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Abstract
We introduce a novel deep–learning architecture for image
upscaling by large factors (e.g. 4×, 8×) based on examples of
pristine high–resolution images. Our target is to reconstruct
high–resolution images from their downscale versions. The
proposed system performs a multi–level progressive upscal-
ing, starting from small factors (2×) and updating for higher
factors (4× and 8×). The system is recursive as it repeats the
same procedure at each level. It is also residual since we use
the network to update the outputs of a classic upscaler. The
network residuals are improved by Iterative Back–Projections
(IBP) computed in the features of a convolutional network.
To work in multiple levels we extend the standard back–
projection algorithm using a recursion analogous to Multi–
Grid algorithms commonly used as solvers of large systems
of linear equations. We finally show how the network can
be interpreted as a standard upsampling–and–filter upscaler
with a space–variant filter that adapts to the geometry. This
approach allows us to visualize how the network learns to up-
scale. Finally, our system reaches state of the art quality for
models with relatively few number of parameters.

Introduction
In this work, we focus on the problem of image upscaling
using convolutional networks. Upscaling signals by integer
factors (e.g. 2×, 3×) is understood in classical interpolation
theory as two sequential processes: upsample (insert zeros)
and filter (Proakis and Manolakis 2007; Mallat 1998). Stan-
dard upscaler algorithms, such as Bicubic or Lanczos, find
high–resolution images with a narrow frequency content by
using fixed low–pass filters. Similar to the classic upscaling
model, the image acquisition can be modeled as low-pass
filtering a high resolution image and then downsample the
result (drop pixels). In test scenarios often used in bench-
marks we actually know the exact downscaling model, e.g.
Bicubic downscaler. The Iterative Back–Projection (IBP) al-
gorithm (Irani and Peleg 1991) is often used to enforce the
downscaling model for a given upscaler and get closer to the
original image.

More advanced upscalers follow geometric principles to
improve image quality. For example, edge–directed interpo-
lation uses adaptive filters to improve edge smoothness (Al-
gazi, Ford, and Potharlanka 1991; Li and Orchard 2001), or
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bandlet methods use both adaptive upsampling and filtering
(Mallat and Peyre 2007). More recently, machine learning
has been able to use examples pairs of high and low reso-
lution images to estimate the parameters of upscaling sys-
tems (Park, Park, and Kang 2003). In some cases, the opti-
mization approach of machine learning hides the connection
with classical interpolation theory, e.g. sparse representation
with dictionaries (Yang et al. 2008; 2010). In other cases, the
adaptive filter approach is explicit, e.g. RAISR (Romano,
Isidoro, and Milanfar 2016).

Upscaling using convolutional networks started with SR-
CNN (Dong et al. 2014a; 2015) motivated by the suc-
cess of deep–learning methods in image classification tasks
(LeCun, Bengio, and Hinton 2015) and establishing a
strong connection with sparse coding methods (Yang et
al. 2008; 2010). SRCNN has later been improved, most
notably by EDSR (Lim et al. 2017) and DBPN (Haris,
Shakhnarovich, and Ukita 2018). Our system shares the con-
volutional network approach but follows a different motiva-
tion. Namely, we aim to reveal a strong connection between
convolutional–networks and classical image upscaling. By
doing so, we can recover the classic interpretation of upsam-
pling and filter and visualize what is the network doing pixel
by pixel. Thus, we aim to prove that convolutional networks
are a natural and convenient choice for Super–Resolution
(SR) tasks.

Our main contributions are:

• We extend the IBP algorithm to a multi–level IBP.

• We prove that our algorithm works as well as classic IBP,
based on an unrealistic model.

• We introduce a new network architecture that over-
comes the unrealistic model and allows us to learn both
upscaling and downscaling.

• We introduce a novel algorithm to analyze the linear
components of the network.

• We show how to interpret the network as a standard up-
scaler with adaptive filters.

Related Work
We consider the following two architectures as the most sim-
ilar to our system:
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Algorithm 1 Multi–Grid Back–Projection (MGBP)
MGBP (X,µ, L): BPµ

k (u, Y1, . . . , Yk−1):
Input: Input image X .
Input: Integers µ > 0 and L > 1.
Output: Images Yk, k = 2, . . . , L.

