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Abstract

Person re-identification (ReID) aims to match people across
multiple non-overlapping video cameras deployed at different
locations. To address this challenging problem, many met-
ric learning approaches have been proposed, among which
triplet loss is one of the state-of-the-arts. In this work, we
explore the margin between positive and negative pairs of
triplets and prove that large margin is beneficial. In particu-
lar, we propose a novel multi-stage training strategy which
learns incremental triplet margin and improves triplet loss
effectively. Multiple levels of feature maps are exploited to
make the learned features more discriminative. Besides, we
introduce global hard identity searching method to sample
hard identities when generating a training batch. Extensive
experiments on Market-1501, CUHK03, and DukeMTMC-
reID show that our approach yields a performance boost and
outperforms most existing state-of-the-art methods.

Introduction
In recent years, person re-identification (ReID) has aroused
concerns of more and more researchers due to its wide
range of applications in security and video surveillance. It
is a challenging task because of varying illumination con-
ditions, human occlusion, background clutter and different
camera views. Most existing methods use a feature vector
to represent each person image and then match them with a
specific metric. With the emergence of deep learning, fea-
ture representations learned with convolutional neural net-
works (CNN) (Krizhevsky, Sutskever, and Hinton 2012;
LeCun et al. 1989) immensely outperform hand-crafted fea-
tures.

Currently, the most commonly used loss functions are
triplet loss, classification loss and verification loss. Triplet
loss was first introduced by (Weinberger and Saul 2009). It
directly optimizes a deep CNN which produces embeddings
such that positive examples are closer to an anchor example
than negative examples. For classification loss, each identity
of person in the training set is considered as a class, and the
network is trained to classify them correctly. Subsequently,
the trained network is used as a feature extractor and a spe-
cific metric is chosen to rank the extracted features. In gen-
eral, the performance of classification loss is superior over
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Figure 1: (a) illustrates the proposed LITM training proce-
dure. By repeatedly applying a shift on the data points in
the embedding space, the margin between the positive and
negative pairs in the triplet is progressively increased. (b)
shows two examples of hard identity pair on the Market-
1501 dataset. The number on the bottom right is the identity
label of each person.

triplet loss, since it enforces global inter-class separability
in the embedding space. However, as the number of iden-
tities increases, the number of learnable parameters grows.
For scenarios with very large quantity of identities, it would
be non-trivial to train a classification loss. Lastly, verifica-
tion loss is used to learn a cross-image representation. The
network predicts the similarity between two input images di-
rectly. During inference, all query-gallery image pairs need
to go through the whole network, which is very expensive.

Triplet loss attempts to enforce a margin between the pos-
itive and negative pairs of each triplet. Surprisingly, the im-
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pact of the margin on ReID performance has not been ex-
plored yet in the literature. Intuitively, larger margin leads
to better performance. However, as shown in our experi-
ment (Table 9), simply increasing the margin value of triplet
loss does not work well. Instead, we propose a novel train-
ing strategy named Learning Incremental Triplet Margin
(LITM). As shown in Figure 1(a), we learn a large margin in
an multi-stage manner. Firstly, decent positions of the triplet
examples in the embedding space are learned using triplet
loss with a small base margin. Next, a shift of each data
point in the embedding space is learned, which enlarges the
gap between the positive and negative pairs. This step is re-
peatedly applied so that the margin gets increased in an in-
cremental manner. Since mid-level features of the network
contain more detailed information and are thus helpful to
differentiate identities with similar appearance, we learn the
feature shifts using multiple mid-level features. It is worth
noting that all the components are implemented in the same
network and optimized end-to-end. With LITM, the perfor-
mance of triplet loss gets significantly improved.

