The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

A Genetic Algorithm for Finding a Small and Diverse Set of
Recent News Stories on a Given Subject: How We Generate AAAI’s AI-Alert

Joshua Eckroth, Eric Schoen
12k Connect, LLC

Abstract

This paper describes the genetic algorithm used to select news
stories about artificial intelligence for AAAI’'s weekly Al-
Alert, emailed to nearly 11,000 subscribers. Each week, about
1,500 news stories covering various aspects of artificial in-
telligence and machine learning are discovered by i2k Con-
nect’s NewsFinder agent. Our challenge is to select just 10
stories from this collection that represent the important news
about Al. Since stories and topics do not necessarily repeat
in later weeks, we cannot use click tracking and supervised
learning to predict which stories or topics are most preferred
by readers. Instead, we must build a representative selection
of stories a priori, using information about each story’s top-
ics, content, publisher, date of publication, and other features.
This paper describes a genetic algorithm that achieves this
task. We demonstrate its effectiveness by comparing several
engagement metrics from six months of “A/B testing” experi-
ments that compare random story selection vs. a simple scor-
ing algorithm vs. our new genetic algorithm.

Since 2001, the AlTopics.org information portal has hosted
links to news, overviews, journal and conference papers,
and classic texts about artificial intelligence (Buchanan and
Glick 2002; Buchanan, Eckroth, and Smith 2013). Every
item is classified according to a deep hierarchy of Al-related
topics as well as industry topics such as transportation,
health and medicine, and education. Initially, all items on
the site were collected and classified manually. In 2010, we
introduced automatic discovery and classification of news
stories with NewsFinder (Eckroth et al. 2012).

AAALI had originally hired a webmaster who spent ap-
proximately ten hours a week to find and generate the alerts
manually (as part of other duties covered by an NSF grant).
We estimate it took about 3-6 minutes to search for and re-
view each candidate story, or about 10-20 candidates per
hour. At a nominal $35 per hour the cost of the alert service
was thus about $18,000 per year to scan and select from a
few hundred candidate stories per week.

When the webmaster left, AAAI continued the manual
service with volunteer help. This task requires a person with
some knowledge of Al and editorial skill, so it was difficult
to find a replacement, and relying on volunteers is not sus-
tainable. In January 2017, we automated the weekly email

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9357

alert containing the week’s most important and interesting
news stories about artificial intelligence and machine learn-
ing. Known as Al-Alert, this service is an official publica-
tion of AAAI and received without charge by virtually all
its members and affiliates and many members of the inter-
ested public, nearly 11,000 people in all. Each alert contains
just 10 stories from the 1,500 or so found by NewsFinder
each week from nearly one hundred sources including AAAI
journals and conferences, arXiv.org, links on Twitter marked
with the #artificialintelligence hashtag, and many reputable
news sources.

In the first year of our automated Al-Alert, stories were
selected for the alert according to a scoring algorithm we
call “TopClass.” In short, this algorithm grouped the week’s
stories according to their topic classifications, then picked
one story from each of these groups. We eventually felt this
algorithm was too simplistic as we sometimes saw too many
stories from the same day of week or same news source.
We also saw that the algorithm sometimes failed to pick a
good news source for a specific event that was reported by
several sources in the week. Thus, we realized that story
selection was a multicriteria decision problem and a tech-
nique like genetic algorithms may be able to do a better job.
We developed a new genetic algorithm for story selection
and conducted a six-month experiment in which readers re-
ceived either the original TopClass selections, the new ge-
netic algorithm selections, or random stories in their alert.
After concluding the experiment, we are able to report in
this paper that the genetic algorithm indeed performed sig-
nificantly better. Since the conclusion of our experiment in
July 2018, AI-Alert has used the genetic algorithm for all
weekly alerts.

To give a sense of reader engagement since July 2018, we
can report the percent of readers who open the email, the
percent who unsubscribe, and the percent of readers who
click at least one story (each story is displayed with its ti-
tle and a link to the original source). Al-Alert consistently
beats Computer and Electronics industry marketing email
averages (MailChimp 2018) for open rate (our average 30%
vs. their 19%), unsubscribe rate (our 0.11% vs. their 0.29%),
and click rate (our 5.5% vs. their 2.0%). Except for a final
editorial review, in which we sometimes remove stories that
we believe are inappropriate and stories that were misidenti-
fied as newly-published, the production of each week’s alert

is entirely automated.

