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Abstract

In this paper, we uncover the issue of knowledge inertia in
visual question answering (VQA), which commonly exists in
most VQA models and forces the models to mainly rely on
the question content to “guess” answer, without regard to the
visual information. Such an issue not only impairs the perfor-
mance of VQA models, but also greatly reduces the credibil-
ity of the answer prediction. To this end, simply highlighting
the visual features in the model is undoable, since the predic-
tion is built upon the joint modeling of two modalities and
largely influenced by the data distribution. In this paper, we
propose a Pairwise Inconformity Learning (PIL) to tackle the
issue of knowledge inertia. In particular, PIL takes full ad-
vantage of the similar image pairs with diverse answers to
an identical question provided in VQA2.0 dataset. It builds
a multi-modal embedding space to project pos./neg. feature
pairs, upon which word vectors of answers are modeled as an-
chors. By doing so, PIL strengthens the importance of visual
features in prediction with a novel dynamic-margin based
triplet loss that efficiently increases the semantic discrepan-
cies between pos./neg. image pairs. To verify the proposed
PIL, we plug it on a baseline VQA model as well as a set of
recent VQA models, and conduct extensive experiments on
two benchmark datasets, i.e., VQA1.0 and VQA2.0. Exper-
imental results show that PIL can boost the accuracy of the
existing VQA models (1.56%-2.93% gain) with a negligible
increase in parameters (0.85%-5.4% parameters). Qualitative
results also reveal the elimination of knowledge inertia in the
existing VQA models after implementing our PIL.

Introduction
Visual question answering (VQA) is a task of answering the
human question based on a given image. The challenge lies
in how to jointly understand comprehensive visual and tex-
tual information. The existing VQA models (Lu et al. 2016;
Fukui et al. 2016; Yu et al. 2017; Anderson et al. 2018) have
demonstrated the ability to answer human questions in vari-
ous tasks, such as text understanding, object or scene recog-
nition, counting and visual reasoning etc.

Despite the exciting progress, the strong language pri-
ors has long plagued the development of VQA (Antol et
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(a) Two typical cases of knowledge inertia.

Question: Is Big Ben in the photo?

Answer:  Yes Answer:  No

Question: What color are the bater's sneakers?

Answer:  Black Answer:  Red

(1)

(2)

(b) Examples of the image pair setting.

Figure 1: Illustrations of the knowledge inertia (a) and the
image pair setting (b). In (a), the model focuses on the cor-
rect answer entities in images, but still predicts the wrong
answer due to the negative impact of knowledge inertia. In
(b), the pair of similar images has the same question, simi-
lar content but different answers. This setting is used in this
paper to enhance the role of visual information in prediction.

al. 2015; Goyal et al. 2017). In particular, as revealed lat-
ter in Sec.3, the existing VQA models tend to rely solely on
the content of a given question to predict the answer, with-
out regard to the given image, i.e., a phenomenon termed as
knowledge inertia (Liao 2002)1 in this paper. Fig.1.(a) illus-
trates two typical cases of knowledge inertia.

To eliminate the negative effect of knowledge inertia, a
natural solution is to force the VQA model to make predic-
tions more based on the visual content, i.e., by emphasiz-
ing the weightings of visual features, as argued in Goyal et
al. (2017). However, doing so is intractable in the existing
VQA models. First, the objective function of existing VQA
models is to maximize the answer probability conditioned
on the given question and image. The prediction is built upon
the joint modeling of the textual and visual features, where
the weightings of two modalities are automatically learned
by the training examples and can not be manually adjusted.
Second, as a classification task, VQA also faces the problem
of extremely uneven data distributions, which subsequently
exacerbates the issue of knowledge inertia.

1It is borrowed from social science to define a solving strategy
that uses redundant and stagnant knowledge and past experience
without regard to new inputs.
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Figure 2: Framework of Pairwise Inconformity Learning (PIL). The input is a pair of similar images with the identical question
but different answers. The model processes this pair of examples simultaneously, and projects their joint features onto a multi-
modal embedding space. The blue and green dots refer to the embedded joint features of the positive and negative examples,
while the orange dot denotes the anchor which is the pre-trained word vector of the positive example’s answer.

