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Abstract

There is a growing need for coverage of large maritime areas,
mainly in the exclusive economic zone (EEZ). Due to the dif-
ficulty of accessing such large areas, the use of satellite based
sensors is the most efficient and cost-effective way to perform
this task. Vessel behavior prediction is a necessary ability for
detection of moving vessels with satellite imagery. In this pa-
per we present an algorithm for selection of the best satellite
observation window to detect a moving object. First, we de-
scribe a model for vessel behavior prediction and compare its
performance to two base models. We use real marine traffic
data (AIS) to compare their ability to predict vessel behavior
in a time frame of between 1–24 hours. Then, we present a
KINGFISHER, maritime intelligence system which uses our
algorithm to track suspected vessels with satellite sensor. We
also present the results of the algorithm in operational scenar-
ios of the KINGFISHER.

1 Introduction
There is a growing need for coverage detection of large mar-
itime areas, mainly in the exclusive economic zone (EEZ).
Physically accessing such a large area is practically impossi-
ble, thus the use of satellite-based sensors is an efficient and
cost-effective way to perform this task. We focus on mar-
itime missions, where the main goal is to monitor moving
vessels with satellite sensors, in order to detect vessels that
may mislead about their identity and transmit wrong iden-
tification parameters, for example their size and type. All
civilian ships are required to transmit an Automatic Iden-
tification System (AIS) signal, which indicates the vessel’s
position and identification parameters. However, since this
information is unreliable, the total maritime awareness is
achieved through the integration and analysis of visual data
from Electro-Optic (EO) and SAR satellites, enabling visual
identification of vessels instead of relying only on coopera-
tive vessel AIS transmission.

Satellite imagery is an expensive product, which cov-
ers a very small area, and can be acquired only at prede-
fined acquisition opportunities. The time it takes from ves-
sel transmission of an AIS signal until it can be analyzed in
ground segment (known as data cycle), is typically over one
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hour. On the other hand, current commercial satellites mis-
sion planning may take several hours. Therefore, in order to
task a satellite for detecting a moving vessel with no addi-
tional aids after 3 hours, one must cover a very large area
of about 17, 000km2. This will end up in a cost of about
150, 000 − 200, 000 USD per ship, which is practically not
affordable. Choosing relevant satellite imagery is equivalent
to looking for a needle in a haystack: one satellite image is
commonly of size 50km2 − 100km2, i.e., less than 1% of
the total area’s size. Therefore, in this paper we focus on ef-
ficient ways for decreasing the search area for the vessel by
using vessel behavior prediction, and use that to increase the
probability of acquiring relevant information from the satel-
lite imagery. Reduction of the position uncertainty will also
lead to a much more economic solution.

Despite significant progress in vessel prediction in mar-
itime domain, existing solutions do not yet account for long-
term vessel behavior prediction, thus they are irrelevant in
the space domain. Our goal is to track moving vessels with
satellite sensors, and select the most suitable satellite and its
best time frame for detection (referred to observation win-
dow) for this mission. Thus, an algorithm for long-term pre-
diction of vessel behavior is required in this domain.

In this paper we present an algorithm for selection of the
best satellite observation window for detection of a moving
object. First, we present a model for vessel behavior predic-
tion and compare its performance to the base model. We use
real marine traffic data (AIS) to compare the ability of the
models to predict vessel behavior in a time frame of 1–24
hours. Based on satellite simulation, we propose a method
for selecting the satellite observation window that increases
the probability to detect the moving object.

Then, we present KINGFISHER, a maritime multi-
layered intelligence system created for an in-depth analy-
sis of large maritime areas of interest, in order to provide
maritime awareness and detect illegal activities such as ille-
gal fishing. KINGFISHER uses the proposed algorithms to
enable decision support for maritime operators and provide
an optimal, autonomous and economic solution for maritime
environments. Finally, we present the results of our algo-
rithm on several operational scenarios.
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2 Related Work
Recently there has been an increasing interest in maritime
awareness (Thomas 2006; Snidaro, Visentini, and Bryan
2015). While most of the research concentrates on anoma-
lous behavior detection or event recognition (Riveiro et al.
2009; Lane et al. 2010; Roy 2009), predicting vessel behav-
ior is still a big challenge for researchers. There are several
approaches that were taken to tackle this challenge (Rhodes,
Bomberger, and Zandipour 2007; Ristic et al. 2008; Tun et
al. 2007), however, to the best our knowledge, existing mod-
els do not yet account for long-term vessel behavior predic-
tion, thus they are irrelevant in the space domain.

