
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Labor Division with Movable Walls: Composing Executable
Specifications with Machine Learning and Search (Blue Sky Idea)

David Harel,1 Assaf Marron,1 Ariel Rosenfeld,1 Moshe Vardi,2 Gera Weiss3
1Weizmann Institute of Science, Rehovot, Israel.

2Rice University, Houston, Texas, USA.
3Ben-Gurion University, Beer-Sheva, Israel.

Abstract

Artificial intelligence (AI) techniques, including, e.g., ma-
chine learning, multi-agent collaboration, planning, and
heuristic search, are emerging as ever-stronger tools for solv-
ing hard problems in real-world applications. Executable
specification techniques (ES), including, e.g., Statecharts and
scenario-based programming, is a promising development ap-
proach, offering intuitiveness, ease of enhancement, compo-
sitionality, and amenability to formal analysis. We propose
an approach for integrating AI and ES techniques in develop-
ing complex intelligent systems, which can greatly simplify
agile/spiral development and maintenance processes. The ap-
proach calls for automated detection of whether certain goals
and sub-goals are met; a clear division between sub-goals
solved with AI and those solved with ES; compositional and
incremental addition of AI-based or ES-based components,
each focusing on a particular gap between a current capability
and a well-stated goal; and, iterative refinement of sub-goals
solved with AI into smaller sub-sub-goals where some are
solved with ES, and some with AI. We describe the principles
of the approach and its advantages, as well as key challenges
and suggestions for how to tackle them.

Introduction
Artificial intelligence (AI) techniques are increasingly prov-
ing their power and usefulness in implementing real-world
systems — resulting in a growing use of components based
on machine learning, planning and search, multi-agent sys-
tems, a host of heuristics-based techniques, etc. In another
area of software and system engineering, certain specifi-
cations and modeling formalisms, like Statecharts (Harel
1987) and scenario-based programming (Damm and Harel
2001; Harel and Marelly 2003; Harel, Marron, and Weiss
2012), which describe separately each facet of the desired
system behavior, are also directly executable. Such for-
malisms, collectively referred to here as executable speci-
fications (ES) can endow systems with often-absent proper-
ties. These include, e.g., intuitiveness of the specifications,
alignment of the system’s structure with the requirements,
and compositionality/incrementality, i.e., the ability to en-
hance or refine a system by simply adding modules, sim-
ilarly to how one can enhance a requirements document
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by adding clarifications, refinements and exceptions in the
form of new sentences in the body of the document or
as independent appendices and footnotes. Another impor-
tant property is the amenability of ES to formal verification
and analysis. This includes, e.g., model-checking in search
for undesired behaviors (Harel et al. 2013; Baier and Ka-
toen 2008) and realizability checking—looking for inherent
conflicts within the specifications (Greenyer et al. 2016;
Vardi 1995). In this paper we outline a novel approach for
integrating the use of AI and ES techniques in developing
complex intelligent systems, which can result in systems that
are much easier to enhance and maintain compared with cur-
rent uses of AI in system development.

Basic Principles of the Approach
Below we list the basic general principles of the proposed
approach. Further illustration, explanations and examples
appear in Fig. 1 and in subsequent sections.

First, one must state the overall problem or mission as a
set of explicit goals, where the recognition of whether they
are achieved or not in a given system run can be automated.
While automatic detection of mission-accomplishment at
run-time is valuable, the approach initially suffices with re-
quiring it only at development time.

Second, when such a test or verification fails, one must be
able to succinctly describe the difference, or gap, between
what the system does and what it should do, generalizing a
single or few bad runs into the common characteristics of all
bad runs that could be associated with the noticed failure.

Third, as goals are refined and requirements added, or
when certain bugs are discovered, rather than enhancing and
often complicating existing components to address the issue,
we strive to add new components that precisely address the
difference, or the gap, between the (revised) goals and the
what the existing specification accomplishes.

Fourth, we aim at an architecture in which independent
ES-only components can be readily composed with indepen-
dent AI-only components, where each AI or ES component
addresses a particular (sub-)goal, and each is essentially un-
aware of the existence of the others.