In this paper, we propose a novel Pairwise Inconformity
Learning, denoted as PIL2, which takes full advantage of the
image pair setting proposed in VQA2.0 dataset (Goyal et al.
2017), an example of which is shown in Fig.1.(b). In prin-
ciple, under the same textual input, we target at maximizing
the semantic distances between joint features of positive and
negative examples, which subsequently eliminates the im-
pact of knowledge inertia in prediction. In particular, PIL
first creates a multi-modal embedding space in addition to
the typical VQA model settings. In this space, a novel dy-
namic margin based triplet loss is further proposed to in-
crease the semantic distance between pos./neg. examples,
where the well pre-trained word embedding of the answer
is used as anchor. Then, hard example mining is performed
based on the pairwise distances, which further improves the
VQA performance.

The proposed PIL is flexible, which can be well plugged
into a range of standard and cutting-edge VQA models, such
as SAN (Yang et al. 2016) and BUA (Teney et al. 2018).
We have quantified its accuracy boost by evaluating it on
VQA1.0 (Antol et al. 2015) and VQA2.0 (Goyal et al. 2017)
datasets, which reports 1.6%-2.9% gains over two datasets.
Moreover, the increase of model complexity is limited, say
an increase of 0.85%-5.4% in parameters, which retains
highly efficient in real-world applications.

Overall, the contribution of this paper is three-fold:

• We uncover a key issue in VQA, namely Knowledge In-
ertia, which restricts the performance and the credibility
of the existing VQA models.

• We propose a Pairwise Inconformity Learning (PIL)
scheme to address this issue, which includes a dynamic
margin based triplet loss and an online hard example min-
ing strategy to boost the VQA performance.

• PIL is generalized and can boost the accuracy of the ex-
isting VQA models (1.2%-3.5% gain) with a negligible
increase in parameters (0.85%-3.7% parameters).
2https://github.com/xiangmingLi/PIL

Related Work

At present, visual question answering (VQA) is often con-
sidered as a classification task with fixed categories (Antol
et al. 2015; Yang et al. 2016; Fukui et al. 2016; Anderson
et al. 2018). Earlier, VQA methods tend to predict the an-
swer by directly learning a joint representation of the im-
age and text features extracted by convolutional neural net-
work (CNN) and recurrent neural networks (RNNs) (An-
tol et al. 2015)(Ma, Lu, and Li 2015). To capture the most
relevant visual signal, the work in (Yang et al. 2016) first
introduces the attention mechanism to VQA, which is fur-
ther extended to a multi-step attention to improve visual
reasoning. There are also some recent works focusing on
the modifications of attention mechanism (Lu et al. 2016;
Zhu et al. 2017; Fukui et al. 2016). For example, the work
in (Lu et al. 2016) proposes two co-attention algorithms
to generate attended features from both visual and tex-
tual features. Some recent developments (Fukui et al. 2016;
Kim et al. 2017; Yu et al. 2017) focus on investigating dif-
ferent fusion approaches for more efficient interactions be-
tween two modalities. For example, the work in (Fukui et al.
2016) uses a compact bilinear pooling for feature fusions,
which brings a significant improvement to the model per-
formance. After that, other bilinear pooling based methods
are further proposed, such as the work in (Kim et al. 2017;
Yang et al. 2016). There are also some works introducing the
external knowledge or existing techniques to VQA, such as
the use of Wiki knowledge (Wu et al. 2016) and knowledge
graph (Wang et al. 2016), or replacing the convolutional fea-
ture map with the regional features from Faster-RCNN as the
visual input (Anderson et al. 2018).

A long-standing problem that remains unresolved is the
existence of strong textual priors in existing datasets, such
as the widely-used VQA1.0 dataset (Antol et al. 2015). The
most recent VQA dataset, VQA2.0 (Goyal et al. 2017), par-
ticularly compensate this defect by balancing the answer
distribution and provides a similar image-pair setting. An-
other recent work (Agrawal et al. 2018) also creates an even
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Figure 3: The failure case distribution of 1,000 examples
from the VQA2.0 val set. “Yes/No”, “Num.” and “Other”
denotes the three main question types in VQA, while “All”
represent the overall result. “KI” refers to the failure pre-
dictions directly or indirectly caused by Knowledge Inertia,
which are the cases that the model finds out the correct an-
swer entities in images but still make false predictions.

dataset based on VQA1.0 and VQA2.0, and propose a model
that use visual and textual concepts for answer prediction to
avoid the effect of language priors.