In this paper, we describe how we automated the selec-
tion process of Al-Alert while maintaining high quality. Our
challenge in developing this automation can be summarized
as follows.

e Each week, about 1,500 stories must be filtered down to

the 10 best candidates.

Each story should be closely, not just tangentially, related
to AL

No single Al topic should dominate the alert; i.e., diver-
sity should be preferred even if much of the news media
wishes to focus on a single event for that week.

Stories should span the entire week and not just a single
particularly active day.

Duplicate and overlapping stories should be removed so
no single event dominates the alert.

No single publisher should dominate the alert, though
high-quality publishers should be preferred.

Since the topics and news events change week-to-week,
there is almost no opportunity for supervised learning, so
the stories must be selected from a priori features rather
than reader feedback.

As noted above, we use a genetic algorithm to solve this
multicriteria optimization problem for selecting stories for
each week’s alert. Experiments with this algorithm are dis-
cussed later in this paper.

The challenge of selecting stories for an alert can be seen
in the following example from March, 2018. During one of
Uber’s self-driving car tests in Arizona, a pedestrian was
tragically killed on March 18, 2018. NewsFinder acquired
its first story about the event on March 19 by monitoring
the #artificialintelligence hashtag on Twitter. This story was
published by The New York Times. An alert was already
scheduled to be generated on March 20, and by this point in
time NewsFinder had acquired 101 stories about the event.
The alert was to cover stories from the afternoon of March
13 to the morning of March 20, and 1,581 stories fit this
criteria. Of those stories throughout the week, 161 of them
were about autonomous vehicles (which includes the sto-
ries about the Uber crash). Due to several diversity criteria,
the genetic algorithm ultimately selected two stories about
the Uber crash: the aforementioned New York Times story
and a follow up story (also published on March 19) from
CNET, which stated that Uber had quickly suspended their
self-driving car operations. After sending the alert, we found
that 34% of clicks were directed to these two stories. This
example shows that the alert is neither overwhelmed by a
flurry of stories about the same event in a short time period,
nor does it miss some of the important events that readers
will want to see.

The rest of this paper is organized as follows. First, we
summarize statistics about recent reader engagement with
the Al-Alert. Then we give an overview of the design and
deployment of our alert generator. Next, we address related
work on the subjects of search result diversification and
news aggregation. We then proceed to describe our genetic

9358

4000

w
o
o
o

2000

1000

of readers with this click count

.

|
1 10 50

clicks across all weekly alerts (total per reader)

o

0 100

Figure 1: Frequency plot of the number of readers who have
clicked links in the alerts. The x-axis shows the number of
clicks and the y-axis shows the number of readers with that
click count. These clicks are totaled across all 25 weekly
alerts. Note that the x-axis is logarithmic.

algorithm, and follow this with results from a six-month
‘A/B’ test. Finally, we discuss the results and explain how
the alert is maintained on an on-going basis.

Engagement with AI-Alert

Before we explain our experiments in building a better Al-
Alert with a genetic algorithm, it is important to understand
how readers typically engage with the alert. The metrics we
report here summarize the readers of 25 weekly alerts that
were each generated using our genetic algorithm during our
six-month experiment, January 16, 2018 to July 3, 2018.
Later, when we discuss experimental results, we will show
how some metrics differ depending on the selection algo-
rithm.

While an average of 30% of recipients open any given
week’s alert, most (about 60%) have never clicked a link
in any alert, though we have anecdotal evidence that these
subscribers derive value from reviewing the titles alone. For
those who have clicked a link at any time, there is a long
tail distribution where a very small number of readers have
clicked many links. This distribution is visualized in Fig-
ure 1.

Each alert contains 10 news stories. During our experi-
ment, at least one story in every alert was clicked by at least
one reader. The mean number of stories in an alert clicked by
any reader was 9.56 and the median number was 10. Thus,
in nearly every alert, 9 or 10 out of 10 stories were clicked
by some reader.

Most readers who do click a story just click one. Again,
we have a long tail distribution, as seen in Figure 2. Among
stories that were clicked, most were clicked about 13 times
(mean), though rarely a story was clicked many more times.
Figure 3 shows this distribution.

In summary, the active readership of Al-Alert is relatively
small. About one-third open the email, and about 40% have
ever clicked one or more stories. Thus, about 12% of all re-
cipients actively engage with the alerts in any one week. It
is not clear to us if these numbers are typical for weekly

[o2]
o
o
o

4000

2000

of emails with this click count

o

1 2 3 4 5 6 7 8 9
of stories clicked by a reader (out of 10)

10

Figure 2: Frequency plot of the number of stories (out of 10)
in each alert that a reader clicks. It is clear that most readers
who click a story just click one story.