1: Y1 = X
2: for k = 2, . . . , L do
3: u = (Yk−1 ↑ s) ∗ p
4: Yk = BPµk (u, Y1, . . . , Yk−1)
5: end for

Input: Image u, level index k, number of steps µ.
Input: Images Y1, . . . , Yk−1 (only for k > 1).
Output: Updated image u

1: if k > 1 then
2: for step = 1, . . . , µ do
3: d = BPµk−1 ((u ∗ g) ↓ s, Y1, . . . , Yk−2)
4: u = u+ (Yk−1 − d) ↑ s ∗ p
5: end for
6: end if
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Figure 1: Multigrid Back–Projection (MGBP) system architecture. Lines indicate a number of image channels moving to
different processing blocks, and line colors indicate the number of channels. Blue represents 3 channels for RGB images, and
black represents the number of features managed by convolutional networks (latent space). At level k the current upscaled
image is indicated as Ik and residuals in latent space are indicated as Rk. We use Analysis and Synthesis modules to transfer
images into latent space and vice versa. In Initial Steps we obtain the first pair of output image I0 and residual R0, from the
input image. Then, the main diagram shows how to obtain the pair IL and RL from the previous pair IL−1 and RL−1. In red
we show the Back–Projection module, which repeats mu back–projection steps recursively.

• Multi–Scale Laplacian Super–Resolution (MSLapSR)
(Lai et al. 2017b): Our system is inspired by MSLapSR to
progressively upscale images using a classic upscaler and
network updates, before back–projections that improve
network updates in lower–resolutions. Both MSLapSR
and our systems include analysis and synthesis networks
to convert images to latent space and vice versa. Both
systems share parameters at each scale. Our system dif-
fers mostly in the use of back–projections, that cannot be
removed to recover MSLapSR because of the particular
structure of our upscaler network module.

• Deep Back–Projection Network (DBPN) (Haris,
Shakhnarovich, and Ukita 2018): To the extent of our
knowledge, this is the first reference to use IBP in a
network architecture. It is also the state–of–art in terms of
image quality, surpassing EDSR(Lim et al. 2017), former
winner of NTIRE 2017 SR Challenge (Timofte et al. ).
Their approach to use back–projections is different than
ours because: first, their system is not multi–scale; and
second, they iterate down and up projections. Our multi–
scale architecture requires less number of parameters,
because we reuse modules at every scale, and it is more
flexible, because many upscaling factors can be achieved
with the same modules. Also, our system is built upon
an algorithm that is proven to converge, whereas, to the

extent of our knowledge, mixing up and down projections
has no convergence guarantees.

Our contributions add to the following lines of research:

• Recursive Architectures: Extensive work has been done
on recursive CNN architectures inspired on iterative pro-
cedures. Our system belongs to this line of work since we
propose an architecture based on IBP and multi–grid it-
erations. Of particular interest is the research along this
line related to SR and enhancements problems. In (Kruse,
Rother, and Schmidt 2017), for example, a half quadratic
splitting iteration with a CNN denoiser prior is proposed
for image denoising, deblurring and SR. Most recently,
(Kokkinos and Lefkimmiatis 2018) take a similar ap-
proach for image demosaicking. Next, (Gong et al. 2018)
propose to learn an optimizer for image deconvolution by
recurrently incorporating CNNs into a gradient descent
scheme, which could be complementary to our approach.
In (Zhang et al. 2017), an energy minimization iteration is
performed using a CNN model for image deconvolution,
which is close to the SR problem. Finally, the work of
(Diamond et al. 2017) follows a similar motivation than
ours by proposing a framework to incorporate knowledge
of the image formation into CNNs, applied to denoising,
deblurring and compressed sensing.
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Figure 2: Multi–Grid Back–Projection (MGBP) recursion unfold from Figure 1 for different values of µ, and three levels to
output 2×, 4× and 8× upscale images. Our system uses a recursion analogous to the Full–Multigrid algorithm to solve linear
equations and leads to the well known workflows V–cycle for µ = 1 and W–cycles for µ = 2 (Trottenberg and Schuller 2001).
After every upscaling step, the MGBP recursion sends the output down to every lower–resolution level in order to validate the
downscaling model. The corrections are back-projected to higher resolutions.

