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Abstract

In recent years, convolutional neural networks (CNNs) have
achieved great success in visual tracking. Most of existing
methods train or fine-tune a binary classifier to distinguish the
target from its background. However, they may suffer from
the performance degradation due to insufficient training data.
In this paper, we show that attribute information (e.g., illu-
mination changes, occlusion and motion) in the context fa-
cilitates training an effective classifier for visual tracking. In
particular, we design an attribute-based CNN with multiple
branches, where each branch is responsible for classifying the
target under a specific attribute. Such a design reduces the ap-
pearance diversity of the target under each attribute and thus
requires less data to train the model. We combine all attribute-
specific features via ensemble layers to obtain more discrimi-
native representations for the final target/background classifi-
cation. The proposed method achieves favorable performance
on the OTB100 dataset compared to state-of-the-art tracking
methods. After being trained on the VOT datasets, the pro-
posed network also shows a good generalization ability on
the UAV-Traffic dataset, which has significantly different at-
tributes and target appearances with the VOT datasets.

1 Introduction
Visual tracking has attracted increasing attention in the past
decades due to its key roles in numerous applications such
as automatic driving, surveillance, and video analysis. While
considerable effort has been devoted to developing robust al-
gorithms, tracking a target in a complex environment is still
a challenging task due to factors such as heavy occlusion,
shape deformations, fast motion, etc.

Recently, features learned from CNNs have shown ef-
fectiveness for numerous vision tasks (Ren et al. 2016;
Jiang et al. 2018b; Wang et al. 2018; Fan et al. 2018;
Chen et al. 2018). Several CNN-based trackers have since
been proposed (Nam and Han 2016; Valmadre et al. 2017;
Danelljan et al. 2017; Yun et al. 2017; Park and Berg 2018;
Luo et al. 2018; Zhang et al. 2018) for visual tracking and
achieved state-of-the-art performances. Most of these meth-
ods formulate visual tracking as a target/background clas-
sification problem and train CNNs to perform the classi-
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Figure 1: The proposed attribute-based CNN is trained by
two stages. In the first stage, five attribute branches are
trained individually to learn representations under differ-
ent attributes. In the second stage, two ensemble layers are
trained to learn how to effectively combine attribute-specific
representations together.

fication. As like other applications, their success relies on
the amount of the training data. However, existing tracking
datasets, such as VOT (Kristan et al. 2015), OTB100 (Wu,
Lim, and Yang 2015) and UAV123 (Mueller, Smith, and
Ghanem 2016), are far smaller than image classification
datasets such as ImageNet (Russakovsky et al. 2015). The
insufficient training data may cause the trained model inef-
fective when facing all kinds of tracking challenges, such as
illumination changes, occlusion, and motion. In this paper,
we show that tracking challenges (also known as attributes)
are able to facilitate the training of the network with insuffi-
cient training data.

Different from existing CNN-based trackers, we propose
to first train specific CNN branches under individual at-
tributes as shown in the top panel of Figure 1. Such a design
reduces the appearance diversity of the target under each at-
tribute and thus eases the learning of the network parame-
ters. Since the attribute is not known in testing and one frame
may have multiple attributes, we propose to feed the input
image into all branches to avoid explicitly recognizing the

8835



attributes of each frame. We further train ensemble layers to
adaptively combine all attribute-specific representations as a
strong representation for the final target/background classi-
fication as shown in the bottom panel of Figure 1.

It is worth noticing that the training procedure of the pro-
posed attribute-based CNN is not straightforward because
the classification loss of a training sample with any attribute
will be backwardly propagated to all the five branches. Thus,
a simple end-to-end training cannot guarantee each branch
to learn to classify data with the corresponding attribute.
To address this problem, we propose a two-stage training
method as illustrated in Figure 1. In the first stage, we
train the attribute branches one-by-one with a temporary
fully-connected (FC) layer for binary classification of sam-
ples with a specific attribute. In the second stage, we only
train the ensemble layers to learn how to combine attribute-
specific representations effectively. Experiments show that
the two-stage training method helps to achieve better perfor-
mance than a simple end-to-end training.

The contributions of this paper are summarized below:

• We propose an attribute-based CNN framework for visual
tracking, which exploits attribute information of video
frames to overcome the problem of lacking sufficient
training data in visual tracking.

• We develop a two-stage training method to enable each
branch to learn a specific representation and effectively
combine attribute-specific representations of all branches
for the final target/background classification.