B [o2] ©
o o o

of stories with this click count
n
o

o

1 20
of times a story is clicked

40 60

Figure 3: Frequency plot of the number of clicks a story re-
ceives. Most stories receive between 5-20 clicks while few
stories receive many more clicks.

emails containing links to news stories about a given sub-
ject because, to our knowledge, such detailed statistics have
never been published.

These insights about the readership of Al-Alert contextu-
alize our experiment in generating a more valuable set of 10
stories each week.

System Design and Deployment

NewsFinder is composed of several components from i2k
Connect’s suite of technologies. These components include
web crawlers and Twitter agents, a document enrichment
service, an alert generator that finds good stories to include
in the alert, and an email generator that uses a template to
format the email to a consistent style. The document enrich-
ment component uses proprietary topic classification tech-
nology to identify the various topics that a news story cov-
ers. We primarily use two deep hierarchies of technologies,
including various kinds of artificial intelligence and ma-
chine learning, such as deep learning, reinforcement learn-
ing, rule-based expert systems, constraint solvers, etc. And
we use an industry hierarchy to identify whether a story
is discussing drones, robots in healthcare, fraud detection,
marketing, etc. Once news stories are found and enriched

9359

O->0O->[@-o@
J
NA->Q0-g-oad—22

Figure 4: System design, showing two separate processes:
acquisition and enrichment of news stories (top); and gen-
erating and emailing alerts based on a timer (bottom). The
steps shown are as follows. (1) NewsFinder crawls the web
to find news stories and extracts the main body text (2) of
each story. This text is then analyzed to enrich it with meta-
data such as which types of Al technologies and applica-
tions are mentioned in the text, if any, resulting in an en-
riched text (3). This enriched text is then saved to a search
database of candidate stories (4). In the second process, a
weekly timer (5) wakes up the alert generator, which first
searches the database for relevant stories (6), filters these
stories to a select ten (7), generates an email based on a for-
matting template (8), and sends this email to subscribers (9).

with classifications and other metadata, they are saved into a
search index for later retrieval. Then, once a week, the alert
generator wakes up and retrieves all stories in the search in-
dex that have a classification somewhere from the Al sub-
hierarchy in the technology hierarchy. Stories are further fil-
tered through several quality-control steps, explained below,
leaving about 200 candidates each week. These are then fil-
tered down to the top 10 using the genetic algorithm we de-
scribe below. An overview of these steps is shown in Fig-
ure 4.

NewsFinder, and virtually all of i2k Connect’s technolo-
gies, is implemented in the Clojure language, a Lisp variant
that produces Java bytecode and therefore can run anywhere
the Java Virtual Machine is available. Since web pages can
be tricky to parse to find the main body text, we use the
“snacktory” library by Peter Karussell! and several site-
specific rules to handle edge cases with complex formatting.
We use the “darwin” library by Jony Hudson? for the genetic
algorithm. Finally, we use the “enlive” library by Christophe
Grand? to generate the alert based on an HTML template.

The alert generator runs as an HTTP service that is acti-
vated by POST request submitted by a weekly cron job. The
alert generator queries the search index (running Solr) to find
stories and ultimately produces an HTML email. This email
is saved to a file rather than emailed directly to subscribers
because we wish to review the alert before it is sent. If any
stories in the alert are inappropriate (the story is offensive or
the website hosting the original story has deleted or moved
the story), or the story’s publication date was not correctly
identified by our system, then we modify the POST request
to “ignore” those stories, and regenerate the alert. Usually,

"https://github.com/karussell/snacktory
Zhttps://github.com/TonyEpsilon/darwin
*https://github.com/cgrand/enlive

regeneration is not required, but when it is needed, we usu-
ally only need to regenerate the alert once or twice at most.
The resulting HTML file is then uploaded to SendGrid, our
mailing list provider, and sent to subscribers at a predefined
time (11:00 AM Eastern US time).

It is worth noting that the alert generator can create alerts
of different kinds. Using the same genetic algorithm, a daily
email alert may be generated for stories about any topic that
is covered by one of our hierarchies. We also use the alert
generator to automatically submit a daily link to our Twitter
account.* Since we only post one tweet per day, the genetic
algorithm is not used here; instead, a random story from a
high-quality news source is selected.