Training of triplet loss requires sampling of triplets from
all training images. The number of possible triplets grows
cubically with the number of images in the training set.
To train triplet loss efficiently, (Hermans, Beyer, and Leibe
2017) proposed batch hard triplet mining. Firstly, a batch of
images is generated by randomly sampling P identities and
K images per-identity. Then, for each sample in the batch,
the hardest positive and negative samples within the batch
are selected to form the triplets. It solves the impractical long
training problem partially. However, sampling identities ran-
domly may not ensure that negative pairs are hard enough.
For instance, two persons with similar appearance may be
dispersed to different batches so that there is no hard nega-
tive pair in one batch. To address this issue, we introduce a
new identity sampling method called Global Hard Identity
Searching (GHIS). We compute the pairwise mean embed-
ding distances of all identities, which measure their dissim-
ilarities. Then identities with small distance (similar appear-
ance) are put together to form a batch. Figure 1b shows two
examples of searched hard identities from the Market-1501
dataset. We can see that different persons may wear clothes
with similar color or texture, which makes them difficult to
distinguish even for human beings.

When designing the network architecture for person
ReID, it is currently a best practice to adapt from a pre-
trained network, e.g. ImageNet pre-trained ResNet-50 (He
et al. 2016). However, vanilla ResNets were designed for
the task of coarse-grained image classification. While per-
son ReID requires a fine-grained recognition within the per-
son category. To narrow the gap, we revisit the ReID prob-
lem carefully and propose some guidelines on its network
design. Following the guidelines, we make some tweaks to
the feature extractor network, which yields a strong baseline
implementation of triplet loss.

In summary, the main contributions of this paper are as
follows:
• We propose a novel training strategy which learns incre-

mental triplet margin and leads to significant performance
improvement.

• We introduce global hard identity searching method
which samples hard identities and makes the training
more efficient and effective.

• We propose some guidelines on network design for the
task of person ReID and yield a strong triplet loss base-
line.

• Combining all the improvements, we achieve state-of-the-
art performances on common person ReID benchmarks.

Related Work
Person ReID For the task of person ReID, most ex-
isting approaches attempt to learn identity-discriminative
representation of person images with supervised learning.
With the recent advancements of deep learning, this field
has been dominated by deep neural networks. (Xiao et al.
2016) used a classification loss to learn deep feature repre-
sentations from multiple domains. (Qian et al. 2017) pro-
posed a novel multi-scale deep learning model that is able to
learn deep discriminative feature representations at different
scales. Their method can automatically determine the most
suitable scales for matching. (Shen et al. 2018b) proposed a
Kronecker Product Matching module to generate matching
confidence maps between two pedestrian images. (Guo and
Cheung 2018) proposed a fully convolutional Siamese net-
work to improve the measurement of similarity between two
input images. Rather than feature learning from the whole
person image, some other works exploit part-based features.
(Yao et al. 2017) clustered the coordinates of maximal acti-
vations on feature maps to locate several regions of interest.
(Zhao et al. 2017) embedded the attention mechanism in the
network, allowing the model to decide where to focus by it-
self. In addition, some works attempt to incorporate extra in-
formation like human pose and appearance mask to facilitate
person ReID. (Zheng et al. 2015) proposed to extract sepa-
rate features of different body regions and merge them using
a tree-structured fusion network. (Su et al. 2017) proposed a
pose-driven deep CNN model which explicitly leverages the
human part cues to learn effective feature representations.
Triplet Loss Strictly speaking, triplet loss was first in-
troduced by (Weinberger and Saul 2009). They trained the
metric with the goal that the k-nearest neighbors belong to
the same class and examples of different classes can be dis-
sociated by a large margin. Based on this work, (Schroff,
Kalenichenko, and Philbin 2015) improved the loss to learn
a unified embedding for face recognition. They pushed for-
ward the concept of triplet and minimized the distance be-
tween an anchor and a positive while maximized the dis-
tance between the anchor and a negative. (Cheng et al. 2016)
improved the triplet loss function by restricting positive
pairs within a small distance. And this improved loss was
used to train a multi-channel parts-based convolutional neu-
ral network model. Recently, (Hermans, Beyer, and Leibe
2017) summarized the works of ReID using triplet loss,
and proposed some training strategies to improve the perfor-
mance of triplet loss. While our work is also based on triplet
loss, we investigate the influence of the margin, which has
received little attention so far.
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Hard Example Mining Hard example mining has been
widely exploited to assist training of deep neural networks.
(Shrivastava, Gupta, and Girshick 2016) proposed online
hard example mining to improve the performance of object
detection. (Hermans, Beyer, and Leibe 2017) extended this
idea and selected the hardest positive and negative samples
within a batch when generating triplets. These methods can
be categorized as local hard example mining considering
that hard examples are mined from a training batch instead
of the whole training set. While the proposed GHIS searches
hard identities globally from all identities in the training set.

