.606 0.598 0.589 0.606 0.598
DCCA (Andrew et al. 2013) 0.451 0.451 0.451 0.451 0.451 0.451 0.451 0.451 0.451
DCCAE (Wang et al. 2015) 0.485 0.494 0.490 0.485 0.494 0.490 0.485 0.494 0.490
ACMR (Wang et al. 2017) 0.540 0.537 0.538 0.538 0.563 0.551 0.559 0.574 0.567
SDML (Hu et al. 2019b) 0.596 0.607 0.601 0.602 0.618 0.610 0.636 0.638 0.637
FGCrossNet (He, Peng, and Xie 2019) 0.559 0.563 0.561 0.588 0.586 0.587 0.616 0.620 0.618
Ours 0.627 0.628 0.627 0.632 0.636 0.634 0.654 0.649 0.652

Table 3: Performance comparison in terms of mAP scores on the NUS-WIDE dataset. The highest score is shown in boldface.

FGCrossNet (He, Peng, and Xie 2019). For a fair compar-
ison, all the compared methods adopt the same image and
text features as our approach.

Comparisons with State-of-the-art Methods

In this section, the mAP score comparison between our pro-
posed SMLN and other state-of-the-art methods on two re-
trieval tasks (Img2Txt and Txt2Img) on Wikipedia, NUS-
WIDE and XMediaNet datasets are presented in Table 2,
Table 3, and Table 4, respectively.

From the results, one can observe that our proposed
approach achieves the highest retrieval accuracy on all
datasets. Among all the compared methods, one can see that
the supervised methods heavily rely on a large number of
labeled data. When the size of the labeled data is small (e.g.,
5%), their performance is much worse than the unsupervised
methods (e.g., MCCA and PLS). On the other hand, the un-
supervised methods can employ a large number of unlabeled
data, hence can have better performance than the supervised
methods trained with little labeled data. With the increasing
size of labeled data, the supervised methods achieve more
competitive performance than the unsupervised approaches.

Furthermore, the compared semi-supervised methods,
i.e., JRL and GSS-SL, can achieve good performance thanks

they can use both labeled and unlabeled data. However, they
are simple linear models without sufficiently exploiting the
discrimination and instinct correlations in the labeled and
unlabeled data, hence when labeled data is scarce (≤ 10%),
their performance is worse than the unsupervised methods.

In contrast, our SMLN can significantly exploit the non-
linear discrimination and correlation in the labeled and unla-
beled data, and achieve the best performance. In conclusion,
our proposed SMLN outperforms all the other methods on
both small and big datasets, indicating that our method is a
good multimodal learning method for cross-modal retrieval.

Ablation Study

In this section, we investigate the effectiveness of the simi-
larity structure of neighbors and eigenvalue-based loss with
the following two alternative baselines.
• SMLN-1 is a variant of the proposed method, which di-

rectly trains the networks with Eq. (8) instead of the pro-
posed eigenvalue-based loss.

• SMLN-2 is a variant that does not use the geometric struc-
ture.

• SMLN-3 is another one which maximizes the lower
bound of the eigenvalues using the optimization strategy
of (Dorfer, Kelz, and Widmer 2016).
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Method 5% labeled Data 10% labeled Data 30% labeled Data
Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