The alert generator was developed and refined by several
people over a period of two years (January 2016 to Jan-
uary 2018), though not continuously during this period. The
core functionality for finding candidate news stories, filter-
ing them with the TopClass algorithm, and then formatting
the alert with an HTML template required a few weeks of a
single software engineer’s time. Once the system was oper-
ational, adding the genetic algorithm required about a week
of effort. The main challenge was inventing a “fitness func-
tion,” explained in more detail below.

Related Work

To our knowledge, there is no prior published work on au-
tomating the generation of diverse and timely news digests
on a given subject and delivered via email to a wide audi-
ence. The apparent uniqueness of our task is due to the com-
bination of several factors: (1) we emphasize finding diverse
news stories about a given subject (artificial intelligence in
our case) from high-quality sources; (2) we have no profile
information about the readers of AI-Alert, as users can sub-
scribe with just an email address and no prior interaction
with AlTopics; (3) the alert is delivered via email so we are
interested in reader engagement metrics like click rate rather
than precision/recall metrics from a groundtruth document
corpus. Prior work addresses each of these factors but not
the combination of all three.

Regarding the challenge of finding diverse news stories
about a given subject, we find related work in diversifica-
tion of search results. Diverse search results can increase
the likelihood that users find the documents they are seek-
ing. Agrawal, et al. (2009) prove that the problem of opti-
mally diversifying search results for a given search query is
NP-hard. They proceed to develop an efficient greedy algo-
rithm for diversifying results and demonstrate its effective-
ness from a study using human judges. Dou, et al. (2011)
focus on diversifying results according to multiple dimen-
sions. They develop a greedy algorithm to examine a query’s
various meanings based on uses in web pages, among other
sources. They demonstrate that their system has a better abil-
ity to find relevant documents by examining diverse mean-
ings for the query. Cecchini, et al. (2018) also look at search
diversification and use a genetic algorithm to evolve a pop-
ulation of queries to improve coverage and relevance of
search results.

*https://twitter.com/ai_topics

9360

Personalized news has been addressed by multiple au-
thors. For example, Gabrilovich, et al. (2004) developed
Newsjunkie to deliver stories from live news streams while
avoiding stories that report on the same breaking event or
report about events that the user has already reviewed. More
recently, Li, et al. (2011) developed a news recommendation
system that personalizes the stories per user interest, while
maintaining novelty and diversity. We note that Al-Alert is
generated for a general audience rather than for each user
specifically according to their interests, though research in
generating representative news appears to focus on person-
alization schemes.

Mishra and Berberich (2016) focused on generating a di-
gest of a news event by selecting excerpts from documents
and using multicriteria optimization to maximize diversity in
the digest’s perspective on the events. They use integer linear
programming to solve this optimization problem. Their ap-
proach is interesting because, presumably, we also could use
integer linear programming instead of a genetic algorithm to
solve our multicriteria optimization problem. However, their
approach is not directly applicable because we are not inter-
ested in generating summaries of the news, but rather linking
readers back to the original source.

Experimental Methodology

Our experiment focuses on finding a better selection algo-
rithm for including stories in the weekly alert. We will de-
termine success by measuring the click rate, i.e., the ratio of
the count of users who clicked a story to the number of alert
recipients, expressed as a percentage. We expect click rate
to improve with a better selection algorithm. In other words,
once a reader has opened the email, we expect that reader
will find more relevant and interesting stories and thereby
be more likely to click them.

Our experimental methodology is known as “A/B testing,”
where two different alerts are tested during the same week
on two distinct subsets of subscribers. In fact, we tested
three different selection algorithms (random, TopClass, ge-
netic), giving us a kind of “A/B/C” test. For each of the
25 alerts generated and sent during the six-month experi-
ment, three distinct subsets, each containing a random 20%
of subscribers, were assigned to each of the three algorithms.
Readers did not know, and indeed would have no way of
knowing, which algorithm generated the alert they received.
The email subject lines were identical in each case, so we did
not expect open rates to differ for the A/B/C variations of the
alert. The test lasted four hours each week. After this time
period, whichever of the three emails received the highest
click rate was then sent to the remaining 40% of the read-
ership. We did not measure engagement after the four hour
window closed each week.

Because each reader had a random chance of being in
any one of four groups (experimental group A, B, C, or the
group that received the best performing version after the four
hour time window), readers likely received emails generated
by several different versions of the selection algorithm over
time. Assuming at least one algorithm is poor and one is
great, readers saw a mix of quality in the alerts in this exper-
imental period. Thus, it is unlikely that any reader’s interest

1500

o
o
o

of stories

|
|

Figure 5: Average counts of stories after each filter in the
pre-filtering stage.

in the alerts increased or declined during these six months
because it is unlikely that any reader got consistently poor
or consistently great versions of the alert. For this reason,
we do not expect any changes in open rate or unsubscribe
rate.