Method
Since our approach is based on triplet loss, let us first briefly
recap its formulation. Training of triplet loss requires care-
fully designed sampling of triplets. A triplet consists of an
anchor image xai , a positive image xpi of the same person as
the anchor and a negative image xni of a different person.
Triplet loss aims to learn a feature embedding so that xai is
closer to xpi than it is to xni in the embedding space. It can
be formulated as follows:

L0 =

N∑
i

[
dap0 − dan0 +m0

]
+
,

dap0 = ||f0(xai )− f0(xpi )||22
dan0 = ||f0(xai )− f0(xni )||22

(1)

where [·]+ is the hinge function. dap0 and dan0 are the squared
Euclidean distance between the anchor-positive and anchor-
negative pairs respectively. m0 is the margin enforced be-
tween dan0 and dap0 . N is the number of triplets in a training
batch. f0(xi) ∈ Rd denotes the d-dimensional feature em-
bedding of xi. Here we apply a subscript 0 on f , d and m to
indicate the base feature vector, distance and margin respec-
tively. They will be updated later.

Learning Incremental Triplet Margin
To learn large margin between positive and negative pairs,
we propose a novel multi-stage training strategy. Firstly, we
train the aforementioned triplet loss L0 with a small base
margin m0 and obtain a base feature embedding f0(xi) ∈
Rd. Meanwhile, we learn a feature shift vector fs1 (xi) which
is of the same dimension as f0(xi). By adding the two vec-
tors together, we get a shifted feature embedding f1(xi).
This process can be recursively applied by:

fj(xi) = fj−1(xi) + fsj (xi), ∀j ≥ 1 (2)

The feature shifts fsj (xi) are not learned directly. Instead, we
supervise the shifted features fj(xi) with another triplet loss
Lj . To make sure that each time of feature shifting results in
better feature embedding, the margin of Lj is monotonically
increased by mj = mj−1 + ∆mj . The j-th triplet loss is
defined as:

Lj =

N∑
i

[
dapj − d

an
j +mj

]
+
,

dapj = ||fj(xai )− fj(xpi )||22
danj = ||fj(xai )− fj(xni )||22

(3)

Algorithm 1 Global Hard Identity Searching.

Require: Training set of n identities, feature extractor
Ensure: Hard identity sets of all n identities S

1: Compute the mean distance matrix D̄ with Equation (5)
2: Set diagonal elements {Du,u} in D̄ to infinity
3: for each identity u = 1, . . . , n do
4: Find the g most similar candidate identities Cu ac-

cording to D̄u,∗
5: Generate hard identity set Su by randomly sampling
q identities from Cu

6: end for
7: return S = {S1, . . . , Sn}

The incremental design makes the learning of large margin
easier. The gap between distance of negative pairs dan and
that of positive pairs dap gets enlarged progressively. And
we empirically demonstrate that larger margin trained by
this way leads to better performance.

All of the triplet losses at different stages are optimized
jointly. The final loss is the weighted sum of all losses:

L =

M∑
j=0

λjLj (4)

where M is the number of times that feature shifting is ap-
plied. λj is the weight used to balance different losses. In
our experiments, we set M to 2 and λj to 1 in all stages.

