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Abstract

Research in artificial intelligence, as well as in economics
and other related fields, generally proceeds from the premise
that each agent has a well-defined identity, well-defined pref-
erences over outcomes, and well-defined beliefs about the
world. However, as we design AI systems, we in fact need to
specify where the boundaries between one agent and another
in the system lie, what objective functions these agents aim
to maximize, and to some extent even what belief formation
processes they use.
The premise of this paper is that as AI is being broadly de-
ployed in the world, we need well-founded theories of, and
methodologies and algorithms for, how to design preferences,
identities, and beliefs. This paper lays out an approach to ad-
dress these problems from a rigorous foundation in decision
theory, game theory, social choice theory, and the algorithmic
and computational aspects of these fields.

Problem Overview
Agents are generally assumed to have a well-defined iden-
tity over time, well-defined beliefs about the world as it is
and how it will develop over time, and well-defined prefer-
ences over the different ways in which things may proceed.
Perhaps the main exception is that in machine learning, in
fact, we do develop techniques for obtaining beliefs about
the world and how it develops, but this is not always inte-
grated into the more decision- and game-theoretic work on
AI.1 But the agent’s preferences (or the objective it pursues)
are usually taken to be given exogenously. Economic theory,
and the AI literature that is based on the same ideas, pro-
ceeds from the maxim de gustibus non est disputandum—
there is (to be) no arguing about taste. Similarly, the agent’s
identity is usually taken to be clear; occasionally, in eco-
nomics, there is some discussion of whether, for example,
we can reasonably consider a household to be a single agent
or we need to split it up into its individual members, but in
the end most of the analysis focuses on other aspects. Fun-
damental questions of how we should think about identity
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1There are, of course, clear exceptions, including some of the
work on learning in games; for an overview, see Fudenberg and
Levine (1998) or the 2007 issue of the journal Artificial Intelligence
on multiagent learning.

are generally left to philosophers (e.g., the ship of Theseus:
does an object that has had all its parts replaced remain the
same object?), and the same is true for questions of what
preferences we should have (identifying “the good life”).

The premise of the research vision layed out here is that
as AI is getting broadly deployed in the world, we, as AI re-
searchers, do in fact need to address these types of questions.
In earlier stages of AI research, this was naturally not the
top priority: it was hard enough to get AI systems to behave
effectively even if their identities, beliefs, and preferences
were clearly specified. Techniques were (and of course con-
tinue to be) tested in abstract domains. For well-specified
games such as chess, Go, or poker, the identities, beliefs, and
preferences of the agents are in principle clear from the defi-
nition of the game. In contrast, when systems are deployed in
messy, ambiguous, real-world environments, the pursuit of
what may at first appear to be natural objective functions can
easily lead us astray. In deployed machine learning systems,
maximizing the fraction of instances classified correctly may
result in systems that discriminate against certain subgroups
of the population. In social media, showing posts to maxi-
mize the amount of positive feedback may result in a more
polarized society. In both cases, the solution to the problem
may not be as simple as a straightforward modification of
the objective function; it may also require fundamentally re-
thinking the modeling of the situation, including on whose
behalf different parts of the AI system are supposed to act.

As can be seen even from these two examples (which cer-
tainly do not constitute an exhaustive list), the precise issues
that need to be addressed differ from domain to domain.
This suggests that there is much valuable domain-specific
research to be done on these topics. However, it is also worth
taking a step back and attempting to identify general princi-
ples. Generally speaking, are we thinking in the right way
about how to specify preferences (or objectives) for a sys-
tem, about defining the boundaries of agents (e.g., should
the system be split up into multiple agents that represent
different people or other real-world stakeholders or objec-
tives), and even about how exactly these agents form be-
liefs? These themes are appearing in various conversations
among researchers with an interest in AI. At one extreme,
there is a community of people that worry about how to
specify goals for hypothetical superintelligent AI (artificial
general intelligence that broadly exceeds human capabili-
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ties) in such a way that the outcome will be good for hu-
manity; this community also ponders whether such superin-
telligent AI would eventually be unipolar or multipolar (see,
e.g., Bostrom (2014); Tegmark (2017)). These are intriguing
thought experiments, but most of the proposed approaches
are laid out at a very high level and it is not immediately
clear how best to evaluate them, which is perhaps inevitable
given the speculative nature of the subject matter. On the
other hand, there are also more concrete recent proposals
for how to specify AI systems’ preferences (and/or decision
methodologies) that can be evaluated in the absence of su-
perintelligent AI systems. For example, Abel, MacGlashan,
and Littman (2016) argue for a reinforcement learning ap-
proach to these topics, and Hadfield-Menell et al. (2017) ar-
gue that we should design AI agents to pursue an objective
function that is not directly given to them.