The fifth principle calls for repeatedly identifying oppor-
tunities for replacing, at least partially, AI-based compo-
nents with ES ones. Such transitions from AI to ES can be
triggered by, e.g., the emergence of a better understanding
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Figure 1: Progression of system structure: As Gap1 & Gap3
are discovered in verification against goals, new components
AI3 and ES5 are developed to respectively address these
gaps. Then, the neural net in AI2 is replaced by executable
rules and scenarios, and by another neural net and a search
for two remaining subproblems.

of the elements of a particular goal by engineers and stake-
holders, a demand by engineers or regulators for better visi-
bility of the logic or rationale of a specific system behavior,
or a performance issue that must be corrected. For illustrat-
ing the principles, in Fig. 1, AI component AI2, based on a
neural net, is replaced by two ES components ES2.3, ES2.4
containing rules and scenarios, and sub-problems previously
covered by AI2 that are not addressed by ES2.3 and ES2.4,
are solved by a new neural net and an A* search in compo-
nents AI2.1 and AI2.2.

Goal Specification and Recognition
Complex intelligent systems, and reactive systems in gen-
eral (see (Harel and Pnueli 1985)), are normally developed
incrementally, using established software-engineering tech-
niques, in a process where goals are set, and behavior is
specified, implemented, and verified against those goals.
The goals of a system (or component thereof) describe its
ultimate functional requirements, or, in other words, ‘what
the users, customers, engineers or other stakeholders really
want’. Such requirements are usually documented in texts
and diagrams, and then implemented in code. The code for
a given requirement is sometimes considered the ultimate
formalization of that requirement. Nevertheless, because the
code is often arcane and might be spread across multiple
modules, there is a need to formalize the requirements them-
selves. Although this is sometimes done in a purely declar-
ative fashion, executable specifications constitute a formal
system description, whose parts describe the various aspects
of the system’s behavior, and whose semantics enables di-
rect execution of the desired behavior, most often without
involving computationally-expensive synthesis.

Some kinds of executable specifications, e.g., the play-out
technique for the LSC language (Harel and Marelly 2003),
or the event-selection mechanism of behavioral program-
ming in Java or in C++ (Harel, Marron, and Weiss 2012),
are characterized by the ability of the execution engine to
continuously consult the constraints implied by the specifi-
cations, in an attempt to determine a valid next action for the
system to take that does not violate those constraints. Even
so, the development artifacts of complex reactive systems
normally prescribe local reactions to events and conditions,
and not the pursuit of overall system goals as is often the
case in AI-based systems. Look-ahead search techniques in
ES, as in smart play-out (Harel et al. 2002), can sometimes
help choose among multiple options allowed by the specifi-
cation to within a limited depth/horizon (i.e., looking ahead
some fixed number of steps, while taking into account all
possible responses by the environment, even an adversarial
one). Complete, computationally expensive (and often im-
practical) program synthesis is, however, needed in order to
generate an event selection strategy that copes with any en-
vironment behavior at any depth.

Thus, if the system is developed completely with ES,
many overall goals might remain only in the mind of the de-
signer. Indeed, some of the advantages of ES are in that one
can decompose powerful systems into simple scenarios that
are oblivious not only to each other’s functions, as would be
in standard object-oriented and structured programming en-
capsulation, but also to each other’s very existence, since the
various modules do not even call each other; they only exist
and run in parallel. One can readily observe, however, that
many of the original overall intentions and requirements,
whether tacit or already documented, can be formalized in
some way. Or, at least, one can automate the recognition at
development time of whether certain goals are achieved or
not, in observing actual system behavior in test runs.

Consider, for example, an at-home patient-assistant robot,
or an autonomous service vehicle for factory yards, and fo-
cus on the task of fetching and delivering an object. Regard-
less of how each of these systems is programmed to do its
tasks, one may be able to specify explicit criteria for rec-
ognizing, say, efficient vs. inefficient routes, steady vs. un-
steady motion, successful vs. unsuccessful object or location
recognition, safe vs. unsafe negotiation of obstacles, etc.