Moreover, existing models assume that the destination of
the vessel is known based on AIS message. In reality, des-
tination field in AIS message is not always updated, and
sometimes it is even falsely updated. Thus, in real applica-
tion we cannot base our solution on reliability of destina-
tion field in AIS signal. Our goal is to develop a real service
that can be offered by an industrial company to its clients.
Additionally, we would like to have the ability of predic-
tion to work freely, without the constant need for destination
knowledge.

Rhodes et al. (Rhodes, Bomberger, and Zandipour 2007)
use Artificial Neural Networks for predicting vessel behav-
ior. They develop a model that learns the normal behav-
ior of the vessel based on AIS data and enables detection
of anomalies, and predicts the motion of the vessel in 15-
minute windows.

Ristic et al. (Ristic et al. 2008) develop an algorithm for
motion prediction which is based on statistical analysis of
AIS data. They extract motion patterns from historic data
and use Kernel Density Estimation (KDE) to predict the ves-
sel’s motion. The results show prediction for 10, 30 and 70
minutes which again is too short for our domain.

A statistical approach was used also by Tun et al. (Tun
et al. 2007). They propose to break the vessel’s motion
paths into separate regions using clustering techniques, and
then learn the motion patterns using Hidden Markov Model
(HMM). Tun et al. concentrate on high level activity, the
movement of the vessel from one region to another, and pro-
pose to use their algorithms to detect abnormal vessel be-
havior.

Pallotta et al. (Pallotta, Vespe, and Bryan 2013) pro-
posed a methodology called TREAD (Traffic Route Extrac-
tion and Anomaly Detection) for maritime situational aware-
ness. They also used a statistical approach and unsupervised
learning for vessel motion representation, and by detecting
low-likelihood behavior, they enable the prediction of the
vessel’s future position. As in previous approaches, the pro-
posed model does not account for long term prediction thus
it is irrelevant in the space domain.

Despite significant progress in the satellite domain, many
existing algorithms concentrate on mission planning and
coverage of static targets such as area-of-interest or a spe-
cific location. Thus, the selection of necessary satellite im-
agery for analysis is based only on the area and time of inter-
est. For example, Gao et al. (Gao, Wu, and Zhu 2013) pro-
pose to use ant colony optimization with the iteration local
search algorithm to produce high quality schedules.

Other research direction treats dynamic targets in satellite
domain, however mostly as image processing analysis, and
the goal is to track moving object from an existing set of
satellite imagery that was taken from nearby area and time.
Meng and Kerekes (Meng and Kerekes 2012) present an ob-
ject tracking algorithm from time-series multi-temporal and
multi-spectral satellite images. Their results show that usage
of both spectral and spatial feature ensures better tracking
accuracy than using each of them alone.

Li et al. (Li, Guo, and Zhu 2011) propose a planning
method for electronic and imagery satellites to work col-
laboratively for searching mission of moving ship. Their re-
search shows that usage of electronic satellites to detect the
vessel is necessary in searching mission.

Our goal is to track moving vessels with satellite sensors
and select the best satellite observation window for this mis-
sion. In this paper, we present a model for long term predic-
tion (up to 24 hours) of vessel behavior, which is required in
this domain and show its usage in operational scenarios.

3 Satellite Detection of a Moving Object -
Framework

Observation satellites have a limited window of opportu-
nity for imaging of a given target area. In low earth orbit,
a ground object will be in view for a few minutes at most.
Detection of a moving object by satellite sensors is a chal-
lenging problem which requires a large amount of satellite
imageries to enable vessel detection. We propose to mini-
mize this coverage area by using a prediction process of the
moving target.

Figure 1 presents the movement of all vessels in a
bounded area along seven days. The movement of vessels
is received in the form of AIS data, and reflects 50000 AIS
samples. We can clearly observe the created lanes of ves-
sel movement, which provides a motivation for using graph
representation for vessel behavior prediction, leading to a
decrease in the imaging space.

Figure 1: Actual vessels AIS samples over 7 days.