All these approaches differ to ours in the fact that our
recursion iterates back and forth between different reso-
lutions. In numerical methods, such iterations have been
used by two types of linear equation solvers: multi–
grid and domain decomposition methods (Trottenberg
and Schuller 2001; Widlund and Toselli 2004). We fol-
low the multi–grid approach, that can use inductive ar-
guments to study convergence, and leads to specific pro-
cessing workflows to move intermediate results between
scales (see for example the W–cycle in Figure 2). Systems
like MS–DenseNet (Huang et al. 2017a) also move back
and forth between scales with more simplified workflows
but they were not designed based on classical methods.
The connection to classical methods gives us a justifica-
tion of these workflows that, otherwise, would be arbi-
trary (e.g. why traversing scales with V or W workflows
in Figure 2)? which workflow is better?) We will show,
for example, how different numbers of back–projections
(related to depth) make outputs sharper, same as in IBP.
Our main contribution here is to devise a new algorithm
that introduces the multi–grid recursion into IBP. It is a
different algorithm than IBP, that we prove to converge at
the same rate, and then extend to a network architecture.
Finally, this effort pays back since our recursion works
well in experiments, with no other method reaching the
same quality with the same number of parameters.

• Network Visualization: A major direction of research in
deep–learning is how to visualize the inner processing of a
given architecture (Zhang and Zhu 2018). Among these, a
line of research on feature visualization studies what does
a network detect (Olah, Mordvintsev, and Schubert 2017).
Feature visualization can give example inputs that cause
desired behaviors, separating image areas causing behav-
ior from those that only relate to the causes. Another line
of work on attribution studies how does a network assem-
bles these individual pieces to arrive at later decisions, or
why these decisions were made (Olah et al. 2018). Our vi-
sualization technique belongs to the latter because we can
show how the input pixels are assembled into a particu-
lar output pixel. We target the SR problem where there
is extensive knowledge of non–adaptive filters (e.g. lin-
ear, bicubic, etc.) built upon signal processing theory. The
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Figure 4: Interpretation of the upscaling network as a stan-
dard upscaler with adaptive filters.

main novelty of our technique is that it provides an al-
ternative system to replace the network for a given input.
The new system generates the exact same outputs of the
network from the same input images but, unlike the net-
work, it is fully interpretable in the sense that we know
what to expect from its parameters.

Multigrid Backprojections
A simple and common model for the downscaling process is

X = (Y ∗ g) ↓ s , (1)

where Y is the high–resolution source, X is the low–
resolution result, g is a blurring kernel and ↓ s is a down-
sampling by factor s.

Model (1) gives additional information about the un-
known high–resolution image and narrows down the search
space from all possible images to images that downscaled
with model (1) recover the low–resolution input image. This
is the motivation behind the classic IBP algorithm (Irani and
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Table 1: Quantitative evaluation of different SR methods. Methods are ordered by increasing number of parameters.

Algorithm s par Set14 BSDS100 Urban100 Manga109
[M ] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 2 – 30.34 0.870 29.56 0.844 26.88 0.841 30.84 0.935
A+ (Timofte and Smet 2014) 2 – 32.40 0.906 31.22 0.887 29.23 0.894 35.33 0.967
FSRCNN (Dong, Loy, and Tang 2016) 2 0.01 32.73 0.909 31.51 0.891 29.87 0.901 36.62 0.971
SRCNN (Dong et al. 2014b) 2 0.06 32.29 0.903 31.36 0.888 29.52 0.895 35.72 0.968
MSLapSRN (Lai et al. 2017b) 2 0.22 33.28 0.915 32.05 0.898 31.15 0.919 37.78 0.976
Our 2 0.28 33.27 0.915 31.99 0.897 31.37 0.920 37.92 0.976
VDSR (Kim, Lee, and Lee 2016a) 2 0.67 32.97 0.913 31.90 0.896 30.77 0.914 37.16 0.974
LapSRN (Lai et al. 2017a) 2 0.81 33.08 0.913 31.80 0.895 30.41 0.910 37.27 0.974
DRCN (Kim, Lee, and Lee 2016b) 2 1.78 32.98 0.913 31.85 0.894 30.76 0.913 37.57 0.973
D-DBPN (Haris, Shakhnarovich, and Ukita 2018) 2 5.95 33.85 0.919 32.27 0.900 32.70 0.931 39.10 0.978
EDSR (Lim et al. 2017) 2 40.7 33.92 0.919 32.32 0.901 32.93 0.935 39.10 0.977