MvDA (Kan et al. 2016) 0.125 0.132 0.129 0.132 0.137 0.135 0.360 0.350 0.355
MvDA-VC (Kan et al. 2016) 0.150 0.159 0.154 0.197 0.200 0.199 0.385 0.374 0.380
GMLDA (Sharma et al. 2012) 0.026 0.151 0.089 0.024 0.133 0.079 0.290 0.290 0.290
GMMFA (Sharma et al. 2012) 0.147 0.158 0.153 0.148 0.156 0.152 0.313 0.333 0.323
JRL (Zhai, Peng, and Xiao 2014) 0.190 0.188 0.189 0.266 0.252 0.259 0.354 0.329 0.341
GSS-SL (Zhang et al. 2018b) 0.184 0.191 0.187 0.256 0.251 0.254 0.326 0.311 0.319
MCCA (Rupnik and Shawe-Taylor 2010) 0.360 0.350 0.355 0.360 0.350 0.355 0.360 0.350 0.355
PLS (Sharma and Jacobs 2011) 0.277 0.266 0.271 0.277 0.266 0.271 0.277 0.266 0.271
DCCA (Andrew et al. 2013) 0.125 0.131 0.128 0.125 0.131 0.128 0.125 0.131 0.128
DCCAE (Wang et al. 2015) 0.121 0.127 0.124 0.121 0.127 0.124 0.121 0.127 0.124
ACMR (Wang et al. 2017) 0.140 0.162 0.151 0.197 0.225 0.211 0.289 0.335 0.312
SDML (Hu et al. 2019b) 0.271 0.303 0.287 0.382 0.401 0.391 0.500 0.538 0.519
FGCrossNet (He, Peng, and Xie 2019) 0.168 0.208 0.188 0.264 0.293 0.278 0.409 0.432 0.421
Ours 0.613 0.612 0.612 0.618 0.617 0.617 0.619 0.620 0.620

Table 4: Performance comparison in terms of mAP scores on the XMediaNet dataset. The highest score is shown in boldface.

For a fair comparison, all variants have the same net-
work architecture and settings as our SMLN. The difference
among them is the loss function. Table 5 shows the experi-
mental results on the XMediaNet dataset. From the results,
one could see that both geometric structure and eigenvalue-
based loss contribute to the performance of our method. The
geometric structure of each view can be used to preserve the
instinct information in the common space and improve the
semi-supervised performance. Furthermore, the eigenvalue-
based method can be used to avoid the overemphasizing
problem and push as much discriminative variance in the
common space, thus facilitating the retrieval performance.
Although the optimization strategy of (Dorfer, Kelz, and
Widmer 2016) can address the overemphasizing problem
in SMLN-1, some discriminative information in dominant
eigenvalues is ignored. This information is still useful for
cross-modal retrieval as shown in the comparison with our
SMLN.

Labeled data Method Img2Txt Txt2Img Avg.

5%
SMLN-1 0.007 0.010 0.009
SMLN-2 0.581 0.586 0.583
SMLN-3 0.568 0.591 0.579
SMLN 0.613 0.612 0.612

10%
SMLN-1 0.007 0.011 0.009
SMLN-2 0.596 0.597 0.597
SMLN-3 0.567 0.590 0.578
SMLN 0.618 0.617 0.617

30%
SMLN-1 0.007 0.010 0.009
SMLN-2 0.599 0.600 0.599
SMLN-3 0.575 0.592 0.583
SMLN 0.619 0.620 0.620

Table 5: Ablation study on the contributions of structure
and eigenvalue-based loss using the XMediaNet dataset. The
highest score is shown in boldface.

Conclusion

In this paper, we proposed a novel semi-supervised multi-
modal approach (SMLN) to fully employ the useful infor-

mation in the input multimedia data, i.e., instinct structure
and semantic label. The labeled and unlabeled data are uti-
lized to fully exploit the cross-modal correlation, discrim-
ination, and graph information in the multiple modalities.
Unlike the existing graph regularization methods, which
need to compute the graph matrix on the whole training
set, our proposed method can be trained in a batch-by-batch
manner. Thus, our SMLN is more suitable to the large-scale
multimedia data than the existing methods. Moreover, to
solve the ratio trace problem caused by our loss, we present
a novel eigenvalue-based objective function by maximizing
all the eigenvalues instead of directly maximizing the ra-
tio trace or the lower bound of eigenvalues. Therefore, our
SMLN can fully use the information in the labeled and un-
labeled multimedia data for cross-modal retrieval. Compre-
hensive experimental results on three widely-used multime-
dia benchmark datasets have verified the effectiveness of our
SMLN by comparing with 13 state-of-the-art approaches.
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