Let S = {s0, . . . , sm−1} be a set of m satellites, each
satellite si has its set of observation windows OW i. Our
goal is to calculate the best opportunity to detect the mov-
ing target x with one of the satellites in S. The process is
described in Algorithm 1, which is executed for each tar-
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get x that we wish to detect. In the following, we provide
a high-level description of the algorithm, before examining
each component in depth in the next sections.

Algorithm 1 Ship Detection Framework
1: For each target x calculate the historical movement

graph G(x)
2: Φ← predicted paths up to 11 hours, based on G(x) and

the last known target location and the recent path
3: OW i = {owi

j} observation windows owi
j based on

satellite simulation for satellite si
4: For each owi

j , calculate pdij (the probability of ship de-
tection)

5: Return the owi
j with highest value

In line 1, we calculate the historical graph G(x) which
represents all the historical movements of the target x. We
use a stochastic model, Second Order Markov Chain, to rep-
resent all the historical movements of the target. Section
4.4 provides a detailed explanation regarding the graph con-
struction.

Then, based on G(x) and the last known location of the
target and its recent path, we calculate the possible future
paths, with respect to a motion model through each path. Φ
gets the set of predicted future locations and their probabil-
ity.

In line 3, for each satellite si, we calculate all the obser-
vation windows OW i based on satellite simulation (Satel-
lite Tool Kit–STK (STK )), that intersects with the predicted
paths in Φ. The STK simulation and the calculation of the
observation windows are explained in depth in Section 5.

In line 4, for each observation window owi
j that corre-

sponds to one of the satellites si ∈ S, we calculate the prob-
ability for detection pdij ∈ [0, 1], which corresponds to the
probability for the moving object to reach a specific location
and the probability that this object can be detected at this lo-
cation by satellite si. Let plij be the probability of the target
to reach to the geographical area j, it is calculated based on
historical graph which represents all the paths and velocities.
Let pvij be the probability of the target to be viewed at this
location j by satellite si. pvij is calculated based on param-
eters such as sensor ability, the target visibility and weather
conditions. Thus, the probability pdij is defined as:

pdij = plij × pvij (1)

Note that in the our empirical evaluation, pvij = 1, i.e., we
assume that if the target is present at a certain location, the
satellite will necessary detect it. The reason for this is that
we have examined information only from clear skies and we
set the scan-width to be such that it attains this.

In line 5 we select the observation window owi
j with the

highest value for detecting the moving target.

4 Model of Vessel Behavior Prediction
Predicting vessel behavior is an important factor for detec-
tion of a moving vessel. Based on historical data of the ves-
sel (AIS data), we create a behavioral model. We use Second

Order Markov Chain to build a graph representing the his-
torical behavior. Based on the built graph and the estimation
of the current state, we enable the prediction of future ves-
sel locations. Figure 2 present AIS raw data of one of the
vessel’s motion during 13 months, and Figure 3 presents the
graph constructed from this raw AIS data.

In this section we explore AIS data (Section 4.1), provide
a detailed explanation regarding the preprocessing stage and
graph construction (Section 4.2) and the vessel behavior pre-
diction (Section 4.4).

Figure 2: Vessel motion: Raw AIS data

Figure 3: Vessel motion: Constructed graph

4.1 AIS data
Each AIS message contains unique identification of the ves-
sel, and static and dynamic properties. Vessels transmit an
AIS message every 1–5 minutes, depending on property
type. This data is collected from both satellite and internet-
connected shore-based stations, and can be available through
a number of service providers. Due to a huge amount of data
that AIS collectors should receive, which is filtered, and the
fact that there are areas with low coverage rate, in practice
we can obtain AIS signals of a specific vessel between once
every two minutes and up to once every few hours.

The vessel dynamic data is calculated automatically us-
ing the internal equipment. It includes fields such as loca-
tion, speed over ground (SOG), course over ground (COG)
and others, and it is considered as relatively reliable data.
Static data contains information about vessel properties such
as destination, name, type, and dimensions, which are man-
ually updated by the pilot, and are considered unreliable, as
those are usually not up-to-date or contain missing values.
Therefore, there is an inherent uncertainty in the information
contained in AIS signals, thus the model of the vessel’s be-
havior is noisy even before possible inaccuracies arise from
fitting the data into a model.
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4.2 Graph Creation: Second Order Markov
Chain

The AIS information may often be noisy and insufficiently
frequent which challenge the behavior modeling process,
and thus requires a preprocessing stage to enable further data
transformation, such as graph representation. Therefore we
interpolate data with spatial methods such as Slerp (Shoe-
make 1985).