Further, in addition to, or instead of, such explicit specifi-
cations, one may program AI-based ‘recognizers’ for such
properties. Since these are development-time recognizers,
their input can be visual videos or trace/log files with ac-
tual data, like commands, environment signals, objects, ob-
ject locations and speeds, etc. Further, neither the ES-based
nor the AI-based recognizers have to complete their tasks in
real time, which contributes to making them feasible.

Verifying Specifications Against System Goals
Executable system specifications mostly capture how the
system should behave under various conditions and follow-
ing certain events. They focus on relatively local behavior,
and have only a limited awareness of overall system goals.
During the classical formal verification of specifications,
or automated program synthesis, one may introduce some
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formalization of overall desired results, at various abstrac-
tion levels. The actual formal verification of the system, or
even that of only a single component, is, however, often in-
tractable. Overall behavior is thus often verified only at high
abstraction levels, and precise formal verification is achieved
only for smaller components with well-defined boundaries.

Further, during development, formal methods may be able
to check if given specifications are realizable, or if an imple-
mentation meets its specifications, but these methods might
miss tacit needs, which are noticed only at much later stages.

A step towards addressing this limitation can be by us-
ing the goal-accomplishment recognizers discussed earlier.
Thus, in addition to employing ordinary restricted test cases
and limited formal verification, one may conduct extensive
automated runs, with a variety of coverage-related parame-
ters, and examine where the existing system or component
indeed seems to meet its goals.

Succinct Description of Functional Gaps
When presented with a failed run or a counter-example re-
sulting from formal verification, engineers can often gen-
eralize it to provide a broader description of gaps between
what the system presently does and what it should do. E.g.,
in the above home-assistant robot and factory vehicle ex-
ample, one may translate a near collision into a conclusion
such as “the robot does not understand that certain obsta-
cles, like a wet-floor sign or a horizontal area-demarcation
tape, mark an entire forbidden area, which must not be en-
tered , even when the path is physically open”. Or, a sin-
gle spilling of some drink may be translated into “the robot
changes of speed and direction are such that they may cause
open liquid containers like a glass of tea or a bucket of paint,
to spill over”. While engineers may offer such summaries of
causalities and conditions after seeing only one example, au-
tomating this process can present a significant challenge, re-
quiring multiple examples, and a-priori hints or constraints
about the kinds of statements that would appear in the de-
scription (Alur et al. 2013).

Thus, regardless of the manual or automated methods
used to create the gap description (not yet addressing the
gap), when verification or testing shows that a well-defined
goal is not met, our approach calls for creating a formal rep-
resentation of the gap between the present capabilities of
the system and those required by the goal. Such descriptions
should emphasize the specific gap and its boundaries, com-
parable to sentences that a coach might use to draw an ath-
lete’s attention to a particular motion within an exercise, as
opposed to just showing the entire exercise done correctly.

Gap descriptions can come in a variety of forms: a concise
mathematical specification of a desired reaction, paired with
a specification of how the system does it at present; a set
of multiple concrete simulations of counterexamples, paired
with desired runs, with the differences highlighted; in some
cases the very component that closes the gap (as described
in the next section) can serve as its definition (e.g., the detec-
tion and correct handling of previously-unrecognized obsta-
cles), but this does not have to be the case. E.g., the cor-
rection of the spilling from liquid containers could come
from slower and smoother robot motions, or from checking

that liquid containers are closed well, or, alternatively, from
checking that such containers are not filled to the top.

Closing Gaps with Dedicated Components
Given a concise representation of a particular gap between
the capabilities of a given specification and a given goal, we
propose that, rather than improving the existing components
such that they also handle the gap area correctly, one should
create one or more dedicated components (AI- or ES-based)
that address the gap as their only, or their main, goal.

Going back to our example systems, for handling wet-
floor signs or closed-off areas, a new component can detect
these objects and feed its findings to existing components
that would now handle the obstacle better. Alternatively, it
can enforce smoother motions by either dictating new accel-
erations or angles of direction changes, overriding existing
ones, or by constraining some non-deterministic accelera-
tion and angle choices made by other modules. See the next
section for more details about this composition.