Exploiting Multiple Levels of Features
High-level feature maps of a neural network contain coarse
semantic information, while mid-level features contain de-
tailed structure information. In previous works, only high-
level features have been exploited. We argue that mid-level
features are important for fine-grained visual recognition
tasks like person ReID. Our multi-stage framework easily
enjoys the benefits of different levels of features. Specifi-
cally, we learn the base feature embedding f0(·) using high-
level features, which serves as a decent starting point. Then
mid-level features are exploited to learn the feature shifts
fsj (·), which requires a closer look at subtle appearance dif-
ferences between two persons. See Figure 2 for the pipeline
of our framework.

Global Hard Identity Searching
To produce triplets with high quality negative pairs, we in-
troduce a global hard identity searching method. When gen-
erating a training batch, (Hermans, Beyer, and Leibe 2017)
sample P identities randomly. Instead we define a metric
to measure the dissimilarity between two identities and put
similar identities together in the same batch. Given a train-
ing set with n identities, we randomly sample K examples
per-identity. Then we compute the pairwise mean distance
matrix D̄ of the n identities. D̄ is an n × n symmetric ma-
trix. D̄u,v measures the dissimilarity between identity u and
v, which is defined as:

D̄u,v =
1

K2

K∑
l=1

K∑
r=1

||fM (xul )− fM (xvr)||22 (5)
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Figure 2: Pipeline of the proposed LITM approach. Upper: a strong triplet loss baseline network (TriNet-S). Lower: learning
feature shift vectors for recursively shifted features.

The searching procedure is described in Algorithm 1. Af-
ter computing the mean distance matrix D̄, we set its diago-
nal elements {D̄u,u} to infinity to prevent each identity itself
from being sampled as its hard identity. Then for each iden-
tity u, we find g identities of the smallest distances to u as
its candidate hard identities. To introduce more randomness,
q (q < g) identities are sampled from the g candidates as the
final hard identity set. Each identity and its q hard identities
form an identity group which contains q+1 identities. When
generating a training batch, we sample P/(q + 1) identity
groups, which results in P identities in total. After a training
batch is generated, we use batch hard triplet mining (Her-
mans, Beyer, and Leibe 2017) to sample hard triplets within
the batch.

In our experiments, we notice that the hard identity set
of a identity rarely changes during training. To cover more
identity permutations and make the training more stable, we
apply GHIS and random identity sampling in an alternat-
ing way. We first train the network with random identity
sampling for two epochs, followed by GHIS for one epoch.
This procedure is repeatedly applied. As for other hyper-
parameters, we set g = 5, q = 3, P = 20 and K = 4.

TriNet-S: A Strong Triplet Loss Baseline Network
For the network architecture, we consider TriNet proposed
in (Hermans, Beyer, and Leibe 2017) as a reference. TriNet
is adapted from ResNet-50 (He et al. 2016), where the last
fully connected layer is replaced with two new fully con-
nected layers. The first layer reduces the feature dimension
from 2048 to 1024. And the second layer further reduces the
dimension to 128, which serves as final feature embedding.

We argue that this configuration is not optimal. For person
ReID which involves fine-grained recognition, we propose
the following guidelines on network design.
• A fully convolutional architecture is preferable to learn

spatial-aware features.
• Global maximum pooling results in sharper and thus more

discriminative responses than global average pooling.
• Resolution matters. Large feature map size is preferable

as more detailed information is preserved.
Following these guidelines, we make some tweaks to

TriNet. Firstly, we remove the last two fully connected lay-
ers and use the globally pooled features as final feature em-
bedding. Secondly, we replace the global average pooling
(GAP) of ResNet-50 with global maximum pooling (GMP).
Thirdly, we reduce the stride of the first convolutional layer
in the conv5 x block from 2 to 1, which doubles the fea-
ture map size. With these tweaks alone, we achieve signif-
icant performance gain. We refer to our implementation as
TriNet-S, which serves as a strong triplet loss baseline.