• We carry out experiments on the large challenging UAV-
Traffic and OTB100 datasets to demonstrate the gener-
alization ability and the effectiveness of the proposed
method against state-of-the-art tracking algorithms.

2 Related Work
In this section, we present a brief review of recent CNN-
based tracking methods. For algorithms utilizing hand-
crafted features, we refer the readers to the surveys (Zhang et
al. 2013; Smeulders et al. 2014). As CNNs achieve great suc-
cess on many computer vision tasks (Ma et al. 2015; Ren et
al. 2018; Sun et al. 2017; Jiang et al. 2018a; Yang et al. 2018;
Liu et al. 2018; Huang et al. 2018), numerous visual ob-
ject tracking methods based on CNNs have been proposed,
which roughly fall into two categories according to whether
the stem of the network has parallel structures: one-stream
CNN and multi-stream CNN.

One-stream CNN-based trackers. Reinforcement learning
is utilized in ADNet (Yun et al. 2017) to learn an action-
decision network so as to track a target by making a se-
ries of actions, e.g., translation moves and scale changes, to
the target candidate. MDNet (Nam and Han 2016) adopts
a network with multiple target/background classification
branches at the last layer, where each branch is responsi-
ble for only one video, so that it is able to reduce the am-
biguity caused by objects that are targets in some training
videos but are backgrounds in others. SANet (Fan and Ling
2017) incorporates recurrent neural network into CNNs to
model the structure information within an object in addition

to the traditional semantic information. To efficiently com-
pute correlation filters from large feature maps obtained by
pre-trained image classification CNN models (e.g., VGG-
M (Chatfield et al. 2014)), ECO (Danelljan et al. 2017) refor-
mulates learning a large filter as learning a coefficient matrix
and a compact set of basis filters. These one-stream CNNs
aim to learn a set of parameters that can distinguish the tar-
get from its background under all kinds of attributes, which
is rather hard due to large appearance difference of the same
target under different attributes and the deficiency of training
data.

Multi-stream CNN-based trackers. In (Tao, Gavves, and
Smeulders 2016), the CNN is designed with two symmet-
rical streams (also known as the Siamese network) to learn
a similarity function of two input images: one target tem-
plate and one target search region. Later, an asymmetri-
cal Siamese network is proposed (Valmadre et al. 2017)
to simultaneously learn CNN features and correlation fil-
ters by introducing a differentiable correlation filter layer.
To enhance the representation capability, spatial and tempo-
ral content differences between the first frame and the cur-
rent frame are modeled in (Song et al. 2017) by two parallel
residual streams after some common convolutional layers.
The CNN in (Han, Sim, and Adam 2017) also has multi-
ple streams in later layers, but these streams with different
number of layers aim to maintain multi-level target repre-
sentations. Different from the goals of the above mentioned
multi-stream networks, our multi-stream CNN is proposed
to address the problem of lacking sufficient training data by
exploiting the attribute information in video frames.

3 Proposed Method
In this section, we first present the architecture of the pro-
posed attribute-based CNN, and then describe the two-stage
training method. Finally, we apply the attribute-based CNN
to visual tracking.

3.1 Attribute-Based Neural Network
The architecture of the proposed attribute-based CNN is
shown in the bottom panel of Figure 1. It starts with sev-
eral convolution layers borrowed from VGG-M (Chatfield
et al. 2014), which are used to capture common low-level
information (e.g., edges and texture) across objects. Then,
five attribute branches are followed to learn representations
under corresponding attributes. We adopt the five attributes
provided by the VOT datasets (Kristan et al. 2013; 2014;
2015), namely target motions, camera motions, illumination
variations, occlusions, and scale changes, which are able
to cover most of the 11 attributes defined by the OTB100
dataset (Wu, Lim, and Yang 2015). In addition, the attributes
of the VOT datasets are annotated for every frame, which al-
lows us to divide training data into different attribute groups
to train the corresponding branches.

Following the attribute branches are ensemble layers and
an FC layer. The ensemble layers are composed of a con-
catenation layer and a convolution layer. In the testing stage,
the frame attributes are not known and a frame may simulta-
neously have multiple attributes. Thus, it is unreasonable to

8836



Figure 2: Architecture of each attribute branch. The ReLU
layers after each Conv layer are omitted for clarity. Each
number in the bracket denotes the number of channels of the
output feature map.

process a frame using only one branch. Instead, we propa-
gate an input image region through all attribute branches and
train the ensemble layers to adaptively combine all attribute-
specific representations together to obtain a comprehensive
and discriminative representation. The output of ensemble
layers is fed to the FC layer for the final target/background
classification.