Knowledge Inertia

Knowledge inertia is a terminology from social science,
which refers to a problem solving strategy uses old, redun-
dant, stagnant knowledge and past experience without re-
course to new knowledge and experience (Liao 2002). Here,
we use it to represent the behaviors happened in existing
VQA models as below.

Ideally, after training, the VQA model should be able to
find the most relevant visual signals for prediction based on
the question. However, due to the existence of strong lan-
guage priors in the datasets (Goyal et al. 2017), the model
has a strong dependency on the textual features uncon-
sciously. It leads to a result that the model relies sorely on
the question to predict answer without regard to visual infor-
mation. This is termed as knowledge inertia in this paper.

To study the influence of knowledge inertia, we quanti-
tatively analyzed failure cases of the model predictions, the
result of which is shown in Fig.3. Here, we define the fail-
ure case of knowledge inertia as the model finds the obvious
answer in images and still makes wrong predictions, such as
the examples in Fig.1.a. It can be seen that at least about 30%
of the false predictions are caused directly or indirectly by
knowledge inertia, which thereby indicates the emergency
to solve this problem.

The key solution to knowledge inertia is to improve the
role of visual feature in predictions, so that the questions
can be answered based not only on what the model already
“know” but also on what the model are currently “seeing”.
However, directly improving the visual weighting is un-
doable, as analyzed earlier in Sec.1.

Pairwise Inconformity Learning
To address the issue of knowledge inertia, we propose a Pair-
wise Inconformity Learning, termed as PIL. In addition to
the typical VQA setting, PIL creates a multi-modal embed-
ding space with a dynamic-margin based triplet loss to in-
crease semantic distances between positive/negative exam-
ples. The framework is shown in Fig.2.

Problem Setup In VQA, The training example is a triplet
denoted as e = (I, Q, a), where I is the image,Q is the ques-
tion and a is the answer. The answer prediction is regarded
as a classification task with fixed categories, the objective
function of which is formulated as:

max
G

logP (a|fj) ,

where fj = G (I, Q) .
(1)

Here, G (·) is the main part of a VQA model without the
prediction layer, and fj refers to the joint feature.

To improve the role of visual information in predic-
tion, we make use of the image pair setting proposed in
VQA2.0 (Goyal et al. 2017), where positive and negative
images have the same question, similar visual content, but
different answers, as shown in Fig.1.b. Particularly, given a
pair of examples, denoted as (ep, en), we aim at increasing
the semantic distance between their joint features:

max
G

d
(
fpj , f

n
j

)
, (2)

where d (·) is any distance measurement. The intuition is
that with the same textual input, the larger semantic distance
between pos./neg. examples will result in more discrimina-
tive visual representations, forcing the model to rely more
on visual information during the prediction .

Multi-modal Embedding. Following this principle, the
first step of PIL is to learn a multi-modal embedding space,
where the well pre-trained word vectors of the correspond-
ing answers can be used as anchors. Concretely, given a
pair of example (ep, en) and a VQA model G (·), we first
extract their multi-modal joint representations, denoted as
fpj , f

n
j ∈ Rm. Then, we project them into this space and

obtain the embedded features, fpe and fne ∈ Rn, by:

fpe = σ
(
Wembf

p
j

)
, fne = σ

(
Wembf

n
j

)
, (3)

where Wemb ∈ Rn×m is the projection matrix, and σ (·) is
an activation function.

The first objective of PIL is to minimize the distances be-
tween the embedding vector and anchors:

Lemb = ‖fpe − fpa‖
2
2 + ‖f

n
e − fna ‖

2
2 , (4)

where fpa and fna ∈ Rn are anchors of pos./neg. examples.
The intuition behind this embedding space is three-fold:
• First, we quantitatively found that directly implementing

a strong distance regularization (e.g., Eq.2) on fj will hin-
der the overall model performance.

• Second, in many metric learning schemes (Schroff,
Kalenichenko, and Philbin 2015)(Hermans, Beyer, and
Leibe 2017), computing the anchor of each category is
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an indispensable step, which is however computationally
expensive in VQA due to the large number of categories,
e.g., typically over 3,000 in most benchmarks, each with
thousands of examples.