This paper lays out a research agenda to rigorously inves-
tigate and evaluate how to specify preferences (and decision
methodologies), identities, and beliefs of artificially intelli-
gent agents. The approach is distinguished from prior ap-
proaches by being based primarily on decision theory, game
theory, and social choice theory.

Aggregating Multiple Signals
into Consistent Preferences

When the stakes are high in the design of an agent’s pref-
erences, we will likely rely on more than one assessment of
what those preferences ought to be. For example, we may
want our agent’s preferences to reflect the preferences of
multiple stakeholders. If so, we may wish to sample some
stakeholders, elicit what each of them thinks should be the
objective function according to which the agent operates,
and then aggregate these multiple objective functions into
a single consistent objective function for the agent. This
turns the problem into a social choice problem; the link to
social choice in such a context has already been observed
several times (Greene et al. 2016; Conitzer et al. 2017;
Noothigattu et al. 2018; Zhang and Conitzer 2019). This
general approach has already been used in the context of al-
gorithms for finding matchings in kidney exchanges (Freed-
man et al. 2018) as well as in the context of self-driving cars
making emergency decisions (Noothigattu et al. 2018).

What is the best way to aggregate multiple objective func-
tions into a single one? It appears that the traditional models
used in social choice theory are not ideal for this problem,
though they certainly provide insight. If each individual pro-
vided a ranking of all the available alternatives, this would
fit perfectly in the standard model of voting theory. But this
does not scale: we want the resulting AI system to oper-
ate autonomously in a world in which it can encounter any
of exponentially many possible scenarios (self-driving car),
search through spaces with exponentially many possible al-
ternatives (kidney exchange), etc. We cannot elicit a ranking
of exponentially many alternatives from a human being, so
we have to approach the problem somewhat differently.2

2We can learn a model that predicts how someone would rank
any pair of alternatives; see, e.g., Noothigattu et al. (2018). Still,
such a model must be more concise than an arbitrary ranking.
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Figure 1: Weighted graph representing the numerical trade-
offs chosen by an individual voter. An arrow from one item
to another with weight w represents that one unit of the for-
mer is considered as valuable as w units of the latter. The
tradeoffs are consistent if z = x · y.

A natural approach is to assume linearity in the objective
function: e.g., assuming that the value gained from saving
patients A and B is the sum of the values of saving each in-
dividually. Under this assumption, a first approach may be
to ask each voter for the value of saving a patient of type
A, etc. But it is not clear in which units to express this. In-
stead, it is more natural to ask for relative judgments: e.g., a
given individual may consider saving 100 patients of type A
to be as valuable as saving 103 of type B. How should we
aggregate such relative judgments?

As it turns out, a framework that we developed earlier
in a different context (Conitzer, Brill, and Freeman 2015;
Conitzer et al. 2016) fits this setup quite well. In this frame-
work (changing the language to better fit the present con-
text), we receive multiple votes, where each vote provides
an assessment of the relative values of each pair of items.
(In the above, awkwardly, an “item” would be a patient of
a particular type, but at least the word “item” makes it clear
that these could be all sorts of entities.) Figure 1 exempli-
fies such a vote. While this framework has significant lim-
itations, it provides a natural starting point for developing
more expressive frameworks that can accommodate richer
ethical theories—for example, by attempting to drop the lin-
earity assumption.