Then, we divide the set of AIS signals, D =
{d0, . . . , dm−1}, into leg segments Γ = {L0, . . . , LN−1}.
A leg segment corresponds to the vessels voyage as mo-
tion through straight lines. We partition the AIS signals by
the turning points with heading direction changing over a
threshold (over 10 degrees). This threshold is defined em-
pirically and based on marine expert knowledge.

For example, as demonstrated in Figure 4, consecutive
AIS signals partition the signal set into leg segments L1, L2,
and L3 where there is a course difference of more than 10
degrees between them.

Figure 4: Preprocessing: creating legs

Then, we transfer the set of leg segments Γ, into a directed
second order Markov chain (graph). The nodes and edges
are calculated based on clustering and merging of leg seg-
ments vertices. The probability of transition between nodes
is calculated based on historical behavior of the vessel.

Markov chains are stochastic processes that can be pa-
rameterized by empirically estimating transition probabili-
ties between discrete states. It can be used for describing
systems that follow a chain of linked events, where what
happens next depends only on the current state(s) of the sys-
tem: in Markov chain of the first order, each subsequent state
depends only on the current state. In Markov chains of sec-
ond or higher orders, the next state depends on two or more
predecessor states.

Each node Ni in the graph corresponds to a physical lo-
cation in the world, and an edge between Ni and Nj is a
possible transition between the states. Nodes are calculated
as clusters of geographic legs’ vertices, and the clusters are
calculated using the distance across the sphere (Haversine),
where the condition of clustering is maximum distance. The
maximal distance between samples in the same cluster is
set with a predefined value (15 km, defined empirically and
based on marine expert knowledge). The Edges of the move-
ment graph G(X) are the transitions described by Leg seg-
ments with vertices in the same created nodes. Each edge is
parametrized with a conditional probability for preforming
the corresponding transition, given the previous transition.

For example, as shown in Figure 5, N1, N2 and N3 are
the nodes of the graph which is created by clustering of rel-
atively close leg segment vertices.

Figure 5: Graph creation

In the First Order Markov Chain model, each edge in the
graph contains the probability of the vessel to travel from
one node to another, and it is calculated based on statisti-
cal analysis of leg segments that passes through these two
nodes. Due to unreliability of the destination field in the
AIS signal, which is often not up-to-date, we use Second Or-
der Markov Chain for vessel behavior prediction. Thus, each
edge represents three vertices. For example, edge (a,b,c) cor-
responds to the state transition of Na → Nb → Nc, and
the corresponding probability P (Tn = Nb → Nc|Tn−1 =
Na → Nb), is the probability to preform transition Tn given
the previous transition Tn−1 has occurred.

For example, as shown in Figure 6 the probability on each
edge between N1 and N2 is calculated based on predeces-
sor of N1 which in our example is N0. If there are several
predecessors for the node, as in N6, then the probability is
calculated based on each option. In our example, there are
two edges that connectN6 andN8, one for each predecessor
(N3 and N2) and the probability is calculated accordingly,
P (3, 6, 8) and P (2, 6, 8).

Figure 6: Example of a Second Markovian representation of
our problem.

Each edge in the graph corresponds to movement of the
vessel through two geographical locations (nodes in the
graph). There are edges that represent long distances of
600km and more between pairs of nodes, and the veloc-
ity changes along the edge. Therefore, in order to provide
a more accurate prediction of the movement, the possible
vessel velocities on each edge are partitioned into a set of
speed segments. Each velocity sample along the edge that
exceeds a velocity change threshold, is marked to represent
a new speed segment and for each speed segment statistics
are measured upon the distribution of the relevant velocity
values of: minimum, maximum, mean and standard devia-
tion of the vessel.
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4.3 Setting the current state
In order to enable the behavior prediction, first we need to
set the current state of the vessel on the movement graph. Let
D = {d0, . . . , dk} be a set of AIS signals, representing the
current path of the vessel and G(x) is the movement graph.
Our goal is to identify the current location in the movement
graph G(x) that represents the current vessel position dk.