• Third, in this embedding space, well pre-trained word
vectors of answers can be used as anchors, e.g., Glove
Embeddings (Pennington, Socher, and Manning 2014),
which already have strong semantics.

Dynamic-margin based Triplet Loss. To increase the
feature distances between embedded joint representations
of pos./neg. examples, we propose a dynamic-margin based
triplet loss Ltriplet, which is denoted as:

Ltriplet = max
(
0,m+ ‖fpe − fpa‖

2
2 − ‖f

n
e − fpa‖

2
2

)
+max

(
0,m+ ‖fne − fna ‖

2
2 − ‖f

p
e − fna ‖

2
2

)
,

where m = ‖fpa − fna ‖
2
2 .

(5)

Eq.5 differs from the traditional triplet loss func-
tion (Schroff, Kalenichenko, and Philbin 2015) in that the
margin value m is dynamically set by the distance between
two answer word vectors. Such design can not only avoid
the complex tunning of m, but also represent the semantic
margins between different answers more accurately.

The Baseline Model. We further propose a baseline
model to deploy the proposed PIL, which is depicted in
Fig.2. The input image is processed by CNN or Faster R-
CNN to obtain a regional feature matrix F ∈ Rv×k, while
the question feature fq ∈ Rh is extracted by an LSTM net-
work. Here, k is the number of image regions, and v and h
are dimensions of visual and textual features. We then imple-
ment an attention process on F to obtain a weighted visual
feature fv ∈ Rv , formulated as:

fv =

k∑
i=1

αifi,

where αi = Softmax (ei) ,

ei = Conv
(
ReLu

(
Conv

(
Fusion (fi, fq)

)))
,

(6)

Conv (·) is a convolution operation and Fusion (·) is a multi-
modal fusion function, e.g., an MFB pooling (Yu et al. 2017)
used in this paper. After that, we fuse fq and fv to obtain the
joint feature fj .

In some widely-used datasets, e.g. VQA1.0 (Antol et al.
2015) and VQA2.0 (Goyal et al. 2017), a question is often
associated with a set of answers. We thereby follow the set-
ting in (Anderson et al. 2018) to formulate the answer pre-
diction as a multi-label classification, and use the Sigmoid
cross entropy as the loss function, denoted as:

Lentropy =

N∑
i

yi log (si)− (1− yi) log (si) , (7)

where s = Sigmoid (Wfj), yi = 1 indicates the i-category
is in the answer set, and N is the number of categories.

The Overall Loss. The overall objective function of PIL:

min
G,Wemb

Lentropy + αLtriplet + βLemb, (8)

where α and β are hyper parameters tuned by experiments.

Hard Example Mining. Our scheme further enables hard
example mining by exploring the semantic distance between
positive and negative examples. Following the principle of
(Schroff, Kalenichenko, and Philbin 2015), we divide the
training examples into three categories which are easy, semi-
hard and hard. According to this hardness, we further assign
a difficulty score ds as:

ds =

{
0.25 if d (fpe , f

n
e ) > m,

0.5 if d (fpe , f
p
a ) < d (fpe , f

n
e ) < m,

1.0 if d (fpe , f
n
e ) < d (fpe , f

p
a ) ,

(9)

where d (·) is the l2−distance, fpe and fne are embedded joint
features of pos./neg. examples, respectively. fa is the anchor
and m is the dynamic margin. The score will be multiplied
by the overall loss during training. By doing so, the model
will receive more gradients from hard examples.

Experiments
To validate the proposed learning scheme, we conduct ex-
tensive experiments on two widely-used dataset, namely
VQA1.0 (Antol et al. 2015) and VQA2.0 (Goyal et al. 2017),
and compare out model with a set of stat-of-the-arts.

Experiment Setup
Datasets. VQA1.0 dataset contains 200,000 natural im-
ages from MS-COCO (Chen et al. 2015) with 614,153 hu-
man annotated questions in total. Each question has 10 free-
response answers. The whole dataset is divided into three
splits, in which there are 248,349 examples for training,
121,512 for validation, and 244,302 for testing. VQA2.0
is developed based on VQA1.0, and has about 1,105,904
image-question pairs, of which 443,757 examples are for
training, 214,254 for validation, and 447,793 for testing. As
a different setting, VQA2.0 provides annotations of similar
image pairs as we mentioned above. We also collects image
pairs in VQA1.0. For each example, we select its negative
example that has the same question but different answers
from both VQA1.0 and VQA2.0 datasets3. Then, we have
about 197 thousand pairs for training. Since each question
in these two datasets is associated with a list of answers, we
use the most frequent answer as the anchor.