Designing Agents’ Identities
Often, AI techniques are merely sprinkled into a larger sys-
tem (the proverbial “raisins in the raisin bread”). Even when
AI plays a dominant role in the system, the boundaries of
the AI system may not be clear. For example, a self-driving
car may periodically have its software updated together with
all other vehicles of the same make, perhaps based on addi-
tional data recorded from some of these other vehicles. If so,
it is awkward to think of each vehicle as containing its own
separate AI agent; in many ways, they all just form part of a
larger system that they benefit from and contribute towards.

One may conclude that there is no reason to define clearly
delimited agents within the broader system. Still, the intu-
ition that “my car has its own AI” may be onto something, if
for no other reason than that it may reflect something about
how the end users of the technology would expect it to be-
have. A car’s owner may expect it to prioritize her safety
over that of others, or to safeguard her privacy by not shar-
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ing her location data to the larger system, perhaps due to
a worry about whether it keeps the data sufficiently secure.
Failing to satisfy these user expectations may result in de-
creased adoption of the technology, thereby perhaps reduc-
ing welfare overall. In the context of self-driving cars, in-
deed, Bonnefon, Shariff, and Rahwan (2016) have argued
that people would be unlikely to buy vehicles that did not put
their occupants’ safety first, so that offering “selfish” vehi-
cles may paradoxically reduce overall traffic fatalities more,
by increasing adoption of a safer technology.

If we buy into this view, it leads to the question of identity
design: what is the best way to determine where one agent
begins and another ends? Should there be a separate agent
corresponding to each user, representing her interests? Even
this does not completely settle matters. For one, parts of the
broader system may yet be housed “centrally,” not represent-
ing any user in particular; how much of the system should be
centralized in this sense? Also, the boundaries need not be
the same for each aspect. We can have cars make selfish de-
cisions (prioritizing their occupants) but share all data, or
have them make altruistic decisions but limit data sharing.

Imperfect Recall
One key issue in the context of agent identity design is what
we let the agents recall. In game theory, we often assume
perfect recall, i.e., every agent always remembers everything
that she knew earlier in the game. In contrast, games of im-
perfect recall specify exactly what an agent remembers and
forgets at each point of the game. In games that are played
by human subjects, it is generally impossible (or morally
wrong) to make the human players forget specific informa-
tion, which is part of the reason that these games have gener-
ally received less attention from economists.3 In contrast, for
AI systems, the possibilities for specifying what is recalled
are effectively unlimited, ranging from systems that immedi-
ately forget everything to ones that instantly share among all
their nodes all data about all users everywhere. This brings
the concept of imperfect recall to the fore. Indeed, imperfect
recall is already used in the design of poker-playing AI, to
improve scalability (Waugh et al. 2009; Lanctot et al. 2012;
Kroer and Sandholm 2016). But there are reasons to use im-
perfect recall other than scalability. When the system acts on
behalf of multiple users, recalling information indefinitely
and sharing it without limitations among multiple nodes is
likely to generate privacy concerns, security concerns, and
agency concerns (the AI system not acting in the best inter-
est of a given user). This is not to say that no information
should be remembered or shared; designing the right infor-
mation structure is a nontrivial optimization problem that is
closely tied to designing agent identities in multiagent sys-
tems. For example, when two nodes of the system share no
information, or when a single node’s memory is erased as it
begins to represent a new user, we may conceive of this as
resulting in multiple agents. These issues require new frame-
works and solutions.

3Even some games of perfect recall would be problematic to let
human subjects play, because the timing of the game would neces-
sarily leak information (Jakobsen, Sørensen, and Conitzer 2016).

Beyond Causal Decision Theory
In light of the issues discussed so far, one may question
whether traditional approaches to decision and game theory
are an ideal fit for the problem of designing artificially in-
telligent agents. One concrete new form of decision theory
that has been proposed in this context is that of functional
decision theory (FDT) (Levinstein and Soares 2017). This is
in contrast to the more standard decision theory that dom-
inates economic theory, known in the philosophy literature
as causal decision theory (CDT), but also in contrast to evi-
dential decision theory (EDT), another theory that has been
thoroughly studied in the philosophy literature. FDT shares
some features with EDT, so let us discuss EDT first.