Bicubic 4 – 26.10 0.704 25.96 0.669 23.15 0.659 24.92 0.789
A+ (Timofte and Smet 2014) 4 – 27.43 0.752 26.82 0.710 24.34 0.720 27.02 0.850
FSRCNN (Dong, Loy, and Tang 2016) 4 0.01 27.70 0.756 26.97 0.714 24.61 0.727 27.89 0.859
SRCNN (Dong et al. 2014b) 4 0.06 27.61 0.754 26.91 0.712 24.53 0.724 27.66 0.858
MSLapSRN (Lai et al. 2017b) 4 0.22 28.26 0.774 27.43 0.731 25.51 0.768 29.54 0.897
Our 4 0.28 28.43 0.778 27.42 0.732 25.70 0.774 30.07 0.904
VDSR (Kim, Lee, and Lee 2016a) 4 0.67 28.03 0.770 27.29 0.726 25.18 0.753 28.82 0.886
LapSRN (Lai et al. 2017a) 4 0.81 28.19 0.772 27.32 0.728 25.21 0.756 29.09 0.890
DRCN (Kim, Lee, and Lee 2016b) 4 1.78 28.04 0.770 27.24 0.724 25.14 0.752 28.97 0.886
D-DBPN (Haris, Shakhnarovich, and Ukita 2018) 4 10.4 28.82 0.786 27.72 0.740 26.54 0.795 31.18 0.914
EDSR (Lim et al. 2017) 4 43.1 28.80 0.788 27.71 0.742 26.64 0.803 31.02 0.915

Bicubic 8 – 23.19 0.568 23.67 0.547 20.74 0.516 21.47 0.647
A+ (Timofte and Smet 2014) 8 – 23.98 0.597 24.20 0.568 21.37 0.545 22.39 0.680
FSRCNN (Dong, Loy, and Tang 2016) 8 0.01 23.93 0.592 24.21 0.567 21.32 0.537 22.39 0.672
SRCNN (Dong et al. 2014b) 8 0.06 23.85 0.593 24.13 0.565 21.29 0.543 22.37 0.682
MSLapSRN (Lai et al. 2017b) 8 0.22 24.57 0.629 24.65 0.592 22.06 0.598 23.90 0.759
Our 8 0.28 24.82 0.635 24.67 0.592 22.21 0.603 24.12 0.765
VDSR (Kim, Lee, and Lee 2016a) 8 0.67 24.21 0.609 24.37 0.576 21.54 0.560 22.83 0.707
LapSRN (Lai et al. 2017a) 8 0.81 24.44 0.623 24.54 0.586 21.81 0.582 23.39 0.735
D-DBPN (Haris, Shakhnarovich, and Ukita 2018) 8 23.2 25.13 0.648 24.88 0.601 22.83 0.622 25.30 0.799
EDSR (Lim et al. 2017) 8 43.1 24.94 0.640 24.80 0.596 22.47 0.620 24.58 0.778

Peleg 1991). Given model (1) and an upscaled image Y , the
IBP algorithm iterates:

e(Yk) = X − (Yk ∗ g) ↓ s (2)
Yk+1 = Yk + e(Yk) ↑ s ∗ p . (3)

Here, e(Yk) is the mismatch error at low–resolution, g and p
are blurring and upscaling filters, respectively. The iteration
is proven to converge, to enforce model (1) at exponential
rate (Irani and Peleg 1991).

To make IBP work for multiple scales we change model
(1) to:

X = (· · · ((Y ∗g) ↓ s ∗ g) ↓ s · · · ∗ g) ↓ s︸ ︷︷ ︸
L times

. (4)

This is not a common downscaling procedure in practice and
might be the reason why multi–scale IBP has not been con-
sidered yet. We will later replace the downscaling by a net-
work so that model (4) becomes flexible and is able to learn
a direct downscaling or even more complex models.

Upscaling images with IBP is a two–step process: first,
upscale an image; and second, improve it with IBP. This is
reminiscent of the way a Full–Multigrid algorithm solves
linear equations (Trottenberg and Schuller 2001). This is:

first, find an approximate solution; and second, improve it
by solving an equation for the approximation error. Both
IBP and Multigrid iterate between different scales, but IBP
only uses two levels whereas Multigrid recursively move to
coarser grids. We use the same strategy as in Multigrid to
define a so–called Multi–Grid Back–Projection algorithm as
shown in Algorithm 1. Here, back–projections recursively
return to the lowest–resolution enforcing the downscaling
model at each scale.

ForL = 2 the MGBP algorithm and model (4) are equiva-
lent to the original IBP (Irani and Peleg 1991) and model (1),
and thus converges at exponential rate. In section A of the
supplementary material we prove convergence for L > 2.
Basically, the algorithm inherits the exponential rate con-
vergence from the two–level case through the recursion in
Algorithm 1.

Network Architecture
We convert the Multi–Grid Back–Projection algorithm into
a network structure as follows:

• Step 1: Use a classic method to upscale a low resolution
image.
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Figure 5: Perceptual evaluation of different SR methods for 4× upscaling.