Model Configuration. In terms of the baseline model, we
use the Glove Embedding (Pennington, Socher, and Man-
ning 2014) as the word input with a dimension of 300. The
dimension of the LSTM module is 2048, while the k and o
in MFB fusion (Yu et al. 2017) are set to 5 and 1000, respec-
tively. The dimensions of the last forward layer and the pro-
jections are set to 2048 and 300. The two hyper-parameters,
α and β, are set to 0.25 and 0.01 after tuning. The initial

3We first select negative samples with exactly the same con-
tent, and then choose the negative samples with the most different
answer lists.
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Table 1: Ablation Studies. Trained on VQA2.0 train split
and tested on the val split. “FRCNN” denotes the use of
Faster R-CNN features.

Method All Num. Yes/No Others

Baseline 60.37 39.19 78.88 51.91
Baseline EMB 60.74 39.51 79.11 52.40
Baseline PIL 61.56 40.10 79.64 53.51

Baseline PIL HEM 62.01 41.22 80.03 54.21

Baseline+FRCNN 63.72 42.72 81.96 55.47
Baseline EMB+FRCNN 64.00 43.42 81.69 56.00
Baseline PIL+FRCNN 64.58 44.19 82.35 56.46
Baseline PIL HEM+FRCNN 64.63 44.27 82.29 56.59

PIL Setting All Num. Yes/No Others

α = 0.01, β = 0.25 61.56 40.10 79.64 53.51
α = 0.01, β = 1 61.06 39.64 79.14 53.14
α = 0.01, β = 0.5 61.31 39.70 79.21 53.41
α = 0.01, β = 0.1 61.48 40.25 79.52 53.38
α = 0.01, β = 0.05 60.84 39.41 79.10 52.38
α = 0.25, β = 0.25 61.50 40.37 79.51 53.36
α = 0.001, β = 0.25 61.46 40.07 79.46 53.47

learning rate is 7e-4, which is halved after every 25,000
steps. The batch size is 64 and the maximum training step is
set to 150,000. The optimizer we used is Adam (Kingma and
Ba 2014). For the implemented the state-of-the-arts, we fol-
low their default settings. During experiments, we use two
types of visual inputs, i.e., the last feature map of ResNet-
152 (He et al. 2016) with a size of 14 × 14 × 2048 and the
regional features released by (Anderson et al. 2018) with a
size of 36 × 2048. For simplicity, we denote them as CNN
and FRCNN, respectively.

Experiment Analysis
Ablation Studies. We first examine different designs pro-
posed in this paper, the results of which are shown in Tab.1.
Here, EMB means that only the answer embedding loss is
used as the regularization. PIL denotes the complete use of
Pairwise Inconformity Learning, and HEM is the hard ex-
ample mining. From Tab.1 we can see that, all designs are
beneficial for the model performance, and considering that
it requires very few extra parameters, these improvements
are valuable. Meanwhile, with the number of training exam-
ple increases, the improvement by PIL will be more obvi-
ous, as shown in Tab.5. Tab.1 also shows the tuning results
of the two hyper-parameters α and β for the answer embed-
ding loss and the triplet loss, as defined in Eq.8. The values
in the first column are the setting we used for other exper-
iments. With this setting, the embedding loss will give to
more gradients to the model than that of the triplet loss. Our
understanding is that the embedding loss not only carries
the functionality of maintaining the multi-modal space, but
also affects the projections of joint features. So, the value
of its hyper parameter should be larger. Another observa-
tion is that if the values of hyper parameters are too large, it
will impair the overall performance. One possible reason is
that the question in VQA1.0 and VQA2.0 often has multiple

Table 2: Comparisons with other negative-learning scheme.
Trained on VQA2.0 train set and tested on the validation set.