Network Architecture
Combining TriNet-S and LITM, our network architecture is
shown in Figure 2. Following (Hermans, Beyer, and Leibe
2017), we use ResNet-50 as our backbone network. The
2048-dimensional output of GMP is utilized as the base
feature embedding f0(·). The feature maps of conv4 x and
conv3 x are fed into two shift blocks respectively, producing
two feature shift vectors: fs1 (·) and fs2 (·). Then the shifted
features are created by adding the shift vector to the base fea-
ture vector. The shift block is a tiny sub-network as shown in
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Figure 2. The number of channels of the first 3× 3 convolu-
tion is kept the same as its input channels (i.e. 1024 for shift-
block1 and 512 for shift-block2). The second 1×1 convolu-
tion is utilized to increase the feature dimension to 2048. No-
tably, feature maps in shift-block2 are down-sampled by half
by setting stride of the first convolution to 2. During train-
ing, all the three triplet losses are optimized jointly. During
inference, only the final shifted feature embedding f2(·) is
used.

Experiments
Datasets
We evaluate the proposed approach on three large-scale per-
son ReID datasets, namely Market-1501 (Zheng et al. 2015),
CUHK03 (Li et al. 2014) and DukeMTMC-reID (Ristani et
al. 2016; Zheng, Zheng, and Yang 2017).

• Market-1501 contains altogether 32,688 images of 1,501
labeled pedestrians, which were captured under 6 cam-
era viewpoints in a campus. Deformable Part Model
(DPM) (Felzenszwalb, McAllester, and Ramanan 2008)
is employed to produce pedestrian bounding boxes. This
dataset is split into two non-overlapping partitions: 12,936
images from 751 identities (including 1 background cate-
gory) for training and 19,732 images from 750 identities
for testing. During testing, 3,368 images are chosen as
query images. We adopt single-query evaluation mode in
all experiments.

• CUHK03 contains 14,096 pedestrian images of 1,467
identities. Each person image in this dataset was cap-
tured from two different cameras in the CUHK campus.
It provides both DPM-detected and hand-marked bound-
ing boxes. In this paper, we report experimental results on
both image sets. We utilize the more challenging train/test
split protocol proposed in (Zhong et al. 2017a) where 767
identities are used for training and the rest 700 for testing.

• DukeMTMC-reID is a subset of Duke-MTMC for ReID.
The images were captured with 8 cameras for cross-
camera tracking. It contains 16,522 training images from
702 identities, 2,228 queries from the other 702 identities
and 17,661 gallery images. On this dataset, we also test
our method in the single-query setting.

Evaluation Metrics
Following most existing person ReID works, we use two
evaluation metrics to evaluate the performance of our
method. One is the Cumulated Matching Characteristics
(CMC), which considers ReID as a ranking problem. The
other is mean average precision (mAP), which considers
ReID as a retrieval problem.

Implementation Details
Our implementation is based on PyTorch (Paszke et al.
2017). The backbone ResNet-50 is pre-trained on Ima-
geNet (Russakovsky et al. 2015). We use the same data aug-
mentation across all experiments and on all datasets unless
otherwise noted. The training images are randomly cropped
with a ratio uniformly sampled from [0.8, 1) and resized to

Stride Pooling Fully Conv. Rank-1 mAP
2 GAP 85.3 70.6
2 GAP X 85.4 71.6
2 GMP X 89.7 75.9
1 GMP X 90.1 77.9

Table 1: Performance improvements of the proposed TriNet-
S over the TriNet baseline on the Market-1501 dataset. The
performance of TriNet in this table is slightly better than that
reported in (Hermans, Beyer, and Leibe 2017) because of the
random erasing data augmentation we adopt.

288×144. Random erasing (Zhong et al. 2017b) and random
flipping are applied on resized images with a probability of
0.5. The hyper-parameters of random erasing data augmen-
tation are set the same as (Zhong et al. 2017b). The number
of persons P per-batch and number of images per-person K
are set to 20 and 4 respectively. Hence, the mini-batch size
is 80. For LITM, the base and incremental margins are set as
m0 = 4, m1 = 7, m2 = 10.

