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Introduction
We developed novel variational MMAP inference algorithms
and proximal convergent solvers, where we can improve the
approximation accuracy while better preserving the original
MMAP query by designing such a dual variational objec-
tive function that an upper bound approximation is applied
only to the entropy of decision variables. A task of marginal-
MAP (MMAP) inference is a “mixed” problem, where “max”
or B-variables are decision variables to be optimized while
all other variables are “sum” variables to be marginalized
out. Since MMAP inference is computationally intractable
(NPPP -complete), approximate variational inference tech-
niques such as upper bounding or convex relaxations meth-
ods are of particular interest. To address the scalability is-
sues of solving MMAP problems on complex loopy graphs
with multi-variable factors, the community has been making
significant progress in developing approximate variational
algorithms. Unfortunately, most current approximation ap-
proaches for MMAP have focused on pair-wise models and
their extensions to the models with high-order interactions
often result in simplification of the original MMAP query
and greater approximation errors.

We propose four novel contributions. (1) Our novel BEJG
objective function for models with high-order interactions
decomposes the intractable MMAP problem into a linear
combination of tractable sub-problems and ensures that B-
variables are maximized jointly within each sub-problem.
This design ensures that all and only B-variables remain in
our upper bound of the intractable entropy of B-variables (B-
entropy), which is completely removed now from the joint
entropy as required by the original MMAP query. (2) Our
novel BEJG variational algorithms (generalized and zero-
temperature) solve MMAP exactly on any junction graph of
a special AB-tree structure and provide accurate approximate
results on general graphs with high-order interactions. (3)
Our novel proximal solvers (BEJG and Generalized Bethe)
for MMAP on models with multi-variable factors demon-
strate improved convergence properties and are based on the
proximal point approach, where we convert the direct opti-
mization of the MMAP variational objective function into
the sequence of proximal minimization problems with the
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property that after a finite number of iterations the sequence
of associated solutions is converging to the MMAP solution.
(4) Additionally, we scale our variational approach to solve
POMDP problems and show that we can find the optimal
controller by MMAP inference in a single-DBN generative
model of a special cascading structure. We are the first to
our knowledge who proposed BEJG variational algorithms
and proximal algorithms to solve MMAP on the models with
high-order interactions.

BEJG Variational Approach for MMAP
Consider an equivalent junction graph (JG) representation of
a Bayesian Network G = (C, S, E) with clusters C, separa-
tors S (Skl ⊆ {Ck∩Cl}) and edges E . We ensure that this JG
satisfies the running intersection property and family preser-
vation property. We introduce types of clusters and separators
by the type of variables in their scope (A and/or B-variables):
(C = {CA ∪ CB ∪ CAB} and E = {EA ∪ EB ∪ EAB}).
Each cluster potential ψCk

(x) equals to the product of fac-
tors associated with this cluster. We use the form of the
original joint distribution factorized via cluster potentials
ψCk

(x), which we generalize by including “dummy” separa-
tor functions bSkl

= 1,∀kl ∈ E . We also introduce parame-
ters θCk

(x) = lnψCk
(x), θSkl

(x) = ln bSkl
(x) to obtain the

convex exponential form:
p(x) = exp[

∑
k∈C θCk

(x)−∑
kl∈E θSkl

(x)] .
We derive our novel BEJG variational approximation for

MMAP by (1) representing the MMAP problem with its
exact dual variational form (Liu and Ihler 2013), and (2)
designing a tractable BEJG objective function with a special
upper bound approximation for B-entropy, which is a linear
combination of all AB, B cluster and separator entropies with
B-variables only.

Theorem 1 The optimization of BEJG free energy FMMAP
BEJG

over the marginals from a convex set L provides an accurate
MMAP estimate on general junction graphs with high-order
interactions:

max
τ∈L

FMMAP
BEJG = E τ [θ(x)] +

∑
kl∈EAB

HSkl
(xB ; τ)+

∑
k∈C\CB

HCk
(τ)−

∑
kl∈E\EB

HSkl
(τ)−

∑
k∈CAB

HCk
(xB ; τ)

(1)
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, where set of locally consistent marginals L ..= {τ :
τ ≥ 0;

∑
∼xSkl

τCk
(x) = τSkl

(x),∀k, kl}; the expected en-
ergy via cluster and separator marginals is E τ [θ(x)] =∑
k∈C

∑
x∈Ck

τCk
(x) · θCk

(x) − ∑
kl∈E

∑
x∈Skl

τSkl
(x) ·

θSkl
(x); HCk

(τ) = −∑
x∈Ck

τCk
(x) · ln τCk

(x) is
a cluster entropy via cluster marginals; HSkl

(τ) =
−∑

x∈Skl
τSkl

(x)·ln τSkl
(x) is a separator entropy.