In EDT, when one evaluates a particular contemplated
choice of action, one first updates one’s beliefs, conditioning
on the fact that one has made that particular choice. For ex-
ample, suppose one is playing a game of prisoner’s dilemma
against someone very similar to oneself. One may reason as
follows: “Given that the other reasons so similarly to me,
if I choose defect, then probably so will she; whereas if I
choose cooperate, then probably so will she. Hence, condi-
tional on me cooperating, my expected utility is higher than
conditional on me defecting. So I should cooperate.” This
is the type of reasoning that EDT endorses. A proponent of
CDT, by contrast, will dispute this analysis, and point out
that even if the decisions are correlated, one player’s action
has no causal effect on the other’s; hence, defection is ratio-
nal because it is better regardless of what the other does.

The vast majority of economists and game theorists sub-
scribe (often unknowingly) to CDT. I, too, have argued
against EDT, on account of a Dutch book argument in the
Sleeping Beauty problem (Conitzer 2015)—a problem that
will be discussed below. But one may well feel that there is
something right about this EDT analysis, when we look at
certain contexts involving decisions by AI agents. Consider
(say) two self-driving cars of the same make, representing
their owners and passing by each other. If they each have a
choice between Aggressive and Defensive, where the former
is a dominant strategy but both playing the latter would lead
to higher utilities overall, one may feel that in some sense
each car should play Defensive, even from a selfish perspec-
tive, because the other car, running the same algorithm, is
sure to do the same. There is a logical dependency between
one car’s action and the other’s. Taking such logical depen-
dencies into account is arguably the fundamental idea be-
hind FDT. FDT also generally has agents play as they would
have precommitted to play. Now, it seems clear (under any
one of these decision theories) that the party designing the
algorithm that is used to run one or more agents has a strong
form of commitment power and might as well use it. But
FDT makes far stronger recommendations. For example,4
imagine that you face an entity that can predict your actions
perfectly. It will give you $100 if it believes you would oth-
erwise take an action that is disastrous to everyone (say, the
equivalent of -$1000). FDT says that you should take the
disastrous action even if you only find out that you are play-

4. . . based on an e-mail conversation with Levinstein and
Soares, following a recent talk by the former at Duke.
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ing this game after the entity has already decided not to give
you the money. This all-too-late extortion attempt seems to
be an unacceptable implication of the theory.

Nevertheless, it seems that there may be something to
this general line of thought, and perhaps an improved the-
ory would be widely useful in the design of AI systems. For
example, we already see that in real applications of game-
theoretic AI, such as those in security domains (Pita et al.
2009; Yin et al. 2012; An et al. 2012; Fang et al. 2016),
what is computed is an optimal mixed strategy to commit
to (Conitzer and Sandholm 2006; von Stengel and Zamir
2010), rather than, say, a Nash equilibrium. The related idea
of strategic agents reading each other’s code has also already
been investigated by AI researchers (Tennenholtz 2004;
Oesterheld 2018), as has the idea of agents that make com-
mitments that are conditional on commitments made by oth-
ers (Kalai et al. 2010). All this results in blurry boundaries
between the agents themselves, the parties who design them,
and the parties that they represent. Can we discover a better
theory of how to conceive of the agents and how they should
make decisions? In my view, it will likely be best to build
up from restricted theories in specific settings, such as those
in use in security domains. This approach is likely to gener-
ate well-defined computational problems, for which efficient
algorithms may be broadly useful.

Designing Agents’ Beliefs
In this final section, we discuss the problem of designing
agents’ beliefs (or, more accurately, designing their belief
formation process). This may, at first glance, not seem like
a well-motivated problem: should we not just aim for our
agents to hold probabilistic beliefs that reflect reality as well
as possible? As it turns out, in the context of agents with im-
perfect recall, there is still controversy over what the right
beliefs for these agents to hold are, even when the proba-
bilistic process governing how the world evolves is known.