As for the architecture of each branch, we adopt the in-
ception structure as shown in Figure 2 inspired by the re-
cent success of CNNs in image classification (Szegedy et al.
2017). The first 1×1 Conv layer is used to capture common
representations under that attribute. Then it is divided into
two flows by using another two 1×1 Conv layers with half
channels to decrease the dimensionality in the filter space.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch (Szegedy et al. 2015).
We implement 3×3 filters in two ways in the flows to per-
ceive region fields with different sizes: one using the tradi-
tional 3×3 filter and the other one using the cascade of 1×3
and 3×1 filters. Their outputs are concatenated together as
an attribute-specific representation.

3.2 Two-Stage Training
A simple end-to-end training cannot guarantee each branch
to learn to classify data of the corresponding attribute be-
cause the classification loss of a training sample with any
attribute will be backwardly propagated to all the five
branches. To address this problem, we propose a two-stage
training strategy to first train the attribute branches and then
learn the ensemble layers.

We use the VOT datasets (Kristan et al. 2013; 2014;
2015) excluding the ones that appear in the OTB100 dataset
as training data. In stage 1, all frames are divided into
five groups according to their attribute labels. In stage 2,
the five groups are merged into one bigger group. In each
frame, P positive and Q negative samples are cropped such
that the positive and negative samples have > 0.7 and 6
0.5 Intersection-over-Union (IoU) overlap ratios with the
ground-truth bounding boxes, respectively.

Stage 1: training attribute branches. The five attribute
branches are trained one by one. Specifically, we remove

both the ensemble layers and the last FC layer from the
pipeline, and add a new FC layer at the end of each branch
as shown in the top panel of Figure 1. These FC layers
are responsible for target/background classification. Given
training samples of an attribute as input, low-level feature
maps are first extracted and then fed into the corresponding
branch for forward-backward propagation with the softmax-
loss. The stochastic gradient descent (SGD) method with
momentum is utilized for optimization. The momentum and
weight decay are set to 0.9 and 0.0005, respectively. Each
branch converges after approximate 200 iterations with a
fixed learning rate of the value 0.001.

Stage 2: training ensemble layers. Once the attribute
branches are ready, we start to train the ensemble layers in
order to effectively combine these attribute-specific repre-
sentations for the final target/background classification. In
this stage, we remove the FC layers which are added into
each attribute branch in Stage 1, and plug back the ensem-
ble layers and the FC layer as shown in the bottom panel of
Figure 1. The parameters of the five branches are fixed. The
learning rates of ensemble layers and the last FC layer are set
to 0.001. We adopt the softmax-loss for training. The train-
ing data and the SGD parameters are the same as in Stage 1.
The network converges after approximate 150 iterations.

3.3 Tracking with Attribute-Based CNN
As discussed in the design of the attribute-based CNN (see
Section 3.1), there is no need to recognize attributes in the
testing phase. Once we learn the attribute branches and en-
semble layers, the last FC layer is re-trained from scratch
to construct a tracker on a test image sequence. For that,
positive and negative samples are extracted from the start-
ing frame, where they have > 0.7 and 6 0.3 IoU overlap ra-
tios with the ground truth bounding box, respectively. Mean-
while, the ensemble layers are fine-tuned with a relatively
small learning rate 0.0001 to adapt to new appearances of
the target.

When the t-th frame arrives, we randomly sample M tar-
get candidates x1, · · · ,xM around the target position in the
last frame. The candidate with the maximum target classifi-
cation score is selected as the tracking result

x∗
t = argmax

i=1,··· ,M
Θ(xi), (1)

where Θ(·) outputs the target score using the learned at-
tribute network. During tracking, the ensemble layers and
the last FC layer are updated every 20 frames using positive
and negative samples collected in previous frames.

4 Experimental Results
In this section, we present extensive experiment evalua-
tions on the proposed Attribute Network for visual Tracking
(ANT) algorithm. We first introduce the evaluation proto-
col. Then, we evaluate the effectiveness of each attribute
branch. Finally, we evaluate the proposed ANT algorithm
against several state-of-the-art trackers. We implement our
algorithm in MATLAB, and use the MatConvNet tool-
box (Vedaldi and Lenc 2015) to train the proposed network.
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Figure 3: Examples of challenging videos in the UAV-Traffic
dataset.

Our unoptimized implementation runs at about one frame
per second on a computer with an Intel I7-4790 CPU, 16G
RAM, and a GeForce TITAN 1080Ti GPU card. The sample
parameters P,Q,M are set to 32, 96, and 256, respectively.