AIS signals come in different time intervals, and the data
is noisy and may include missing signals, thus trivial solu-
tion such as selecting the closest node to dk is not suitable
for this domain. For example, the closest node in G(x) to
dk may not be a part of the vessel’s route, thus our solution
should take the vessel’s recent movement into account.

Our solution is to match the vessel’s route to the nodes
in graph G(x). First we interpolate the current vessel path
D, to overcome on the missing signals and to improve the
matching process. Then, from the interpolatedD, we select a
set of representative signals D′ which are close to the nodes
in G(x). For each pair in signal set D′ we search the pos-
sible edges in graph G(x), and the set of connected nodes
represent a possible edge in the graph. We rank each route
based on the distance between the signals in set D′ to the
possible nodes in G(x) and also the distance between dk to
the corresponding edge. The probability for current location
candidates are ascribed according to the computed rank.

4.4 Behavior Prediction
Based on the historical graphG(x) and the initial vessel’s lo-
cation on the graph, we extract the possible paths of the ves-
sel at different times. Each such path contains set of edges
with their speed segments and probabilities. Using multi
agent simulation we predict the vessel behavior.

We create agents that simulate the possible movements of
the vessel on the extracted paths. Each agent gets the move-
ment path based on path’s probability, thus the higher the
probability, the more agents will move on this path. Each
agent draws different velocities according to the behavior
graph, based on the Gaussian distribution of velocities on
each edge. At any given time, the model return the positions
of the agents. The predicted area of the vessel is a two di-
mensional histogram, which is created based on the agents’
location. Each cell in the histogram represents geographic
location 1km×1km and the rank of each cell is the normal-
ized number of agents (based on the total number of agents).

5 Satellite Simulation
In this section we want to find set of the observation win-
dows OW i = owi

j for each satellite si ∈ S where each
owi

j ∈ OW i intersects with the vessel’s predicted paths (Φ)
in both space and time, meaning that the moving vessel can
be detected within owi

j .
We use an STK (Satellite Tool Kit) (STK ) as satellite sim-

ulation for moving object detection. STK is a physics based
software package that allows to perform complex analysis
for problems involving Earth-orbiting satellites. The STK
simulation enables the calculation of the satellite-to-object
visibility. Our simulation calculates the times that the satel-
lites can acquire the simulated moving vessels based on po-
sition information and satellite constraints.

Based on the set of all predicted paths in Φ and its ve-
locities, we create 10000 agents (vessels) moving along the
predicted paths. The behavior of each such agent is set based
on historical model behavior and the movement graph. All
agents in our simulation are running simultaneously from
the identical initial location.

Each observation window owi
j is ranked based on nor-

malized sum of visible agents by satellite si. Thus, let
A = {a0, . . . , an−1} be a set of n agents, and AV i

j =

{av0, . . . , avk−1}, AV i
j ⊆ A is a set of visible agents by

satellite si in observation window owi
j . Thus the probability

plij of the vessel to be visible by satellite si in observation
window owi

j is defined as following:

plij =

∣∣AV i
j

∣∣
|A|

(2)

Figure 7 presents the STK simulation of an experiment,
showing the agents moving on the created graph based on
the historic statistics.

Figure 7: STK simulation

6 Vessel Prediction in Maritime Domain
In this experiment we wanted to compare the performance
of our model to the base model, Straight-Line model. The
Straight-Line model predicts the future position of the vessel
according to its recent course and the speed. The predicted
area of the Straight-Line model is a two dimensional his-
togram, which is created based on the Gaussian distribution
around the predicted point.

We created two Straight Line models, Straight-Line-
Const and Straight-Line-Widen. The Straight-Line-Const
sets the std of the distribution as a constant value, which
is set to 2km based on domain expert knowledge. The
Straight-Line-Widen sets the std of the distribution based on
the time of the prediction, which means the longer the pre-
dicted time the wider the predicted area is. In this case we
significantly enlarged the predicted area based on the pre-
diction time.

We randomly selected a set of vessels in different loca-
tions in the world. AIS Data of 24 months was collected
for each vessel, where the first 18 months data was used for
the extraction of historical graph model, and the additional
6 month was used for prediction validation.