Method All Num. Yes/No Others

Baseline 60.37 39.19 78.88 51.91

Baseline+l2 Reg. (α=1e-3) 59.47 37.64 77.93 51.22
Baseline+ Contra. Loss(α=1e-3) 59.58 38.98 77.58 51.42

Baseline+kl-D Reg. (α=5e-3) 59.18 38.20 77.29 50.94

Baseline+fv-l2 Reg.*(α=1e-4) 59.41 37.74 77.75 51.21
Baseline+fv-PIL* 61.32 39.82 79.62 53.11

Baseline PIL 61.56 40.10 79.64 53.51

*The regularization is implemented on the attention feature fv .

Table 3: Applications on the State-of-the-Arts. Trained on
VQA2.0 train+val split, and tested on test-dev split.

Method All Num. Yes/No Others

CNN+LSTM 54.22 - - -
CNN+LSTM-PIL 56.62 36.18 78.46 49.83

SAN 58.93 37.52 78.34 50.12
SAN-PIL 61.42 39.67 77.62 52.55

SAN FRCNN 62.14 41.75 78.91 52.45
SAN FRCNN+PIL 65.07 43.20 81.15 56.34

BUA FRCNN 65.32 44.21 81.82 56.05
BUA FRCNN+PIL 66.23 45.20 82.63 57.23

answers, and a too strong regularization might reduce the di-
versity of the model prediction, making it hard to reach the
optimal performance.

Comparisons with Other NL Schemes. We further com-
pare the proposed PIL with other negative learning schemes
in Tab.2. Here, “l2 Reg.” means that an l2-distance regular-
ization is directly used to increase the semantic distances
between the joint features fj of pos./neg. examples, while
“fv-l2 Reg.” denotes that the regularization is implemented
on the attention visual feature fv . “kl-D Reg.” refers to the
KL-divergence, which is used to increase the distribution di-
vergence between predictions of positive and negative exam-
ples. “Contra. Loss” denotes the contrastive loss proposed in
(Hadsell, Chopra, and LeCun 2006), which is also deployed
on the joint features. “fv-PIL” denotes the implementation
of the proposed PIL on the attention features, and its setting
is the same with that of PIL. From Tab.2, we find that, by di-
rectly regularizing the joint features, these negative learning
schemes can have a counterproductive effect on the model
performance, which confirms the hypothesis we made in
the method section. The result of “fv-PIL”also suggests that
simply increasing the distances among visual features is in-
sufficient for improving the role of visual features.

Plugging into State-of-the-arts. To verify the generaliza-
tion of the proposed PIL, we deploy it on three state-of-the-
arts, the results of which are shown in Tab.3. From this table,
we find that the improvements of PIL on these models are
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Table 4: Comparisons with the state-of-the-arts on VQA1.0.
“F” denotes the use of Faster R-CNN features, and “G”
means that the model uses Visual Genome (Krishna et al.
2016) as the additional training data.

VQA1.0 test-dev All Yes/No Num. Other

SAN (Yang et al. 2016) 58.7 79.3 36.6 46.1
DAMN (Andreas et al. 2016) 59.4 81.1 38.6 45.4
HiCo (Lu et al. 2016) 61.8 79.7 38.7 51.7
MCB (Fukui et al. 2016) 64.2 82.2 37.7 54.8
DANG (Nam, Ha, and Kim 2017) 64.3 83.0 39.1 53.9
MLBG (Kim et al. 2017) 65.1 84.1 38.2 54.9
MFB (Yu et al. 2017) 65.9 84.0 39.8 56.2

Baseline (Ours) 64.7 83.2 37.9 54.9
Baseline PIL (Ours) 66.1 84.5 39.5 56.4
BaselineF (Ours) 66.9 84.8 40.8 57.5
Baseline PILF (Ours) 67.6 83.7 41.4 59.7
VQA1.0 test All Yes/No Num. Other

SAN (Yang et al. 2016) 58.9 - - -
DAMN (Andreas et al. 2016) 59.4 - - -
HiCo (Lu et al. 2016) 62.1 - - -
MCBG (Fukui et al. 2016) 64.2 82.2 37.7 54.8
DANG (Nam, Ha, and Kim 2017) 64.3 83.0 39.1 53.9
MLBG (Kim et al. 2017) 65.1 84.1 38.2 54.9
MFBG (Yu et al. 2017) 65.9 84.0 39.8 56.2

Baseline PILF (Ours) 67.7 83.7 41.3 59.6

even higher than that of our baseline model. Such a result
not only indicates the performance improvements brought
by PIL, but also suggests that PIL can help models obtain
more discriminative visual information. So its benefits will
be more apparent when applied to less-than-good models.
Notably, the additional parameters increased by PIL are only
5.4%, 2.4% and 1.8% for three models.