Pre-filtering

Regardless of the selection algorithm, we first want to ensure
that all stories provided to the selector meet certain min-
imum quality guarantees. Each candidate story must pass
through a series of filters. The number of documents that
satisfy each filter each week are shown in Figure 5. Stories
are first obtained from the search index by querying on the
topic “artificial intelligence” from the topic hierarchy. Each
week, this yields about 1,500 stories, labeled “Found” in the
figure. Next, a set of simple title and URL filters are ap-
plied to remove any stories that appear to be blog posts, job
postings, press releases, etc. (“Filtered”). Then, a blacklist
of bad domains is referenced to remove any stories com-
ing from these domains (“GoodDomains”). This blacklist
is manually curated as we discover new websites with in-
appropriate or irrelevant content. These new websites usu-
ally come from crawling the Twitter hashtag #artificialintel-
ligence. Next, we automatically generate a summary of each
story using a modified version of Luhn’s technique (Luhn
1958). This summary is examined for blacklist words like
“I,” “we,” “leaked,” and others, which often indicate the
story is a personal opinion or rumors. Any stories having
these words in their summaries are filtered out (“GoodSum-
maries”). Finally, the system examines the topic classifica-
tions for each story. Since we want stories that have signif-
icant Al content, we require that the confidence of at least
one Al topic is above 80%. Only stories with sufficiently
high confidence are retained (“ReqClass”). As shown in the
figure, these pre-filters reduce the average of 1,500 stories to
about 200.

Algorithm 1: Random

Given a set of pre-filtered stories from the week, random
selection is as simple as it sounds: a random 10 stories are
selected from this set. They are then ordered by date.

9361

Algorithm 2: TopClass

The TopClass algorithm scans the pre-filtered stories and
collects all topic classifications for the stories. Recall that
each story necessarily has some classification in the Al sub-
hierarchy of AlTopics’ technology hierarchy, but it may also
have other classes from the technology hierarchy or industry
hierarchy. Next, the TopClass algorithm finds the 10 most
common classes, and then picks a representative story for
each class, i.e., the story that is most confidently classified
into that class. Finally, these representative stories are or-
dered by date.

Algorithm 3: Genetic

The genetic algorithm approach attempts to balance several
criteria for selecting diverse and representative stories. Be-
fore explaining these criteria, we first describe a few impor-
tant aspects of the algorithm. Any genetic algorithm must
have a way of representing an “individual” in the popula-
tion, an initial population, a crossover function, a mutation
function, and a fitness function.

Genetic representation. In our case, an “individual” is a set
of 10 stories, so our genetic representation is simply a fixed-
size list of stories, ordered by date.

Initial population. In the first generation, the initial popu-
lation consists of 100 random sets of 10 stories each.

Crossover function. The crossover function takes two in-
dividuals and produces two new individuals, each of which
share much of the information from the original individuals.
Given two sets of 10 stories, a random pivot point p is se-
lected, between 1 and 9 (inclusive), and two new individuals
are generated: stories in positions [1, p] in the first individ-
ual combined with stories (p, 10] in the second individual,
and the second new individual takes stories [1, p] from the
second and (p, 10] from the first. Any duplicate stories in
the new individuals are removed and replaced with random
(non-duplicating) stories from the week’s collection.

Mutation function. The mutation function randomly per-
turbs an individual so that a wide range of the possible
variation of individuals is explored as the genetic algorithm
runs through generations. Our mutation function simply ran-
domly selects a story in the set of 10 that make up the indi-
vidual and replaces it with a story not already in that set.

Fitness function. Finally, and most importantly, we define
a fitness function that takes into account the various criteria
we wish to optimize.

