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Introduction
We consider the problem of allocating a set of indivisible
goods among a group of agents under matroid constraints
and additive valuations, in a fair manner.

The problem of fair allocation of indivisible goods has re-
cently garnered a lot of interest (Amanatidis, Birmpas, and
Markakis 2018; Barman et al. 2018; Endriss 2017; Brandt
et al. 2016; Amanatidis et al. 2015; Bouveret and Lemaı̂tre
2014; Procaccia and Wang 2014; Kurokawa, Procaccia, and
Wang 2016). Several important practical problems—for eg.,
matching courses, resolving inheritance issues, allocating
cloud computing resources—naturally lend themselves to
the problem of assigning goods to agents, when the goods
cannot be fractionally allocated. Significant effort has been
invested in devising efficient algorithms for these problems
in order to enable practicable solutions to a wide range of
such real-world problems.

One of the classical fairness notions for these problems is
envy-freeness (EF), which guarantees that no agent values
any other agent’s bundle more than her own bundle (Foley
1967; Varian 1974). However, EF does not translate to the
indivisible scenario, for example, it is impossible to achieve
an EF allocation with one indivisible good and two agents.
Thus, the challenges pertinent to the fair allocation problem
with indivisible goods are (1) defining appropriate fairness
notions, (2) providing existential guarantees, and (3) design-
ing computationally efficient algorithms.

A widely used fairness notion for the indivisible setting is
envy-freeness up to one good (EF1) (Budish 2011), which
is a weaker version of EF. EF1 guarantees that every agent
values her bundle at least as much as any other agent’s bun-
dle, up to the removal of a single good from the other agent’s
bundle. Unlike EF, EF1 allocations always exist and can
be computed efficiently (Caragiannis et al. 2016). This mo-
tivates investigating EF1 under more general settings such
as, matroid constraints (Gourvès, Monnot, and Tlilane 2014;
Gourvès and Monnot 2017; Biswas and Barman 2018) and
connectivity constraints (Bouveret et al. 2017; Bilò et al.
2018). These constraints allow formulating a broader set
of interesting and challenging practical problems, see ex-
amples provided in (Gourvès, Monnot, and Tlilane 2014;
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Biswas and Barman 2018; Bouveret et al. 2017).
In this paper, we consider the matroid constrained fair al-

location problem, introduced in (Biswas and Barman 2018).
Here, each allocated bundle, in addition to the fairness crite-
rion, needs to satisfy the independence criterion specified by
a matroid. In (Biswas and Barman 2018), the authors estab-
lished the existence of EF1 allocation for this setting with
identical agents and additive valuations; however, designing
a polynomial time algorithm remained an open problem. In
this paper, we propose a novel algorithm, called SWAP, to
augment their existential result.

Preliminaries
Matroids (Oxley 1992) provide a framework for represent-
ing combinatorial constraints—cardinality constraints, lam-
inar constraints etc. Formally, a matroid is defined as a pair
([m], I) where [m] is the ground set of elements and I—
referred to as a set of independent sets—is a nonempty col-
lection of subsets of [m] that satisfies: (i) Hereditary prop-
erty: if B ∈ I and A ⊂ B, then A ∈ I, and (ii) Independent
Set Exchange: if A,B ∈ I and |A| < |B|, then there exists
an element x ∈ B \ A such that A ∪ {x} ∈ I. We con-
sider a fair allocation instance 〈[m], [n], (vi)i∈[n],M〉where
[m] is the set of indivisible goods, [n] is the set of agents,
vi(g) ∈ R+ denotes the valuation of agent i ∈ [n] for good
g ∈ [m], andM denotes the set of all feasible allocations,
i.e., whose constituent bundles are independent:M := {A
= (A1, . . . , An) ∈ Πn([m]) | Ai ∈ I, ∀i ∈ [n]}, where
Πn([m]) is the set of all n-partitions of the set [m].

The Algorithm: SWAP
In the unconstrained setting with additive valuations, an EF1
allocation can be obtained using a greedy round robin ap-
proach (Caragiannis et al. 2016). However, this approach
does not satisfy matroid constraints. Our main contribu-
tion is the SWAP algorithm, that finds an EF1 allocation
for matroid constrained allocation problems when the val-
uations are identical (∀ i, j ∈ [n], vi=vj=v) and additive
(v(S)=

∑
g∈S v(g) for all S ⊆ [m]).