We use the Adam optimizer (Kingma and Ba 2014) with
ε = 10−3, β1 = 0.99 and β2 = 0.999. The network is
trained for 300 epochs in total. And a piecewise learning
rate schedule is utilized, where it is fixed to 2× 10−4 in the
first 150 epochs and decayed exponentially in the rest 150
epochs.

lr(t) =

{
2× 10−4 if t ≤ 150

2× 10−4 × 10−3×
t−150
150 if 150 < t ≤ 300

Improvements over Triplet Loss Baseline

We first report the performance gains brought by our tweaks
to the network architecture in TriNet-S on the Market-1501
dataset. As shown in Table 1, after removing the trailing
fully connected layers and making the network fully convo-
lutional, mAP gets improved by 1% from 70.6% to 71.6%.
Replacing GAP with GMP brings more than 4% perfor-
mance gains in terms of both Rank-1 accuracy and mAP.
By reducing the stride of the conv5 x block from 2 to 1 and
thus increasing the feature map resolution, we obtain an ex-
tra 2% mAP gain. Compared with the TriNet baseline, the
proposed TriNet-S improves mAP by 7.3% and Rank-1 ac-
curacy by 4.8%.

The proposed LITM training strategy is agnostic to the
choice of network architecture. To validate the effective-
ness of LITM, we apply it to both TriNet and TriNet-S.
As shown in Table 2, LITM is able to improve TriNet by
6.3% and 3.1% in terms of mAP and Rank-1 accuracy re-
spectively on the Market-1501 dataset. Even though TriNet-
S have already greatly improved the performance over the
TriNet baseline, LITM still boosts mAP by 4.4% and Rank-1
accuracy by 2.5%. Similar performance boosts are observed
on the CUHK03 and DukeMTMC-reID datasets, which in-
dicates that our approach generalizes well across different
scenarios.
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Network LITM Market-1501 CUHK03 (labeled) DukeMTMC-reID
Rank-1 mAP Rank-1 mAP Rank-1 mAP

TriNet (Hermans, Beyer, and Leibe 2017) 84.9 69.1 55.2† 54.3† 76.4† 60.4†
TriNet (Hermans, Beyer, and Leibe 2017) X 88.0 75.4 60.9 59.3 79.2 65.9

TriNet-S 90.1 77.9 63.5 61.7 82.8 70.2
TriNet-S X 92.6 82.3 73.1 71.0 84.8 74.4

Table 2: Performance improvements of LITM to both TriNet and TriNet-S. † indicates reproduced results by us using the same
training configuration as the TriNet paper.

Measure (%) Rank-1 mAP
Pose-transfer (Liu et al. 2018) 87.7 68.9
AOS (Huang et al. 2018) 86.5 70.4
MGCAM (Song et al. 2018) 83.8 74.3
MLFN (Chang et al. 2018) 90.0 74.3
HA-CNN (Li, Zhu, and Gong 2018) 91.2 75.7
AlignedReID∗ (Zhang et al. 2017) 91.8 79.3
Deep-Person∗ (Bai et al. 2017) 92.3 79.6
GCSL (Chen et al. 2018) 93.5 81.6
PCB+RPP∗ (Sun et al. 2018) 93.8 81.6
GSRW (Shen et al. 2018a) 92.7 82.5
SphereReID∗ (Fan et al. 2018) 94.4 83.6
LITM 92.6 82.3
LITM+GHIS 93.9 83.9

Table 3: Performance comparison on the Market-1501
dataset. ∗ denotes unpublished work on arXiv.

Comparisons with the State-of-the-arts
Results on Market-1501 As shown in Table 3, GHIS fur-
ther brings 1.3% and 1.6% improvements for Rank-1 ac-
curacy and mAP respectively. Compared with 11 recently
proposed methods on the Market-1501 dataset, our final re-
sult yields the best mAP (83.9%) and comparable Rank-
1 accuracy (93.9%) to SphereReID. Although SphereReID
achieves the best Rank-1 accuracy, its optimization is very
sensitive to hyper-parameter settings. For example, a care-
fully designed learning rate warming up schedule is re-
quired. In GSRW, testing images are fed into the network
in a pairwise manner, which is much more time consuming
than our approach. PCB+RPP is trained with a three-stage
process with fine-tuning, which is not an end-to-end method.