For each experimental vessel, the data for prediction val-
idation was divided into 10 test-subsets. Each test-subset is
divided into two non-overlapping smaller subsets: a present
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subset, which is used for extracting the vessel current lo-
cation in the movement graph, and a future subset which
is used for prediction validation. We examined whether the
prediction results in the time intervals of up to 24 hours cor-
responds to the future signal set.

The experiment was carried out using 100 vessels, 1000
test-subsets for prediction validation, from which test sub-
sets were dropped in cases where failure has occurred in the
procedure of setting the current state. The procedure can fail
to set the vessel current state if it is on a new route, meaning
that the current position of the vessel is too far from its his-
torical routes. Our model predicts vessel behavior based on
historical data, thus in cases where there is lack of historical
data due to data provider reception or vessel transmission is-
sues, other prediction approaches should be considered (we
leave this for future work).

We compared the models with respect to two parameters:
Hit-Percentage and Area-Ratio. We controlled the time of
the prediction, 1–24 hours, and measured the success of the
prediction based on the defined parameters.

Hit-Percentage parameter is the successful prediction rate
for the vessel’s locations. If the real location of the vessel
was inside of the model’s recommended polygons, then the
prediction is successful.

Area-Ratio parameter indicates to area coverage reduc-
tion. It is calculated as the area that was recommended by the
model divided by the area which should be covered without
any prediction model (naive area). The naive area is calcu-
lated as πr2 where r is the distance with the maximum rea-
sonable speed, 13 knots, multiplied by the prediction time.
Lower ratio means more economic model.

Figure 8 displays the comparison of the models on Hit-
Percentage parameter. The x-axis represent the prediction
time and the y-axis represent the percentage of successful
prediction. The results show that our History Graph model
(mean value: 0.67) has a much higher number of success-
ful predictions than the Straight-Line-Const model (mean
value: 0.47) and Straight-Line-Widen model (mean value:
0.60). Moreover, the History Graph model was found to be
significantly higher in Hit-Percentage parameter compared
to the Straight-Line-Const and Straight-Line-Wide models,
with p-value < 0.01 (using the ANOVA test).

Figure 8: Hit-Percentage results

Figure 9 presents the comparison between the models
on Area-Ratio parameter. The results show that Straight-
Line-Const model (mean value: 0.0008) has significantly
lower Area Ratio rate than History-Graph model (mean
value: 0.01) and Straight-Line-Widen model (mean value:
0.009) with p-value < 0.01. Moreover, the results show that
the main difference between the Straight-Line-Const and
History-Graph models is in short-term prediction (up to 4
hours), while in long term the models have similar values.
Straight-Line-Widen has much higher values in long-term-
predictions but it still has a lower Hit-percentage than the
History-Graph which means that is not enough to enlarge the
coverage area but also take into account the behavior pattern
of the vessel.

Figure 9: Area Ratio results

The results verify that the History-Graph model provides
a more accurate prediction than both Straight-Line models.
While the results show that Straight-Line-Const has better
results in Area-Ratio parameter, in accuracy prediction it
performed worst. History-Graph model has good results in
prediction and reduces the required area coverage by more
than 99% in comparison to area that should be covered with-
out any prediction model.

7 KINGFISHER: System Architecture
The KINGFISHER is a maritime multi-layered intelligence
system created for an in-depth analysis of large maritime ar-
eas of interest in order to provide maritime awareness and
detect illegal activities. KINGFISHER is an operational sys-
tem and is used in different scenarios and by dozens of users
around the world.

The Research and Innovation team at ImageSat Interna-
tional (ISI) developed the KINGFISHER based on Artificial
Intelligence (AI) techniques such as Multi Agent Simulation
and Deep learning. The objective of the AI techniques is to
enable decision support for maritime operators and provide
an optimal, autonomous and economic solution for maritime
system.

KINGFISHER integrates data from several types of
satellite-based sensors and intelligence sources such as
AIS, SAR satellite imagery, EO satellite imagery, OSINT,
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weather and more. Figure 10 presents the system architec-
ture.