One of the most important aspects of our fitness function
is a calculation of diversity. We wish to optimize for diver-
sity in the alert in terms of dates of the stories (so not all
stories are from the same day), topic classes (so not all sto-
ries are about the same kind of technology or industry), URL
domains (so not all stories are from the same source), and
words in titles and summaries (so not all stories cover the
same event, even if their topic classifications somewhat dif-
fer due to different perspectives of that event). In order to

Symbol | Meaning
Cavg Mean confidence of classes
Davg Mean score of domains
Tqiy Diversity of dates
div Diversity of classes
Dyiy Diversity of domains
div Diversity of words in titles
(Iiiv Diversity of words in summaries

Table 1: Symbols and definitions for the various criteria that
make up the fitness function.

calculate diversity, we first define a function that counts the
number of elements in a vector Z that equal a particular s:

||

C(z,s) = Z[gcz =g, (1
i=1
where [P] = 1 whenever P is true, 0 otherwise. Next, we

make use of the Gini-Simpson diversity index (Jost 2006) to
measure the probability that two stories picked from the set
of 10 have different dates, classes, domains, and/or words in
their titles and summaries. The diversity index is defined as:

XA C@ s -Ce)

[(1 — [2])
For example, when calculating the diversity of dates, we let
Z contains all the dates of the stories in an individual. Then
the fraction gives us the ratio of stories with a particular
date to those without, averaged across all represented dates.
Thus, D(Z) is a larger value (closer to 1.0) when more sto-
ries have distinct dates.

With these equations in mind, we define our fitness func-
tion as the product of several criteria. The genetic algorithm
will attempt to minimize the value of this function, so we
negate the product to optimize for maximum fitness. We
consider each of the criteria to be equally important, so they
are all weighted equally. The criteria and their corresponding
symbols are shown in Table 1. Recall that the diversity cal-
culation ranges from 0 to 1, and each topic classification has
a confidence value between 0 and 1 (previously expressed as
a percent). A single story will likely have multiple classifi-
cations, each with a confidence value; and a set of 10 stories
will have even more classifications and confidence values.
We wish to find the average confidence value and optimize
for a larger average. This way, we will prefer stories that
are strongly about one or more topics and not just general
overviews of a range of topics. Likewise, we use a manually
curated list of URL domains and scores between 0 and 1 to
compute the average domain score for a set of 10 stories.

The fitness function F' is defined follows:

D(z) =1

F = —Cavg* Davg *Tgiy * Cgiy * Daiv * Waiy * Wy)

At each generation, the genetic algorithm selects 25 pairs
of individuals and generates new individuals from crossover
and mutation. The selection algorithm is classical tourna-
ment selection, in which the most fit individuals from ran-
dom subsets of the population are chosen for crossover.

9362

-0.2

Fitness

100
Generation

Figure 6: Minimum fitness values per generation for five
runs with different random seeds.

Results

We run the genetic algorithm for 500 generations, but as can
be seen in Figure 6, about 150 generations suffices. Running
500 generations takes about 1.5 minutes on an Intel Xeon E5
with 96 GB memory. Including querying the search index
and generating the HTML output, the whole process takes
about 2 minutes.

If we run the algorithm on the same pre-filtered corpus
of one week’s stories, but vary the random seed, we get dif-
ferent initial populations and different individuals selected
for crossover and mutation from the tournament selector.
Thus, we can expect the output to differ on each run. In fact,
an experiment with five different random seeds shows that
most of the stories in the final output are identical or similar.
Two pairs of stories oscillated in the five runs: in some out-
puts, the story “Australia unleashes starfish-killing robot to
protect Great Barrier Reef,” from japantimes.co.jp was in-
cluded. In other runs, this story was replaced by “Why is
Facebook keen on robots? It’s just the future of Al from
circa.com. It is worth noting both stories are about robots.
The second pair of stories that oscillated are “Toyota to in-
vest $500m in Uber in driverless car deal,” from bbc.co.uk
and, “Toyota Joins Uber on Its Tortuous Journey to Self-
Driving Cars” from wired.com. It is worth noting both sto-
ries are about the same event.

The real measure of success is whether or not readers ac-
tually preferred the alerts generated by the genetic algorithm
over the random or TopClass algorithm. We can measure
this preference by tracking clicks on the stories themselves.
Known as “click rate,” this metric is the ratio of users who
clicked a story to users who received the email. Figure 7
shows a frequency plot of the click rate for each algorithm.
We can see that the genetic algorithm often received a higher
click rate than both random and TopClass algorithms.

