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Abstract

Explanations in machine learning come in many forms, but
a consensus regarding their desired properties is still emerg-
ing. In our work we collect and organise these explainability
desiderata and discuss how they can be used to systemati-
cally evaluate properties and quality of an explainable system
using the case of class-contrastive counterfactual statements.
This leads us to propose a novel method for explaining pre-
dictions of a decision tree with counterfactuals. We show that
our model-specific approach exploits all the theoretical ad-
vantages of counterfactual explanations, hence improves de-
cision tree interpretability by decoupling the quality of the
interpretation from the depth and width of the tree.

Introduction
Counterfactual explanations are becoming a de facto stan-
dard for explaining automated decisions (Wachter, Mittel-
stadt, and Russell 2018; Miller 2019; Tolomei et al. 2017).
In their most popular form they follow this template:

“The prediction is <prediction>. Had a small subset
of features been different <foil>, the prediction would
have been <different prediction> instead.”

Such counterfactual explanations are deemed particularly
useful for a lay audience since they do not presuppose any
background in computer science or artificial intelligence.
They particularly gained in popularity when the European
Union’s General Data Protection Regulation (GDPR) came
into force in May 2018 requiring organisations that use al-
gorithmic decision making to provide explanations on the
client’s request. To address this requirement Wachter, Mit-
telstadt, and Russell (2018) showed that counterfactuals are
“user-friendly” and compliant with the GDPR.

Explainability and Its Desiderata
The recent surge in interpretability and explainability re-
search in AI may suggest that this is a new research topic, but
in fact it has been an active research area for much longer in
the humanities – to the point that researchers have started
to agree on a coherent list of desiderata for explainable
systems (Kulesza et al. 2013; 2015). The seminal work of
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Miller (2019) shows that counterfactual explanations com-
ply with most of these desiderata, although not necessarily
all of them. For example, consider completeness – the extent
to which the explanation covers the whole underlying sys-
tem – of a counterfactual explanation. A counterfactual foil
applies only to the queried data point and does not generalise
to a broader class of similar data points; i.e., had the foil
been true, ceteris paribus, the classification outcome would
change. The possible incompleteness of a counterfactual ex-
planation is often overlooked by the explainees as humans
are known to overgeneralise. Therefore, for a counterfac-
tual explanation to satisfy completeness, the explainer would
have to provide the necessary conditions under which the
foil, hence the explanation, holds (contextfullness). An ex-
ample of such a generalised counterfactual would be “Had
you earned £10,000 more, your loan application would be
accepted provided you do not change your mortgage and
keep the same job.” Completeness and contextfullness are
two of many explainability desiderata. Other important as-
pects of an explanation are: soundness – truthfulness of the
explanation with respect to the predictive model; interactive-
ness – interactive explanations are better than static ones; ac-
tionability – explanations that give the user suggestions how
to change the model’s prediction are preferred; chronology
– more recent causes of an event are preferred; coherence
– explanations should agree with the user’s mental model;
novelty – the explanation should not repeat what the user
already knows; complexity – the complexity of an explana-
tion should be tuned to the user’s ability and knowledge; and
parsimony – shorter explanations are more comprehensive.

Systematically evaluating these properties of explainable
techniques can be a useful precursor to user studies to show
their capabilities and compliance with the best practices in
the field. Despite theoretical guarantees of some desider-
ata for some explainability approaches, these guarantees can
be lost in implementation. For example, model-agnostic ap-
proaches can render some desiderata difficult to achieve
since they cannot take advantage of model-specific aspects
of the predictive algorithms. What appears to be lacking in
the literature is a connection between general desiderata and
properties of specific methods. At best, some studies se-
lect a subset of desiderata and evaluate a selected approach
for a particular task using them; for example Kulesza et
al. (2013) evaluate soundness and completeness of interac-
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tive visualisations for music recommendation, and Kulesza
et al. (2015) examine soundness, completeness, interactive-
ness, parsimony and actionability for interactive visualisa-
tions of a Naı̈ve Bayes spam email classifier. A standardised
list of explainability desiderata would provide a common
ground for easy comparison of explainability approaches.
As it stands, many implementations do not exploit the full
potential of the selected explanatory technique, for example
a method based on counterfactuals might not take advantage
of their social and interactive aspects.

Counterfactuals for Decision Trees
Our contributions in this field are twofold. First, we collect
and review desiderata for explainability techniques in AI.
This allows a systematic comparison of explainability meth-
ods as an addition to user studies and uncover discrepancies
between the theoretical capabilities and a specific implemen-
tation of a given technique. We demonstrate the usefulness
of these desiderata using the case of counterfactual expla-
nations and their two popular implementations from the lit-
erature: Tolomei et al. (2017) and Wachter, Mittelstadt, and
Russell (2018).

Secondly, we propose a novel algorithm for composing
counterfactual explanations of data points classified with
a decision tree, and evaluate it against the full set of ex-
plainability desiderata. Here we advocate a model-specific
approach in order to exploit all theoretical capabilities of
counterfactual explanations in the implementation. The al-
gorithm works with a decision tree model but can be easily
generalised to the whole family of logical machine learn-
ing models and their ensembles. To guarantee fast and easy
search, customisability and completeness of generated coun-
terfactuals we map the internal tree structure to a leaf-to-
leaf counterfactual distance matrix that describes how many
(and what) changes are required for a given root-to-leaf path,
hence a data point, to change its classification outcome. This
distance matrix is built using a meta-feature set that is com-
posed of logical conditions extracted form the tree’s inter-
nal nodes. Each condition can either be true, false, or does
not apply to a particular data point if a given feature is not
used on a particular root-to-leaf path in the tree. Therefore,
for every classified data point the algorithm can retrieve its
smallest alteration that results in a different classification
outcome.

Related Work
Recent explainable AI literature displays three main trends.
The first one concerns studies discussing what is gener-
ally desired of explanations (Lipton 2018; Kulesza et al.
2013; 2015; Doshi-Velez and Kim 2017). Here the most
related work to our first contribution is Doshi-Velez and
Kim (2017), who provide desiderata for evaluating ex-
plainability techniques from the perspective of user studies,
whereas our list of desiderata is much more comprehensive.
The second trend investigates theoretical properties of se-
lected explainable approaches, e.g. Miller (2019) for coun-
terfactuals. The third trend involves papers discussing imple-
mentations and experimental results for selected methods.

Here Wachter, Mittelstadt, and Russell (2018) study gener-
ating counterfactuals for differentiable models and Tolomei
et al. (2017) do that for random forests, which are similar to
our second contribution. Both methods are supported with
an empirical evaluation, however neither of them takes full
advantage of counterfactual explanations or explicitly com-
pares capabilities of their implementation against explain-
ability desiderata.

Conclusions and Future Work
Our work presents a collection of explainability desiderata
and shows how they can be used to systematically evaluate
and compare explainability approaches. We also propose an
approach to explain decision trees (and other logical models)
with counterfactual statements. Finally, we use the explain-
ability desiderata to show that our method is compliant with
all of them – an advantage of a model-specific approach – as
opposed to other algorithms proposed in the literature.

In future, we will investigate a variety of distance func-
tions that can be used with our approach and assess pros
and cons of the resulting counterfactuals. Then, we will em-
pirically evaluate the quality and effectiveness of our ex-
planations with user studies where the participants will be
shown two types of explanations for a classification out-
come: a conjunction of logical conditions extracted form the
underlying logical model and our counterfactuals for multi-
ple distance functions. Finally, we will extend our method to
ensembles of logical models, in particular random forests.
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