Component Composition
We propose that applications be built in ways that allow in-
cremental addition of components, where each component
is relatively oblivious to the others, is responsible only for
one or very few aspects of behavior, and is activated and
composed with the rest of the system by the run-time in-
frastructure, rather than by invoking, or being invoked by,
other application modules. Examples for such techniques
(each with its capabilities and limitations) include aspect
oriented programming (Kiczales et al. 1997), feature ori-
ented software development (Apel and Kästner 2009), BIP
(Behavior, Intention, Priority) (Bliudze and Sifakis 2008),
and scenario-based programming (SBP) (a.k.a. behavioral
programming) (Damm and Harel 2001; Harel and Marelly
2003; Harel, Marron, and Weiss 2012).

In particular, we observe that AI-based components can
be composed smoothly with SBP, as follows. In SBP, system
behavior is abstracted as events. Each component is a sce-
nario that can wait for events (coming from the environment
or the system), and then propose events that should be con-
sidered for triggering (termed requested events). The sce-
nario can also declare events as forbidden (termed blocked
events) until some other event occurs. All scenarios run in
parallel, and an event-selection mechanism in the run-time
infrastructure selects the next event and notifies and resumes
all affected scenarios. All resumed scenarios then proceed
to their next synchronization point and present their (pos-
sibly revised) declarations of requested and blocked events.
The process then repeats. Sensor scenarios translate real en-
vironment events (e.g., receiving a voice command or notic-
ing an object in the environment) into behavioral events, and
actuator scenarios translate certain behavioral events into
their respective physical changes in the environment (e.g.,
displaying some text or turning a vehicle’s wheels).

While common SBP specification contain very crisp
rules, like “when the traffic light is red the vehicle cannot
move forward until the light is green”, pure AI-based com-
ponents can still readily fit into this framework in several
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ways: they can serve as sensor components, translating com-
plex environment conditions, as captured, e.g., in a raw im-
age of a street intersection, into concrete and succinct behav-
ioral events, e.g., “the traffic light changed to green”; they
can take over certain actuator functions, e.g., physically con-
trolling motor speed changes; or, they may join the SBP sce-
narios in deciding on the next event, requesting and block-
ing certain events, e.g., if the changing of the motor speed
allowed multiple non-deterministic choices, the AI compo-
nent can block the choices that it deems to be undesired. This
composition may, of course, be augmented with a variety of
collaboration and joint decision techniques, like (Kaminka
and Frenkel 2007; Bliudze and Sifakis 2008).

Transitioning AI components towards ES
While AI solutions using neural nets, search or the emer-
gent behavior of collaborating agents are powerful, there is a
constant pressure to replace them with explicit specification
and even with conventional algorithmic code. Thus, as more
knowledge is gained about the problem, one may wish to
strengthen parts of the solution by applying specific proce-
dural components; stakeholders and regulators may demand
more detailed explanation of how and why a particular neu-
ral net works, and the explanation may be used to actually
re-develop aspects of the solution; or, performance issues
may emerge which slow down the AI-based solution, driving
towards replacement with efficient, explicit specifications.

Such transitioning from AI to ES, however, does not have
to be complete. Certain parts of the AI solution may be trans-
formed into ES components while others are redeveloped
using AI techniques, but addressing a ‘smaller’ problem,
which is part of the original problem. (The word ‘smaller’
appears here in quotes, since often the issues at hand can be
infinitely or unboundedly complex, preventing a meaningful
definition and comparison of problem sizes.) For example,
assume that the robot had an AI-based solution for obsta-
cle detection and avoidance. This may be refined into hav-
ing an ES-based handling of well-recognized obstacles, such
as walls, fences, and standard no-entry traffic signs, com-
bined with an AI-based handling of other kinds of obstacles,
including the abovementioned wet-floor signs or tapes that
close off an area. This may then be further refined, towards
using AI only for recognition of the special obstacles, but
having explicit ES rules for the reactive behavior of comput-
ing the boundaries of the restricted area.