HR MSLapSR EDSR

Bicubic DBPN OursGround Truth HR (Urban100: img_059)

Figure 6: Perceptual evaluation of different SR methods for 8× upscaling.

• Step 2: Transfer the upscale image I into latent space us-
ing a network Analysis(I).

• Step 3: In latent space we apply the recurrence in Algo-
rithm 1 by changing:

– (u ∗ g) ↓ s into a network Downscale(u).
– (Yk−1 − d) ↑ s ∗ p into a network Upscale([Yk−1, d]).

Where [Yk−1, d] is the concatenation of features and re-
places the subtraction. Thus, the Upscaler network re-
ceives double the number of features in the input com-
pared to the output.

Figure 1 shows the definition of our network architecture.

The unfolded recursion is shown in Figure 2 for three differ-
ent values of µ.

Deep Filter Visualization
Deep Learning architectures are highly non–linear, although
much of their internal structure is linear (e.g. convolutions).
We want to study the overall effect of the linear structure of
the network. The general procedure is shown in Figure 3 and
is as follows:

• An input image X passes through all layers of the net-
work, and outputs an image Y .
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• At each non-linear layer we record how much did the in-
put change (layer gain).

• We replace (freeze) all non–linearities by the fix gain pre-
viously recorded. The overall system becomes linear, such
that Y = FX +R.

• We obtain the effective residual R with an input X = 0 in
the activation frozen system.

• We obtain the effective filter for a particular input pixel by
using a δ input centered at the pixel location, and subtract
the residual R from the output. In linear system terminol-
ogy we are computing the impulse response of the system
(Proakis and Manolakis 2007).

We can obtain explicit formulas for F and R if we con-
sider a model of convolutional network as a sequence of lin-
ear and nonlinear layers:

zn =Wnxn−1 + bn and xn = σ (zn) , (5)

where xn and zn are vectorized features at layer n, after and
before activations, respectively. The parameters of the net-
work are the biases bn and the sparse matricesWn represent-
ing the convolutional operators (also applies for strided and
transposed convolutions). For a given input imageX , the in-
put of the model is x0 = vec(X) (vectorized image). The
output image Y , after n convolutional layers, is vec−1(xn).

Definition 1 (Activation Gain) The gain of an activation
function σ is given by G(x)[i] = σ(x[i])/x[i] and equal to 1
if x[i] = 0.

Theorem 1 (Activation Freeze) Let Ŵn = G(zn)Wn and

(a) 4× results on Set14

(b) 8× results on Set14

Figure 8: Quality vs Complexity of different SR methods.

b̂n = G(zn)bn. Let

Q0 = I , Qi =

n∏
k=n−i+1

Ŵk, for i = 1, . . . , n . (6)

The output of the convolutional network is given by xn =
F x0 + R , where F = Qn is the effective filter and R =

Q ∗ b̂ =
∑n
k=0Qk b̂n−k is the effective residual.

The proof of the theorem is a direct consequence of σ(x) =
G(x)x and expansion of (5). Although this theorem only ap-
plies to sequential networks, it helps to show that the overall
effective filter depends on all convolutional filters as well
as biases (only through activations). Similarly, the effective
residual depends on both convolutional filters and biases
(both explicitly and through activations).

For the sake of simplicity, here we use our visualization
technique from input to outputs of the network. Neverthe-
less, we note that we could start at any layer and stop at any
posterior layer to study attributions within the network.

Experiments
We use one single configuration to test our system for 2×,
4×, and 8× upscaling. We configure the Analysis, Synthesis,
Upscale and Downscale modules in Figure 1 using 4–layer
dense networks (Huang et al. 2017b) as filter–blocks. We
use 48 features and growth rate 16 within dense networks.
For classic upscaler we start with Bicubic and the upscaling
filters are set as parameters to learn during training.
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Figure 9: Effective filters and residual for 4× and 8× upscaler. . Filters are not only directional but follow several features
around a pixels. Residuals are in general small and thus most of the work is done by the filters.

For training the system we fix the number of back–
projections to µ = 2 (W–cycle according to Figure 2). We
train the system for 8× upscaler with the multi–scale loss
function introduced in (Lai et al. 2017b):

L(Y,X; θ) =
∑

L=1,2,3

L∑
k=1

E
[
||Y Lk −Xk||1

]
. (7)

We train our system with Adam optimizer and a learning rate
initialized as 10−3 and square root decay. We use 128× 128
patches (pieces of images) with batch size 16. The patches
were sampled randomly from datasets DIV2K and Flickr2K,
containing photographs of general natural scenes.