We also provide special conditions when our BEJG ap-
proximation scheme gives exact MMAP solutions. Thus, we:
(1) specify a special structure of a junction graph with high
order interactions (denoted as AB-tree JG) on which MMAP
inference is tractable, (2) prove that our BEJG objective
function equals to the exact MMAP dual function on any
AB-tree JG. Importantly, our BEJG objective function is dis-
tinct from JGBP approximate objective (Liu and Ihler 2013)
since our special approximation for the B-conditional en-
tropy H(XA |XB , q) ensures that B-entropy is completely
removed from the joint entropy as required by the exact
MMAP dual form (Liu and Ihler 2013).

We designed generalized and zero-temperature BEJG vari-
ational algorithms for MMAP, which fixed points correspond
to stationary points of BEJG variational problem (1).

Algorithm 1 Zero-temperature BEJG algorithm

for iteration n = 1, 2, . . . pass messages µk→l(xSkl
) from a

cluster Ck to a cluster Cl, ∀kl ∈ E :

CAk
SA

→ Cl : µk→l(xSkl
) =

∑
∼xSkl

α(xCk
) (2)

, where α(xCk
) ..=

ψCk
(xCk

)

bSkl
(xSkl

) ·
∏
j∈N(k)\l µj→k(xSkl

)

CAB,Bk
SB

→ Cl : µk→l(xSkl
) = max

∼xB
Skl

{∑
xA
Ck

α(xCk
)
}

CABk
SA

→ Cl : µk→l(xSkl
) =

∑
∼xSkl

{
α(xCk

)
}
·δ[X∗CB

k
]

, where δ is the indicator function, s.t. δ = 1 if xBCk
= x∗B

and δ = 0 otherwise, ∀xBCk
∈ XB

Ck
; and local MMAP is:

X∗CB
k
= argmax

XB
Ck

∑
xA
Ck

ψCk
(x)

∏
j∈N(k)

µj→k(xSkl
)

CABk
SAB

→ Cl : µk→l(xSkl
) = max

∼xB
Skl

β(xBCk
)·

∑
∼xSkl

α(xCk
)

β(xBCk
)

, where β(xBCk
) =

∑
xA
Ck

ψCk
(x)

∏
j∈N(k)\l µj→k(xSkl

)

At convergence, decode optimal MMAP configurations X∗B
with a Trace-MMAP procedure

Results. We compare our variational and proximal algo-
rithms to existing variational methods, including JGBP (Liu
and Ihler 2013), Weighted mini-bucket (Dechter and Rish
2003), and Dual decomposition (Ping, Liu, and Ihler 2015)

Problem size: # vars-factors - “B” variables
Isling 64-176-32 81-225-41 400-1160-200
Solver ln p(X∗B) Error= (Exact/Best - Solver Estimate)
BEJG 0 0.49146587 2.10468011
WMB 5.87321002 7.58984151 −
DD 4.27607773 4.88179131 27.92131600
GBProx 1.90346121 0 1.040683100
JG 1.33533977 10.6139733 36.51320000
BEProx 0 0.00711234 0

Problem size: # vars-factors-“B” vars
Hidden 40-79-20 70-139-35 60-119-30 50-99-25
Solver ln p(X∗B) Error
BEJG 0 1.184743 0 0.31548
WMB 0 2.346445 1.566266 0.69414
DD 0 0.356240 2.161253 0.33595
GBProx 0 1.371855 0 0
JG 0 0 2.155431 3.51697
BEProx 0 0.020891 0 0

Problem size: # vars-factors-“B” vars
Bayesian 60-60-30 59-59-30 58-58-29 57-56-28
Solver ln p(X∗B) Error
BEJG 0.035210 0 0 0.083177
WMB 2.780708 4.471639 4.562611 4.668145
DD 2.738148 3.292984 3.218876 3.324410
GBProx 0.559616 0 1.370763 0
JG 0.111067 3.555348 0.698378 0.090003
BEProx 0 0 0 0

Table 1: Accuracy comparison of zero-temperature BEJG
algorithm (BEJG), BEJG Proximal solver (BEProx) and GB
Proximal solver (GBProx) to existing methods in terms of
log-MMAP error ln p(X∗B) = (Exact/Best - Solver Result).

methods. Here, we use (1) simulated models of various com-
plexity generated from synthetic distributions, (2) Bayesian
networks from known UAI benchmarks, and (3) MMAP
problems encoding non-pairwise sequential decision-making
problems. We show that our solvers outperform other varia-
tional methods for many of reported cases (cf. Table 1 and ap-
pendix). Additionally, we demonstrate the important real-life
application of the proposed variational approaches to solve
complex tasks of policy optimization and sequential decision-
making problems (complex MMAP instances) (Kiselev and
Poupart 2014), (Kiselev 2018).
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