In particular, imperfect recall results in nontrivial prob-
lems regarding self-locating beliefs. The paradigmatic ex-
ample is the Sleeping Beauty problem (Elga 2000). The
Sleeping Beauty problem proceeds as follows. A (consent-
ing!) subject in an experiment—we will call her Sleeping
Beauty—is given drugs on Sunday that will make her fall
asleep. Then, the experimenter tosses a coin. If the coin
lands Heads, Beauty will be briefly awoken on Monday only.
If it lands Tails, she will be briefly awoken on Monday,
made to sleep again, and then again briefly awoken on Tues-
day. The key aspect of the problem is that (due to all the
drugs) Beauty cannot distinguish between the three differ-
ent types of awakening—i.e., Heads/Monday, Tails/Monday,
and Tails/Tuesday. Specifically, she is unable to keep track
of time, and will have forgotten her Monday awakening if
and when she is awoken on Tuesday. The problem is as fol-
lows. Imagine you are Beauty and you have just been awo-
ken in this experiment. What is your subjective probability
that the coin came up Heads?5

5 For those not inherently motivated by philosophical conun-
drums, consider the following reinterpretation of the problem: a
car has low-level autonomy with AI that is called upon to intervene

This problem splits people into two primary camps. One
believes that the answer should be 1/2 (the “halfers”); the
other, 1/3 (the “thirders”). One argument for the halfer po-
sition is that Beauty always knew she would be awoken at
some point; thus, she has received no new evidence since
Sunday, at which point she clearly should have believed
there was a probability of 1/2 that the coin would come up
Heads. One argument for the thirder position is a frequen-
tist one: if this experiment is repeated every week, then in
the long run the fraction of Heads awakenings approaches
1/3. Many other arguments have been given on both sides.
One family of arguments relies on investigating decisions
resulting from these beliefs. Hitchcock (2004) argues that
halfers are vulnerable to a Dutch book—a combination of
bets that they would all accept, but that together result in a
sure loss. However, Draper and Pust (2008) point out that
this is only the case for halfers that adopt CDT; halfers that
adopt EDT do not fall for the Dutch book. Building on this,
Briggs (2010) proves that, in a class of settings, thirders who
accept CDT and halfers who accept EDT are both immune
to Dutch books. However, if we extend to a slightly broader
class of settings, anyone doing what EDT would seem to
recommend is vulnerable to a Dutch book (Conitzer 2015).

Nevertheless, Briggs’ result suggests an interesting possi-
bility. We may not be able to definitively resolve the Sleep-
ing Beauty puzzle without certain assumptions/insight about
the metaphysics of time and self, due to the unusual nature
of Beauty’s evidence. (When determining my posterior be-
liefs, how should I condition on the fact that “I have now
just been awoken”?6) This is worth pondering, but for the
practical purpose of designing AI systems that display some
types of imperfect recall—for example, because nodes do
not share information, for privacy purposes—perhaps it does
not matter what theory of self-locating belief we use, as long
as we combine it with the right decision theory.

One may go one step further and argue that perhaps we
should not bother with probabilistic beliefs at all, and rather
just analyze directly which policies are most effective, per-
haps somewhat along the lines of FDT as discussed ear-
lier. But in sufficiently complex environments, it sometimes
helps enormously to be able to separate out belief formation
and the process of making decisions based on those beliefs.
This is true in part because many tools have been devel-
oped for both probabilistic reasoning and decision making
in the AI literature. It seems that these tools should gener-
alize to problems that involve self-locating belief. Achiev-
ing this would require appropriately extending both standard
representation schemes for probabilistic uncertainty (e.g.,
Bayesian networks) and algorithms for reasoning with them.

only in certain dangerous situations, but it does not keep records
of these events. We know that half the cars have careful drivers
who will get into such a situation once (“Heads”), and the other
half have careless drivers who will get into such a sitation twice
(“Tails”). When called upon to act, what should the AI conclude is
the probability that the driver is careful (which may well be very
relevant to the driving decisions it is about to take)?

6Recent literature in philosophy addresses the apparent datum
that a single subjective experience is present (Valberg 2007; Hare
2007; 2009; 2010; Hellie 2013; Merlo 2016; Conitzer 2018).
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