Comparing Baseline+PIL to State-of-the-arts. We fur-
ther evaluate the baseline model with the proposed PIL on
VQA1.0 and VQA2.0 datasets. The results are given in
Tab.5. The first observation is that the proposed baseline is
a simple yet powerful model. Without the use of additional
datasets like Visual Genome, it has already reached the most
advanced performance in VQA. Considering that any mi-
nor improvement is valuable on these two highly competi-
tive datasets, PIL really takes effect. After deploying PIL,
the baseline model outperforms BUA, the best state-of-the-
art, by 2.23%, which is indeed significant in VQA. Notably,
PIL only requires about 1.2% of parameters in addition.

Is the Impact of Knowledge Inertia Reduced?
We further examine whether the proposed PIL can
strengthen the role of visual information in prediction,
thereby reducing the impact of knowledge inertia. We first
draw the prediction distributions on the 10 most common an-
swers in Fig4. Here, “Ground Truth” denotes the default an-
swer distribution of VQA2.0 val set. “Baseline” and “Base-
line PIL” are the prediction distributions by the model with
and without PIL, respectively. Compared to the default dis-

Table 5: Comparisons with the state-of-the-arts on VQA2.0.

VQA2.0 test-dev All Yes/No Num. Other

MFB (Yu et al. 2017) 64.16 80.95 40.73 54.62
MF-SIGG (Zhu et al. 2017) 64.73 81.29 42.99 55.55
BUAG (Teney et al. 2018) 62.07 79.20 39.46 52.62
BUAF,G (Teney et al. 2018) 65.32 81.82 44.21 56.05

Baseline (Ours) 63.53 80.40 41.16 54.23
Baseline PIL (Ours) 65.07 81.15 43.20 56.34
Baseline F (Ours) 66.21 82.38 45.03 57.24
Baseline PILF (Ours) 67.53 83.96 46.50 58.29
VQA2.0 test All Yes/No Num. Other

LSTM-Q(Goyal et al. 2017) 54.22 73.46 35.18 41.83
MCB (Fukui et al. 2016) 62.27 78.82 38.28 53.36
MF-SIGG (Zhu et al. 2017) 65.84 81.85 43.64 57.07
BUAG (Teney et al. 2018) 62.27 79.32 39.77 52.59
BUA F,G (Teney et al. 2018) 65.67 82.20 43.90 56.26

Baseline PIL (Ours) 65.10 81.38 43.33 56.24
Baseline PILF (Ours) 67.65 83.91 46.01 58.46

yes no 1 2 white 3 blue red black 0

5k
10k
15k
20k
25k
30k
35k
40k Ground Truth

Baseline
Baseline_PIL

Figure 4: Distributions of the top-10 answers on the VQA2.0
val set.The kl-divergences between the ground truth and the
baseline prediction on 3,000 answer categories is 0.06, and
becomes smaller by adopting PIL (0.04).

tribution, these 10 answer categories receive more predic-
tions from the model with a common VQA setting, which
means that the model tends to choose the most frequent an-
swers as their predictions. With PIL, the distribution of these
ten answers is closer to the default distribution, which means
that in more cases the model answers the question based
more on the visual content and less effected by the language
prior. So, we deduce that the influence of knowledge is alle-
viated.

Next, we visualize the joint features of baseline models
with and without PIL by t-SNE (Maaten and Hinton 2008)
in Fig.5. From Fig.5, it can be observed that PIL helps the
model produce more discriminative joint features. Under the
same category, the content of questions is relatively similar.
So the larger differences among joint features indicate that
the visual features are more discriminative for each answer
category. We can therefore confirm that the role of visual
information is enhanced in prediction.

To obtain a deeper insight into the model’s prediction pro-
cess, we visualize the attention maps with and without PIL in
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Figure 5: Visualizations of Joint Features without and with the proposed Pairwise Inconformity Learning by t-SNE.