Similarly, an AI-based solution for controlling a robot’s
speed and direction changes, may be divided into explicit
ES rules for computing rotation and acceleration parameters
depending on the nature of the payload, path conditions and
urgency, while ‘smaller’ AI-based solutions may be used to
detect ‘only’ the input to these rules, i.e., the payload prop-
erties, path conditions or scheduling constraints expected by
the user (see, e.g.,(Rosenfeld and Kraus 2018)).

Converting AI to ES may be done manually, but it can also
be assisted by automated tools. For example, specification-
mining tools can observe actual behaviors of a system con-
taining a neural net, in the form of trace/log files or input-
output examples, and infer scenarios and event-sequence
causalities (Ammons, Bodik, and Larus 2002; Lo and Maoz

2008), algorithms (Beschastnikh et al. 2013), or procedural
programs (Balog et al. 2016) that carry out the related func-
tion or a subset thereof.

Related Work
Artificial Intelligence and software engineering have
evolved as separate disciplines within computer science. In
recent years, however, there are research efforts and calls for
action, intended to bring about cross fertilization of tech-
niques and approaches between the two (see, e.g., (Xie
2018)). These are manifested in a variety of forms, in devel-
opment tools, testing, risk analysis, and of course in the run-
ning system itself. Specific examples include applying rig-
orous software engineering methods in developing collabo-
rating agents (Jiménez, Piattini, and Vizcaı́no 2009; Sturm
and Shehory 2014), recent efforts to apply formal verifica-
tion techniques to neural nets (Katz et al. 2017), using AI al-
gorithms for speeding up automated program synthesis and
formal verification in bounded model-checking (Biere et al.
2009), and using AI planning algorithms for run-time looka-
head in formally-specified systems (Harel and Segall 2007;
Weinstock 2015; Brukman et al. 2015). Additional examples
can be found in (WISE Intl. Workshop 2017).

In this paper, we focused on a particular form of archi-
tectural integration: dividing a system into modules based
on AI and modules based on executable specifications, and
composing these two kinds of components via underlying
run-time infrastructure services.

Discussion and Conclusion
Clearly, each of the principles of our approach to develop-
ing and designing the architecture of complex systems —
automated detection of goal compliance, verification against
goals, explicit statement of gaps, developing modules that
exactly address particular gaps, transparent infrastructure
composition of AI and ES modules, and decomposing AI
modules into ES and ‘smaller’ AI modules — presents a
challenge in its own right. E.g., the design of the ES aspects
of a system will have to overcome some of the challenges
faced by earlier attempts at developing expert systems; the
translation of a single failure into a formal, yet more general,
description of a functional gap, may initially turn out to be
more complex than in our examples; or, the decomposition
of an AI-based component into smaller sub goals may not
readily result in smaller and simpler components. However,
based on preliminary observations, we believe that with ap-
propriate research work it will be possible to demonstrate
both the feasibility and advantages of the approach. These
advantages include:

Intuitiveness. The division of the problem and goals into
stand-alone modules responsible for various aspects of the
problem, with little or no knowledge of, and interaction with,
each other, is aligned with how humans often describe the
behaviors and capabilities of systems — in requirements
documents, in user manuals, or informally to each other.

Robustness. While we cannot at this stage say that a par-
ticular system built in this way will be better than one built
using other methods, the ability to incrementally add fea-
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tures and resolve deficiencies with highly-focused and intu-
itive modules, seems like a promising enabler of achieving
stability under a variety of conditions.

Testing and verification. The combination of having
mechanisms for automatically detecting whether goals and
subgoals in a given test or production run are met, hav-
ing executable-specification modules that are in themselves
formally verifiable, and having AI-modules with very well-
scoped functions, strengthens the developers’ ability to en-
sure the safety and correct operation of the system.

Potential for run-time goal awareness. Integrating au-
tomated development-time detection of whether goals are
achieved, into the run-time real-world execution of the sys-
tem can further improve the system’s robustness and its abil-
ity to cope with conditions that were not seen earlier, or
whose handling was not prescribed in advance.
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