Results on CUHK03 We choose the new training/testing
split protocol proposed in (Zhong et al. 2017a) instead of
the original protocol for convenience. A comparison our ap-
proach with recent methods following the same evaluation
protocol are listed in Table 4. LITM+GHIS outperforms the
2nd best approach (PCB+RPP) by 8.1% (71.8% vs. 63.7%)
for Rank-1 accuracy and 11.6% (69.1% vs. 57.5%) for mAP.
The significant performance advantage fully validates the
superiority of the proposed LITM and GHIS over existing
methods.

Results on DukeMTMC-reID Compared with Market-
1501, pedestrian images from this dataset have more varia-
tions in illumination and background because of wider cam-

Data Type Labeled Detected
Measure (%) Rank-1 mAP Rank-1 mAP
HA-CNN (2018) 44.4 41.0 41.7 38.6
Pose-transfer (2018) 45.1 42.0 41.6 38.7
MGCAM (2018) 50.1 50.2 46.7 46.9
AOS (2018) - - 47.1 43.3
MLFN (2018) 54.7 49.2 52.8 47.8
REDA∗ (2017b) 58.1 53.8 55.5 50.7
PCB+RPP∗ (2018) - - 63.7 57.5
LITM 73.1 71.0 71.0 68.6
LITM+GHIS 74.2 71.7 71.8 69.1

Table 4: Performance comparison on the CUHK03 dataset.
∗ denotes unpublished work on arXiv.

Measure (%) Rank-1 mAP
Pose-transfer (Liu et al. 2018) 78.5 56.9
AOS (Huang et al. 2018) 79.2 62.1
MLFN(Chang et al. 2018) 81.0 62.8
HA-CNN (Li, Zhu, and Gong 2018) 80.5 63.8
Deep-Person∗ (Bai et al. 2017) 80.9 64.8
GSRW (Shen et al. 2018a) 80.7 66.4
SphereReID∗ (Fan et al. 2018) 83.9 68.5
PCB+RPP∗ (Sun et al. 2018) 83.3 69.2
GCSL (Chen et al. 2018) 84.9 69.5
LITM 84.8 74.4
LITM+GHIS 85.9 74.5

Table 5: Performance comparison on the DukeMTMC-reID
dataset. ∗ denotes unpublished work on arXiv.

era views and more complex scene layout. On this challeng-
ing dataset, our LITM+GHIS approach again outperforms
all recent methods by a large margin as shown in Table 5.
Notably, our approach outperforms SphereReID (Fan et al.
2018) by 2.0% and 6.0% in terms of Rank-1 accuracy and
mAP respectively, which indicates that our improvements on
training strategy and network architecture are general and
work well in a wide variety of scenarios.

Ablation Studies
To further investigate the design choices of our approach,
we perform extensive ablation studies on the Market-1501
dataset. In particular, we compare the behaviors of GAP and
GMP, the impact of incremental triplet margin and alterna-
tive LITM structures.
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Pooling d̄ap d̄an d̄an − d̄ap
GAP 10.5 25.1 14.6
GMP 40.9 66.2 25.3

Table 6: The mean distance of positive and negative pairs
regarding different global pooling methods in TriNet.

Method pool Rank-1 mAP

TriNet GAP 85.4 71.6
GMP 89.7 75.9

LITM GAP 89.3 77.9
GMP 92.6 82.3

Table 7: Performance improvements of GMP over GAP on
the Market-1501 dataset.