4. Question: Who wears a red suit?
Image Without PIL With PIL

Answer: skier Predict: man Predict: skier

4. Question: Who wears a red suit?
Image Without PIL With PIL

Answer: skier Predict: man Predict: skier

2. Question: Are these cows well-fed?
Image Without PIL With PIL

Answer: yes Predict: yes Predict: yes

2. Question: Are these cows well-fed?
Image Without PIL With PIL

Answer: yes Predict: yes Predict: yes

6. Question: How many planes are there?
Image Without PIL With PIL

Answer: 1 Predict: 4 Predict: 1

6. Question: How many planes are there?
Image Without PIL With PIL

Answer: 1 Predict: 4 Predict: 1

5. Question: How many slices of pizza does this child have?
Image Without PIL With PIL

Answer: 0 Predict: 6 Predict: 0

5. Question: How many slices of pizza does this child have?
Image Without PIL With PIL

Answer: 0 Predict: 6 Predict: 0

1. Question:  What is the girl wearing on her feet?
Image Without PIL With PIL

Answer: sandals Predict: sandals Predict: sandals

1. Question:  What is the girl wearing on her feet?
Image Without PIL With PIL

Answer: sandals Predict: sandals Predict: sandals

3. Question: Is she wearing a helmet?
Image Without PIL With PIL

Answer: no Predict: no Predict: no

3. Question: Is she wearing a helmet?
Image Without PIL With PIL

Answer: no Predict: no Predict: no

7. Question: Are these horses galloping?
Image Without PIL With PIL

Answer: yes Predict: no Predict: yes

7. Question: Are these horses galloping?
Image Without PIL With PIL

Answer: yes Predict: no Predict: yes

8. Question: What color is the license plate?
Image Without PIL With PIL

Answer: yellow Predict: white Predict: yellow

8. Question: What color is the license plate?
Image Without PIL With PIL

Answer: yellow Predict: white Predict: yellow

9. Question: What is on the wall behind the toilet?
Image Without PIL With PIL

Answer: picture Predict: tile Predict: picture

9. Question: What is on the wall behind the toilet?
Image Without PIL With PIL

Answer: picture Predict: tile Predict: picture

10. Question: Is the dog sitting on a sofa?
Positive Without PIL With PIL

Negative

Predict: Yes

Predict: Yes

Predict: Yes

Predict: No

Image

11. Question: Is Big Ben in the photo?
Positive Without PIL With PIL

Negative

Predict: Yes

Predict: Yes

Predict: Yes

Predict: No

Image

12. Question: What color are the bater's sneakers
Positive Without PIL With PIL

Negative

Predict: Red

Predict: Red

Predict: Red

Predict: Black

Image

Figure 6: Visualizations of attentions with and without the proposed Pairwise Inconformity Learning (PIL). The red color in
predictions refers to the correct answer while the green color denotes the incorrect ones.

Fig.6. Clearly, there are two typical cases of knowledge in-
ertia in these examples. The first case is that, the model does
not focus on the correct visual entities but can still predict
the answers based on their “past experience”, e.g. exp.(1)-
(3). Although such a problem does not lead to a decline in
the model performance, it still impairs the credibility of the
model prediction. The second case is that, even if the model
finds out the correct answer entity in the image, it will still
make a wrong prediction. e.g. exp.(6)-(9). We also observe
that under the example-pair setting, e.g. exp.(10)-(12), the
baseline model often makes the same prediction for similar
images. With PIL, such a case has been alleviated to a large
extend, and the model can predict the answer more based
on what they are currently “seeing”. As shown in the rest
examples, PIL also helps model produce attentions more ac-

curately. In sum, PIL does strengthen the role of visual in-
formation and reduces the influence of knowledge inertia.

Conclusion
In this paper, we address the issue of knowledge inertia in
Visual Question Answering, which is mainly caused by the
strong language priors. To address this issue, we propose a
Pairwise Inconformity Learning (PIL) to strengthen the im-
portance of visual features by increasing the discrepancies
between the example pairs. Its novelties includes the multi-
modal embedding learning, a dynamic-margin based triplet
loss. PIL is also the first to use the image pair setting pro-
posed in VQA2.0 to solve the strong language priors. Exper-
imental results shows that with a negligible increase of pa-
rameters, our scheme can help the model to achieve a signif-
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icant performance improvement. More importantly, statistic
results and qualitative analyses prove that our scheme can
reduce the impact of knowledge inertia.
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