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Abstract

Majority of the advancement in Deep learning (DL) has oc-
curred in domains such as computer vision, and natural lan-
guage processing, where abundant training data is available.
A major obstacle in leveraging DL techniques for malware
analysis is the lack of sufficiently big, labeled datasets. In
this paper, we take the first steps towards building a model
which can synthesize labeled dataset of malware images us-
ing GAN. Such a model can be utilized to perform data aug-
mentation for training a classifier. Furthermore, the model can
be shared publicly for community to reap benefits of dataset
without sharing the original dataset. First, we show the under-
lying idiosyncrasies of malware images and why existing data
augmentation techniques as well as traditional GAN training
fail to produce quality artificial samples. Next, we propose
a new method for training GAN where we explicitly embed
prior domain knowledge about the dataset into the training
procedure. We show improvements in training stability and
sample quality assessed on different metrics. Our experiments
show substantial improvement on baselines and promise for
using such a generative model for malware visualization sys-
tems.

Introduction

With recent advances in machine learning (ML) and DL in
particular, there has been a surge in malware detection sys-
tems which make use of ML/DL models. Lack of publicly
available labeled data sets of malware samples make it dif-
ficult to compare existing models. In this work, we propose
a GAN based generative model which can ameliorate the is-
sue. We refer our proposed GAN based setup as Malware
Images GAN(MIGAN). We show its efficacy by perform-
ing data augmentation for malware images which is widely
used in malware visualization systems. Traditional areas in
DL such as computer vision and natural language process-
ing have used data augmentation to enhance performance
for variety of problems. Some common methods to perform
data augmentation are adding noise, re-arranging portions
of data, and removing small amount of information from
data. For example, in natural images the conventional data
augmentation method is to perform horizontal flipping and
random cropping. A data set of malware images is quite
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different compared to natural images. Malware images of
same category have strong structural correlation between
them and it is this underlying structure among malware im-
ages which differentiates one category of malware from an-
other. Hence, existing data augmentation schemes for im-
ages which are based on rotational and translation invariance
of natural images do not reconcile with the idiosyncrasies of
malware images. We discuss about the data set in more detail
in the supplementary file.

There are other added advantages from this GAN based
model of synthesizing training samples. For sensitive data,
individuals/companies can make the generator, G, publicly
available which might be preferable over sharing the actual
data set. Also, GG can be used as an alternative when trans-
ferring the whole data set from one system to other. While a
data set would require a lot of bandwidth and time to get
transferred across systems, the generator, being compara-
tively smaller in size, can instead be transferred and used to
synthesize training samples. Additionally, the discriminator
can be used as a baseline model since it is trained to predict
the class labels for its training data.

Experiments and Analysis

For experiments, we use the data set introduced by (Nataraj
etal. 2011) and is publicly available. The data set consists of
total 9,458 images coming from 25 different malware fam-
ilies. In order to obtain malware image from a given mal-
ware binary, every byte of the binary is read sequentially as
a component of a vector with each component of the vector
being an unsigned 8-bit integer. This vector is then inter-
preted as a gray-scale image by fixing number of columns
and rows. To segregate generated samples to their respective
malware category without any manual intervention, we use
the mechanism of class-conditional image synthesis model
as described in AC-GAN (Odena, Olah, and Shlens 2016),
where the generator is conditioned with class label and the
discriminator is tasked to predict the class label. Not only do
we obtain a labeled data set with this approach but we also
observe improved quality of the synthetic samples as this
approach allows the model to obtain extra information over
the domain and discover more structure in the latent space
of GAN. To allow the model to learn the structural correla-
tion among the malware images of same category we add an
additional task for the generator. To understand it, let us first
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Figure 1: mean SSIM score VS Number of iterations for
four different malware categories. Each color represents a
malware category with dotted and solid lines representing
AC-GAN and MIGAN respectively

look at the training formulation of AC-GAN (Odena, Olah,
and Shlens 2016),

Ls = E[logP(S = real| X eal)] + E[logP (S = fake|X fake)]
L. = E[logP(C = ¢|Xreat)] + EllogP(C = c| X fake)]

Here, Discriminator is trained to maximize L. + L, and
Generator is trained to minimize L, — L.. We enforce
the generator to learn structural correlation present in the
training data set by introducing additional task for the
generator to minimize 1 — SSTM (Xyeqr, X fake ). Overall,
new objective for generator becomes to minimize (1 —
SSIM(Xreathake)) + (1 — a)(LS - Lc). Where a €
(0, 1) is trade-off parameter. SSIM score (Wang et al. 2004)
is widely used in applications where structural similarity be-
tween two images is required to compute such as image
and video coding. For practical purposes, when training with
mini-batches, class labels for X ¢41. and X, are sampled
for same category of malware although it could be different
in theory.

To assess the quality of distributions, we evaluate gener-
ated sample distribution on two different metrics, SSIM and
fréchet inception distance. We also train AC-GAN (Odena,
Olah, and Shlens 2016) as baseline model. Upon comple-
tion of training, we sample malware images from generator
for every category and compare average SSIM for all mal-
ware categories in the training data set. We obtain average
SSIM score of 0.41 on MIGAN compared to 0.17 obtained
on AC-GAN. We do not obtain substantial increase in aver-
age SSIM score across all malware categories but we found
SSIM to be improving consistently with training in the case
of MIGAN whereas AC-GAN fluctuated around the same
initial SSIM score throughout the training, figure 1 shows
SSIM for four different malware categories for both GANs
during the training iterations. Since SSIM score is used as
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Figure 2: A comparison of AC-GAN and MIGAN based on
Fréchet inception distance for all 25 malware categories.

one of the objective in the loss function formulation, it is
possible that minimizing the loss would have led to improve-
ment in SSIM score. Therefore, we evaluate generated sam-
ples also on fréchet inception distance (Heusel et al. 2017).
We train MIGAN with all hyperparameters and experiment
condition same as baseline except the proposed loss func-
tion. We obtain mean fréchet inception distance of 194.98
with AC-GAN which is substantially higher compared to
the score of 125.05 obtained on MIGAN. Figure 2 shows
FID assessed for both GANs on all malware categories.

Conclusions

In this work, we present a GAN based generative model for
malware images. This work could be used to boost classi-
fier’s performance by performing data augmentation. Ad-
ditionally, it can be leveraged to generate malware images
which would alleviate the problem of publicly sharing the
data set. Our current focus is to extend this generative model
to support data augmentation for other data sets the security
domain, such as binaries, intrusion detection and log files.
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