GAP vs. GMP

By analyzing the feature maps before global pooling, we
find that the great majority of elements are close to 0. There-
fore, the average operation in GAP would greatly reduce the
magnitude of feature vectors, which weakens the feature dis-
criminativeness. To prove the hypothesis, we compute the
mean distance of positive and negative pairs after the train-
ing converges. Table 6 shows a comparison of GAP and
GMP in terms of the mean distance. By replacing GAP with
GMP, mean distance of both positive and negative pairs gets
significantly increased. At the same time, although trained
with the same triplet margin, the gap between d̄an and d̄ap
is enlarged from 14.6 to 25.3. And the performance also gets
significantly improved as shown in Table 7. This again veri-
fies that larger margin leads to better feature embedding.

Impact of Incremental Margin

To validate that the multi-stage triplet losses with incremen-
tal margins have learned increasingly better feature embed-
ding, we first compare the mean distance of positive and
negative pairs at different stages. As show in Table 8, from
f0(·) to f2(·) the distance of positive pairs d̄ap and negative
pairs d̄ap, as well as their gap are progressively increased.
In particular, the distance gap between positive and nega-
tive pairs increases from 25.9 to 32.7. In terms of perfor-
mance, as shown in Table 9, shifted features are also su-
perior over base features. With a single iteration of feature
shifting, f1(·) boosts mAP from 80.9% to 82.2%. While im-
provement from more iterations is marginal.

To validate the effectiveness of our incremental triplet
margin strategy, we compare it with the one-stage large-
margin triplet loss. Specifically, we train TriNet-S with dif-
ferent margins. From Table 9, we can see that performance
of TriNet-S gets improved when the margin increases from
1 to 4, but degrades for larger margins. Notably, the per-
formances of f0(·), f1(·) and f2(·) consistently outperform
their TriNet-S counterparts with the same margin value,
which clearly demonstrates the superiority of the proposed
LITM method.

Feature d̄ap d̄an d̄an − d̄ap
f0(·) 59.0 84.9 25.9
f1(·) 68.9 99.1 30.2
f2(·) 70.9 103.6 32.7

Table 8: The mean distance of positive and negative pairs of
features at different stages of LITM.

m Rank-1 Rank-5 Rank-10 mAP

TriNet-S

1 90.1 94.8 96.5 77.9
4 90.9 96.6 97.5 79.1
7 90.2 96.4 97.0 78.2

10 89.9 95.2 96.2 77.7
f0(·) 4 92.1 96.9 98.0 80.9
f1(·) 7 92.6 97.1 98.5 82.2
f2(·) 10 92.6 97.5 98.5 82.3

Table 9: Performance of feature embeddings at different
stages of LITM and comparison with TriNet-S with various
margins on the Market-1501 dataset.

Measure (%) Rank-1 Rank-5 Rank-10 mAP
LITM-C5C5C5 92.0 97.0 98.2 81.2
LITM-C3C4C5 90.8 96.3 97.9 79.4
LITM-C5C4C3 92.6 97.5 98.5 82.3

Table 10: Performance comparison of different LITM struc-
tures on the Market-1501 dataset.

Alternative LITM Structures
We further compare the current LITM structure in Figure 2
with two alternatives.
• LITM-C5C5C5: the base features as well as shifted fea-

tures are learned from the conv5 x block.
• LITM-C3C4C5: the base features and shifted features are

learned from the conv3 x, conv4 x and conv5 x blocks
respectively.

• LITM-C5C4C3: the current structure we use in our exper-
iments.

Table 10 shows the results. The C5C4C3 setting outper-
forms C5C5C5, which validates that mid-level features in-
deed help. While C3C4C5 is the worst. The reason is that a
decent base feature embedding learned from high-level fea-
ture maps is critical.

Conclusion
In this paper, we verify that triplet loss is an effective tool
to learn discriminative features for person ReID. However,
existing training framework is far from optimal. By learn-
ing incremental triplet margin, global hard identity search-
ing and a better network architecture, we make significant
performance improvement and achieve state-of-the-art per-
formances on common person ReID datasets. Our improve-
ments to triplet loss may also apply to other related visual
tasks, such as face recognition and object retrieval. We leave
this as future work.
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