Of course, a figure is not sufficient evidence that the ge-
netic algorithm performs best. Table 2 lists some summary
statistics for click rates for the different algorithms. We see
that the genetic algorithm has the highest rate in all the statis-
tics (min, mean, median, etc.). Furthermore, we can calcu-
late statistical significance of these differences in click rates,
as shown in Table 3. Using pair-wise t-tests, we calculated

Algorithm | Min. | 1st Q. | Median | Mean | 3rd Q. | Max.
Genetic 290 | 4.11 5.61 5.55 6.49 11.12
Random 2.83 | 3.96 4.68 4.87 5.79 8.23
TopClass 248 | 349 4.28 4.39 5.23 6.86

Table 2: Click rates (%) for emails generated by each algorithm over the experimental period. “Ist Q.” and “3rd Q.” mean first

and third quartile, respectively.

oj8UBY

of weeks with this click rate
ON H OOOOMNPHPOOOON O O

sse|ndoy ‘ wopuey

5.0 7.5

Click rate (%)

10.0

Figure 7: Frequency plot of the number of weeks (number
of distinct alerts) that received various ranges of click rates.
The results from each story selection algorithm are separated
as vertical facets.

the difference in click rates per week for each algorithm.
We see that the genetic algorithm performed better than both
random and TopClass, and in the case of TopClass, by a sig-
nificant margin (the difference between genetic and random
selection was nearly but not quite statistically significant).
Interestingly, the random algorithm performed better than
TopClass, perhaps by providing more diversity in the selec-
tion. This outcome demonstrates that simplistic heuristics
can sometimes do more harm than good.

We also compared open rates and unsubscribe rates
throughout the weeks. As we described above, we did not
expect these metrics to change depending on the selection
algorithm since there was no information provided to the
reader about which version of the alert they received each
week, and since each reader received a different (random)
version of the alert each week, there is little chance for the
reader to “learn” that the alerts were improving or getting
worse over time. Thus, their open rate or unsubscribe rate
should not be affected by the selection algorithm. Indeed,
Table 3 shows that these metrics did not significantly dif-
fer depending on which algorithm was used for each reader.
Over the course of the experiment, the open rate for all alerts
(regardless of the selection algorithm) declined about 0.01%
per week, but this decline was not significant. The unsub-
scribe rate also declined by about 0.0003% per week, but
this was also not significant.

In summary, these results show that the genetic algorithm
produces stories that are more likely to be clicked. Thus,
readers seem to like these stories more. It is worth noting
again that nothing about the genetic algorithm or the set of

9363

Measure Algs. compared Mean + | p-value
Click rate Genetic—Random | +0.68 0.0834
Click rate Genetic—TopClass | +1.16 0.0345
Opens Genetic—Random | +0.02 0.982
Opens Genetic—TopClass | —0.29 0.706
Unsubscribes | Genetic—Random | —0.02 0.589
Unsubscribes | Genetic—TopClass | +0.01 0.660

Table 3: Results of pair-wise t-tests with 23 degrees of free-
dom. The measured variable was click rates (%).

pre-filters is specific to stories about artificial intelligence;
we expect our approach would work equally well on stories
about any subject.

Discussion

Our six-month experiment successfully validated our belief
that the genetic algorithm approach is a better story selector
than random or TopClass algorithms. Once the experiment
concluded in July 2018, we activated the genetic algorithm
for all readers of Al-Alert, and our weekly click rates and
open rates remain strong while our unsubscribe rates remain
low.

Our automation of the generation of Al-Alert continues to
save us significant time compared to manually assembling
and formatting the alert ourselves. Instead of spending many
hours finding relevant candidates and selecting a few inter-
esting stories for each weekly alert, our current approach
only requires checking the alert’s output and removing a bad
story or two. This takes only about 10 minutes a week. We
do not expect to fully automate the alert since we always
want to maintain some editorial control over its contents.
We value our readership too much to allow an obviously in-
appropriate news story or spam content to infiltrate the alert.

Maintenance

The code that generates Al-Alert on a weekly basis requires
very little maintenance. The i2k Connect technology that
finds and classifies news stories is maintained separately as
a multi-purpose suite of technologies that support the alert,
the AlTopics website, and the Society of Petroleum Engi-
neers’ research portal,> among other use cases. Thus, those
components are maintained and upgraded on a continuous
basis primarily to support other use cases.

Maintenance specific to Al-Alert includes maintaining
and upgrading the “snacktory” configuration files that help
our system extract body text from news stories around the

Shttps://search.spe.org/i2kweb/SPE/search

web. For example, CNN’s website has a specific layout that
differs significantly from The New York Times’ layout, and
sometimes we need to define special patterns in order for
snacktory to find the body text. We also maintain and curate
two blacklists that apply to the pre-filtering stage of process-
ing. These blacklists give bad URL domains and bad words
in titles and summaries (not just offensive words, but also
words that indicate opinions, rumors, etc.). We consider it
important that the alert be able to include stories outside of
a small set of whitelisted publishers, and the Twitter #artifi-
cialintelligence hashtag often provides stories from websites
we have never seen before. Sometimes, these stories or web-
sites are not appropriate for the alert, so we add a blacklist
rule. This is done during the short editing time period each
week. In the future, we hope to find a more automatic way
of maintaining these blacklists, but it is not clear at this time
how that may be done. Finally, we also maintain a list of
URL domains and scores so that stories from subjectively-
good sources like nytimes.com and bbc.co.uk are prioritized
in the fitness function of the genetic algorithm over lower
quality or unknown domains.

