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Introduction

Reinforcement Learning (RL) involves a decision-making
agent learning to achieve goals, while dealing with uncer-
tainty and limited data about its environment (Sutton and
Barto 1998). The goal in a RL problem is indicated by an
external reward signal provided by the environment with
which the agent is interacting. The agent learns what to do
– how to map situations to actions so as to maximize the
cumulative expected reward over time.

The RL problem specification is defined more formally in
terms of Markov Decision Processes (MDPs). In a MDP, the
state observed and the action taken at time-step t determine
the distribution of the state and the immediate reward at time
t+ 1. This allows learning fine-grain courses of action. One
could however, learn much more rapidly by abstracting away
the myriad of details and considering actions of longer dura-
tion, which generate longer-range transitions. This serves as
a motivation for learning temporal abstractions in the frame-
work of RL. Hierarchical Reinforcement Learning (HRL)
methods aim to find closed-loop policies which have a tem-
poral extent, and can then be used instead (or in addition to)
one-step actions. Semi-Markov decision processes (SMDPs)
provide a generalized framework for HRL methods, by al-
lowing the amount of time between two decision points to
be a random variable (Puterman 1994).

Learning temporal abstractions which are partial solutions
to a task and could be reused for other similar or even more
complicated tasks is intuitively an ingredient which can help
agents to plan, learn and reason efficiently at multiple res-
olutions of perceptions and time. Just like humans acquire
skills and build on top of already existing skills to solve
more complicated tasks, AI agents should be able to learn
and develop skills continually, hierarchically and incremen-
tally over time. In my research, I aim to answer the following
question: How should an agent efficiently represent, learn
and use knowledge of the world in continual tasks? My work
builds on the options framework, but provides novel exten-
sions driven by this question.
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Theme 1: Learning Temporal Abstractions
with Interest Functions

The options framework (Sutton, Precup, and Singh 1999)
enables an agent’s trajectory to be analyzed in both through
the lens of discrete-time transitions or through SMDP-style
transitions. Recent research has demonstrated that options
can be learned automatically, end-to-end, for a given task
(Bacon, Harb, and Precup 2017). Unfortunately, this can re-
sult in degenerate solutions, with either one option being
used for the entire task, or option duration collapsing to sin-
gle time steps. This type of degenerate solution is potentially
due to a simplifying assumption used in the option-critic:
that all options are available in all states.

In order to learn options that represent specialized and
meaningful skills for lifelong learning, we revisit the idea of
an initiation set, used in the options framework, but through
a formulation that is more amenable to learning. We intro-
duce the notion of interest functions Iω : S −→ IR. The
interest function Iω(s) is indicative of the availability of an
option ω in state s. The idea is inspired by human visual at-
tention: while we engage in any task, each skill employed is
specialized in attending to only certain states. For example, a
skill such as ‘stop if the traffic light is red’ is only applicable
in states in which a traffic light is present.

We define interest functions in the options framework as
follows. The state-value function is defined as:

VΩ(s) =
∑
ω

πIω,z
(ω|s)QΩ,θ(s, ω) (1)

whereQΩ,θ is the option-value function parameterized by θ,
and the probability of an option being sampled in a given
state is defined as:

πIω,z (ω|s) = Iω,z(s)πΩ,θ(ω|s)
/∑

ω

Iω,z(s)πΩ,θ(ω|s)

(2)
Here, Iω,z(s) is the interest function parameterized by z.
The agent initially would consider that all options are avail-
able everywhere. As learning progresses, we expect that the
emerging options will be specialized over different state re-
gions. Starting with the option-value function, we can derive
the interest function gradient, obtaining the following result:
Theorem 1. Given a set of Markov options with stochas-
tic, differentiable interest functions Iω,z , the gradient of the
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expected discounted return with respect to z at (s, ω) is:∑
s′,ω′

µ̂Ω(s
′, ω′|s, ω)βω,ν(s′)

∂πIω,z
(ω′|s′)
∂z

QΩ(s
′, ω′)

where µ̂Ω(s
′, ω′|s, ω) is the discounted weighting of the

state-option pairs along trajectories starting from (s, ω)
sampled from the sampling distribution determined by Iω,z .

We are currently evaluating this approach in simulated en-
vironments. But, in order to understand more broadly the ad-
vantage of using some form of interest or attention in RL, we
have already done some preliminary empirical work which
investigates the role of biases acquired from human visual
attention in automated RL agents. In (Khetarpal and Precup
2018), we leverage where humans look in an image as an
implicit indication of what is salient for decision making.
Our goal was to explore how foveating around the regions
where humans look impacts the reinforcement learning pro-
cess, especially focusing on robustness and continual learn-
ing. We hypothesized that knowing where to look aids con-
tinual learning across tasks.

We trained a Visually-Attentive UNREAL agent based on
the UNREAL (Jaderberg et al. 2016) agent with varying de-
grees of foveation. To evaluate the trained models for contin-
ual learning, we introduced 3 types of perturbations in the in-
put frames namely; Gaussian noise (easy), tinting of images
at random with the same hue (moderate), and tinting of im-
ages at random with different hues (difficult). We show em-
pirically that upon encountering flickering in frames at ran-
dom, the Visually-Attentive UNREAL agent is still able to
perform as well as the baseline and is relatively more robust
to distractors in both easy and moderate tasks. The project
page for this work1 provides an overview of the results along
with links to the code and paper.

Theme 2: Temporal Abstractions across both
Perception and Action

Humans are presented with a never ending stream of sensori-
motor data in the rich environments in which they live. Sim-
ilarly, modern RL agents experience rich simulated worlds
through their sensors. What our agents see forms an impor-
tant source of information. My goal in this part of the thesis
is to investigate the best way for an agent to represent and
learn from this sensory stream. A powerful approach that
has been studied already is to learn predictive (Littman and
Sutton 2002) models of the world, such as predicting how
objects and interactions with them would change the envi-
ronment.

Analogous to temporally extended actions, we propose
learning temporally extended perception. The key idea is to
learn temporal abstractions unifying both action and percep-
tion. Most of the success in the field of computer vision has
relied on static labelled data of multiple classes. However,
it is much more natural to learn about the world knowledge
through embodied interaction with the world. We propose to
allow perceptual features to represent multiple time steps, in
synchrony with the agent’s options.

1https://sites.google.com/view/attendbeforeyouact

For example, consider any household environment where
a robot is left to navigate and learn about the dynamics of the
environment via interacting with it. Consider that we have
a set of task descriptions, such as opening a door or pick-
ing up an object, each corresponding to a skill. Each task is
specified through a pseudo reward function. We would like
the agent to develop features which can serve as meaning-
ful pseudo rewards. Can we represent the task specific in-
formation in the form of temporal abstractions which carry
the notion of both visual features and actions across multiple
scales of time and state space granularity? How can we learn
a feature embedding which supports learning about useful
and diverse skills? One of the most challenging aspects of
this problem is – how do we learn temporal abstractions that
enable the agent to be a lifelong learner?
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