Figure 10: System architecture

7.1 Algorithmic Framework and AI
There are two main algorithmic phases at KINGFISHER.
First is to continuously monitoring an area in order to detect
and alert the operator about presence of maritime anomalies.
Then, the system performs further investigation for all the
suspected vessels to learn their behavior patterns and to con-
tinue tracking these vessels with satellite sensors, and the
system recommends the best imaging opportunities avail-
able.

In the monitoring phase, the data from various sources is
being received, analyzed and archived as a separate intelli-
gence layer. Deep Learning algorithms are applied on the
imagery data layers in order to autonomously detect vessels
in the imagery, classify their type and identify specific ves-
sels that are important to the operators. The system enables
detection of naval vessels which are mostly non-cooperative
targets through the integration and correlation of all data
sources.

To continue to track the suspect vessels with satellite sen-
sors, the vessels prediction and satellite selection algorithms
are being used. It enables the operators to track the suspect
a vessel for days or even weeks and incriminate it on illegal
activities.

8 Satellite detection of maritime vessels:
Examples

KINGFISHER is an operational system which is used by
dozens of users around the world. While most of the oper-
ational usage of the system is classified by our clients, we
will present here general examples of our own usage of the
system, with no connection to any specific client.

In our first example, we have monitored a Russian re-
search ship ”YANTAR” sailing towards the Black Sea in
September 2017 after completing its activities in the east-
ern Mediterranean. Our goal was to detect the vessel with
a satellite sensor. Based on the known historical data of the
vessel and its last known position, we have predicted its fu-
ture location. We have targeted the best suited-satellite and
time frame for this mission, and acquired a satellite image
about 12 hours after its last known location. We set the satel-
lite to capture 4 images, each image was 200km2, thus in
total we covered 800km2, for 12 hours of uncertainty.

Figure 11 presents the uncertainty cycle (red circle) that
was created in 12 hours based on the last known location
of the vessel and the vessel mean speed. In 12 hours the
vessel can be anywhere in the red circle. The white square
represent the possible size of the satellite imagery. We can
see that while one could possibly need thousands of satellite
imageries in order to cover all the area, we use only 4 such
images to detect the vessel.

Figure 12 presents the successful detection of the ”YAN-
TAR” with EROS B satellite. The figure shows the predic-
tion results, the covered area by the EROS B satellite and the
exact location of the ”YANTAR” with the successful detec-
tion.

Figure 11: Uncertainty cycle after 12 hours

Figure 12: Successful detection of the YANTAR: Russian
research ship

In our next example, we have monitored a submarine on
its way from the Atlantic Ocean to the Mediterranean sea,
on October 9, 2017. The submarine has no historical data,
thus we used common shipping routes and historical data
of other vessels in the area for graph creation. We used in-
telligence information to estimate the submarine last known
location and its speed. We also estimated that the submarine
will surface before crossing the Strait of Gibraltar. We pre-
dicted the location of the submarine based on the pass of the
EROS B satellite in this area. A prediction was made for five
hours. We used 3 satellite imagery and covered 600km2 of
the area.
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Figure 13 presents the successful detection of the subma-
rine inside the Mediterranean sea. Moreover, in the satellite
imagery we can see another military vessel, a corvette sail-
ing close to the submarine.

Figure 13: Successful detection of the Submarine

On October 10, 2017 the day after our first successful de-
tection of the submarine in the Mediterranean sea, KING-
FISHER succeeded again in detecting the submarine. Now,
we used our first detection as the last known location of the
submarine and set the EROS B satellite based on the pre-
diction algorithm using the same graph as was built in our
first try. Figure 14 presents the another successful detection
of the submarine.

Figure 14: Another successful detection of the Submarine

9 Summary and Future Work

This paper presents an algorithm for selection of the best
satellite observation window for detection of a moving ob-
ject. Satellite imagery is an expensive product, which covers
a small area, and can be acquired only at predefined acquisi-
tion opportunities. We focus on efficient ways for decreasing
the search area for the moving vessel by using vessel behav-
ior prediction, which increases the probability of acquiring
relevant information from the satellite imagery.

We also presented KINGFISHER, maritime intelligence
system which uses the proposed algorithms to track a mar-
itime vessels with satellite sensors. We present three exam-
ples of successful detection based on the proposed algo-
rithms.

In our future work, we plan to improve the prediction
model to count for longer prediction times, for up to 48
hours decrease the recommended areas for vessel detection
even more.
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