Comparisons

In Table 1 we compare PSNR and SSIM values for differ-
ent methods. The two evaluation metrics measure the dif-
ference between an upscaler output and the original high-
resolution image. Higher values are better in both cases.
Roughly speaking, PSNR (range 0 to∞) is a log–scale ver-
sion of mean–square–error and SSIM (range 0 to 1) uses
image statistics to better correlate with human perception.

Full expressions are as follows:

PSNR(X,Y ) = 10 · log10
(

2552

MSE

)
, (8)

SSIM(X,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
, (9)

where MSE = mean((X − Y )2) is the mean square er-
ror of X and Y ; µX and µY are the averages of X and Y ,
respectively; σ2

X and σ2
Y are the variances of X and Y , re-

spectively; σXY is the covariance of X and Y; c1 = 6.5025
and c2 = 58.5225.

Our method is outperformed only by EDSR and DBPN,
that use 20 to more than 100 times the number of parame-
ters of our system. Among systems with less than 2 million
parameters, our system obtains better results, only matched
by MSLapSR for 2× upscaling.

In Figure 8 we better visualize the difference in complex-
ity between different systems. It is apparent from these re-
sults that the size of the system matters to improve PSNR
values, with EDSR and DBPN far from other methods, but
the cost can be overwhelming in performance. Our system
clearly improves the state of the art for systems with less
than two million parameters, with better quality and signifi-
cantly less parameters.

Figures 5 and 6 show the difference in perceptual quality
for 4× and 8× upscaling. In general, EDSR and DBPN out-
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puts look sharper and show consistent geometry. But often
we find patches with aliasing, such as parallel lines, where
the geometry becomes chaotic and perceptual quality be-
haves randomly. In such cases our system can take advan-
tage compared to most of other systems.

Analysis

Figure 9 shows two examples of effective filters and residu-
als according to our novel visualization method. The shapes
of filters following edges are reminiscent of the research on
directional filter upscalers (Algazi, Ford, and Potharlanka
1991; Li and Orchard 2001). In general, we observe that
filters are highly adaptive. They become symmetric and
narrow in flat areas (like Linear or Bicubic upscalers), direc-
tional close to sharp lines, and increase in size close to com-
plex features. For example, in the 4× upscale of Figure 9 a
red box shows an area with the eye of a baboon and the wrin-
kles around its eye. In the filter we can observe the shape
of the eye and waves following the wrinkles. As expected,
for 8× upscaler the receptive field increases since the filters
look bigger. We remind that we are using the same number
of parameters, but passing through more layers. In the green
box in 9 we highlight the face and hand of a woman. The
filter at the tip of the nose follows the face features, and the
filter at the hand captures features from all the edges around.

Figure 7 shows the effect of the depth on the effective fil-
ters and residuals. Here, training has tuned the network to
work best with µ = 2 back–projections. For µ > 2 the out-
put image looks oversharp, and too soft for µ < 2. Accord-
ingly, filters are larger and extract more high–frequencies
for µ > 2 and become smaller and low-pass for µ < 2. The
same effect is observed with classic IBP (Irani and Peleg
1991), showing the effective design of our network architec-
ture.

We observe that residuals are in general small and help
fixing textures and small details. This is an indication that
filters are doing most of the work for upscaling. We remind
that, after freezing activations, the residual is a fixed compo-
nent of the output that does not change with the input. Thus,
residuals are very limited to estimate local details in the out-
put as they depend only on activations for this purpose.

On the other hand, filters contain relations between neigh-
boring pixels and we argue that because of this they are bet-
ter to generalize. Effective filters also show all the details
regarding the receptive field of the network. The receptive
field is adaptive as the network does not use neighboring
pixels if it does not need to (e.g. flat areas) and extend to
large areas when the network is deep (e.g. 8× upscaler) and
local details are complex.

Finally, we remind that this analysis is precise. The net-
work can be replaced by these adaptive filters plus residuals
and it would give the exact same output. The strong depen-
dency of filters and residuals on the input image shows all
the non–linearities of the network. It is remarkable that con-
volutional networks can achieve the level of adaptivity re-
vealed by these visualization experiments and it further jus-
tifies their success in super–resolution tasks.

Conclusions
We introduced a new architecture for single image super–
resolution that reaches state of the art for methods with less
that 2 million parameters and a new technique to analyze
the network. The analysis shows how the network learns to
upscale by capturing complex relationships between pixels.
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