The SWAP algorithm starts with a feasible allocation (not
necessarily fair) and intelligently swaps goods among bun-
dles to ensure an EF1 allocation after a finite number of
swaps. Our main result is stated in Theorem 1.
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Theorem 1 Given any fair division instance〈
[m], [n], (vi)i∈[n],M

〉
with additive, identical valua-

tions and matroid constraint,M 6= ∅, the algorithm SWAP
finds an EF1 allocation in polynomial time.

Algorithm 1 SWAP (ALG 1)
Input : A fair division instance 〈[m], [n], v(·),M〉 with identical,
additive valuation, v(·), along with the access to the underlying
matroid ([m], I).
Output: A feasible EF1 allocation.
1: Initialize A = (A1, . . . , An) such that ∪i∈[n]Ai = [m] and
Ai ∈ I for all i ∈ [n]. {Using the algorithm proposed in
(Gabow and Westermann 1992).}

2: Set ` = argmin
i∈[n]

v(Ai). {The least valued bundle in A.}

3: Set V = {i ∈ [n] | v(Ai \ {g}) > v(A`) for all g ∈ Ai}.
{Set of indices i such that Ai violates EF1 for A`.}

4: while V 6= ∅ do
5: Set h = argmax

i∈V
v(Ai). {Highest valued bundle in V .}

6: if |A`| < |Ah| then
7: Set g = argmax

e∈Ah:A`∪{e}∈I
v(e). {Such a good g exists by

the independent set exchange property of matroids.}
8: Update Ah ← Ah \ {g} and A` ← A` ∪ {g}.
9: else

10: Let µ be the map obtained by applying Lemma 1 to in-
dependent sets A` and Ah. {Here, |A`| ≥ |Ah| and we
have µ : Ah 7→ A`.}

11: Find a good g ∈ Ah such that the following holds:
v(g) − v(µ(g)) ≥ 1

m2 v(Ah). {The existence of such
a good g is established in Lemma 2.}

12: UpdateAh ← (Ah\g)∪µ(g) andA` ← (A`\µ(g))∪g.
13: end if
14: Update `← argmini∈[n] v(Ai).
15: Update V ← {i ∈ [n] | v(Ai \ {g}) > v(A`) ∀g ∈ Ai}.
16: end while
17: Return A = (A1, . . . , An).

Lemma 1 (Biswas and Barman 2018) Let ([m], I) be a
matroid with independent subsets I, J ∈ I which satisfy
I ∩ J = ∅ and |I| ≥ |J |. Then, there exists a one-to-one
map µ : J 7→ I such that swapping any j ∈ J with µ(j) ∈ I
leads to independent subsets, i.e., for any element j ∈ J ,
both (J \ {j}) ∪ µ(j) and (I \ µ(j)) ∪ {j} belong to I.
Lemma 2 If a feasible allocation A is not EF1, then there
exists a feasible swap such that the valuation of Ah—the
highest valued bundle violating EF1 with respect to the least
valued bundle—drops by at least a multiplicative factor of(
1− 1

m2

)
, or, its cardinality decreases by one.

Conclusions
This paper strengthens the universality of EF1 by showing
that under identical and additive valuations, fair (EF1) allo-
cations can be efficiently computed even under general ma-
troid constraints. Our result provides a computational anchor
to the existential result of (Biswas and Barman 2018).
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Bilò, V.; Caragiannis, I.; Flammini, M.; Igarashi, A.; Monaco, G.;
Peters, D.; Vinci, C.; and Zwicker, W. S. 2018. Almost envy-free
allocations with connected bundles. CoRR abs/1808.09406.
Biswas, A., and Barman, S. 2018. Fair Division Under Cardinality
Constraints. In International Joint Conference on Artificial Intelli-
gence IJCAI, 91–97.
Bouveret, S., and Lemaı̂tre, M. 2014. Characterizing Conflicts in
Fair Division of Indivisible Goods using a Scale of Criteria. In
International Conference on Autonomous Agents and Multi-Agent
Systems, 1321–1328.
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