As mentioned above, sometimes NewsFinder assumes the
wrong publication date for a story. These out-of-date stories
are caught during our editing phase and removed from the
alert. However, we expect that this problem can be solved
with a bit more sophistication in our publication date detec-
tor. Different news publishers have different ways of writing
a publication date on their story, if they even include a date
at all. We are actively working on improving date parsing,
but if no date is present, we default to the date that the story
was discovered by NewsFinder.

All things considered, maintaining NewsFinder and edit-
ing the weekly Al-Alert requires very little time. It is mostly
set-it-and-forget-it. A significant contributor to such low
maintenance requirements is a alert generator, including our
genetic algorithm for selecting stories, that considerably re-
duces the time required to create an alert that represents the
important Al news of the week.

Conclusion

This paper described how we designed and implemented an
automated weekly alert sent by email to thousands of sub-
scribers. The alert focuses on the week’s news about artifi-
cial intelligence, covering a diverse set of stories from high
quality sources. The key to our strong reader engagement
lies in a genetic algorithm that filters thousands of stories
acquired throughout the week to just 10 stories for inclusion
in the alert. These stories are selected according to several
criteria such as topic, content, and date diversity and the rep-
utation of the publisher. We demonstrated that the genetic
algorithm produces alerts that result in more engagement,
measured by click rate, by readers of the alert.

We believe Al-Alert is valuable to more readers in the
general population than the nearly 11,000 subscribers we
have at this time. Any person can sign up for free on the
AlTopics website, and our list of subscribers are periodi-
cally expanded to include new AAAI members and affiliates.
However, some targeted marketing effort will be required to
dramatically expand the reach of the alert.

9364

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 1534798.

References

Agrawal, R.; Gollapudi, S.; Halverson, A.; and Ieong, S.
2009. Diversifying search results. In Proceedings of the sec-
ond ACM international conference on web search and data
mining, 5-14. ACM.

Buchanan, B. G., and Glick, J. 2002. Al Topics. Al Maga-
zine 23(1):87.

Buchanan, B. G.; Eckroth, J.; and Smith, R. G. 2013. A
virtual archive for the history of Al. Al Magazine 34(2).

Cecchini, R. L.; Lorenzetti, C. M.; Maguitman, A. G.; and
Ponzoni, I. 2018. Topic relevance and diversity in in-
formation retrieval from large datasets: A multi-objective
evolutionary algorithm approach. Applied Soft Computing
69:749-770.

Dou, Z.; Hu, S.; Chen, K.; Song, R.; and Wen, J.-R. 2011.
Multi-dimensional search result diversification. In Proceed-
ings of the fourth ACM international conference on Web
search and data mining, 475-484. ACM.

Eckroth, J.; Dong, L.; Smith, R. G.; and Buchanan, B. G.
2012. NewsFinder: Automating an Al news service. Al
Magazine 33(2):43.

Gabrilovich, E.; Dumais, S.; and Horvitz, E. 2004.
Newsjunkie: providing personalized newsfeeds via analysis
of information novelty. In Proceedings of the 13th interna-
tional conference on World Wide Web, 482-490. ACM.

Jost, L. 2006. Entropy and diversity. Oikos 113(2):363-375.

Li, L.; Wang, D.; Li, T.; Knox, D.; and Padmanabhan, B.
2011. SCENE: A scalable two-stage personalized news rec-
ommendation system. In Proceedings of the 34th interna-
tional ACM SIGIR conference on Research and development
in Information Retrieval, 125-134. ACM.

Luhn, H. P. 1958. The automatic creation of literature ab-
stracts. IBM Journal of research and development 2(2):159—
165.

MailChimp. 2018. Average email cam-
paign stats of MailChimp customers by industry.
https://mailchimp.com/resources/research/email-marketing-
benchmarks/.

Mishra, A., and Berberich, K. 2016. Event digest: A holistic
view on past events. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in
Information Retrieval, 493-502. ACM.