4.1 Evaluation Protocols
To fully assess our method, we carry out extensive ex-
periments on two datasets: (I) The object tracking bench-
mark dataset OTB100 (Wu, Lim, and Yang 2015), which
contains 100 sequences involving 11 tracking challenges,
such as illumination changes, in-plane and out-of-plane ro-
tations, scale variation, and occlusion, low resolution, etc.
(II) The unmanned aerial vehicle dataset for traffic, UAV-
Traffic (Du et al. 2018), collected by ourselves under dif-
ferent weather (daylight, night, and fog), flying altitude
(10∼30m, 30∼70m, and >70m), and camera view (front-
view, side-view, and bird-view). The UAV-Traffic dataset
contains 37,084 frames of 50 videos involving 8 challenges:
background clutter, camera rotation, object rotation, small
object, illumination variation, object blur, scale variation,
and large occlusion. 74% of videos contain at least 4 visual
challenges, and 27% of frames contribute to long-term track-
ing videos. Examples of challenging videos in the dataset are
shown in Figure 3.

Following the standard paradigm of the OTB100 bench-
mark, experimental results are reported using success plots
and precision plots in the one-pass evaluation (OPE). The
success rate of a tracker is the proportion of successful
frames with an overlap rate larger than a given threshold.
Trackers are ranked based on the area under the curve (AUC)
in success plots and are ranked based on the center location
error at a threshold of 20 pixels in precision plots.

4.2 Evaluation of Attribute Branches
In Figure 4, we visualize the representations learned by indi-
vidual attribute branches against those learned by a baseline
that has the same architecture as each branch but is trained
using data with all attributes. Figure 4(a) shows five groups
of positive and hard negative samples, each of which is dom-
inated by one main attribute. Figure 4(b) and (c) present the
features obtained by the baseline and by attribute branches
after being projected to the 2D space via the t-SNE tech-
nique (Laurens and Hinton 2008), respectively. It shows that

(a) (b) (c)

Figure 4: (a) Five groups of samples dominated by different
attributes. (b) Projected features of the baseline branch. (c)
Projected features of attribute branches.
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given an image with a specific attribute, the branch corre-
sponding to that attribute generates more discriminative fea-
tures than the network trained using data with all kinds of
attributes.

In Table 1, we further quantitatively compare the effec-
tiveness across branches to verify that each branch special-
izes in the resulting attribute. The evaluation is conducted on
five typical videos which are dominantly challenged by dif-
ferent attributes. The results show that each attribute branch
achieves better performance on the video dominated by the
same attribute than other branches.

Table 1: Tracking results in terms of average success rate
on five VOT videos (A: Skating, B: Bolt1, C: Tiger2, D:
CarScale, E: Basketball), which are not used for training
and denoted with the sequence names in the OTB100 dataset
for clarity, each of which is challenged by one dominant at-
tribute as indicated after the video name. The results are ob-
tained by using five branches separately.

Branch Illu Mot Occ Scale Cam
A: Illu 69.7 64.4 62.6 67.3 62.4
B: Mot 74.3 76.4 69.5 74.4 70.8
C: Occ 52.2 52.9 54.0 51.2 51.2
D: Scale 41.4 61.2 55.3 62.2 60.8
E: Cam 56.8 59.3 62.8 63.8 70.6

4.3 Evaluation of Two-Stage Training
To evaluate the effectiveness of the proposed two-stage
training method, we compare its tracking results on the
OTB100 dataset against that obtained by training all
branches together. The results are presented in Table 2. The
proposed two-stage training method achieves consistent im-
provement of about 2% in terms of both the precision and
AUC metrics.

Table 2: Tracking results on the OTB100 dataset using
the proposed two-stage training method and training all
branches as a whole, respectively.

Two-stage Training Training As a Whole
Prec. 90.5 88.6
AUC 67 65.8

4.4 Comparisons to State-of-the-Art Trackers
We compare the proposed ANT algorithm to seven state-of-
the-art trackers: ECO (Danelljan et al. 2017), CFNet (Val-
madre et al. 2017), ADNet (Yun et al. 2017), CCOT (Danell-
jan et al. 2016), MDNet (Nam and Han 2016), HDT (Qi et
al. 2016), and SINT (Tao, Gavves, and Smeulders 2016). For
fair comparison, all these trackers are run on the same plat-
form as ours.

Quantitative evaluation We present the tracking perfor-
mance in terms of success plots and precision plots on the

Figure 5: Precision and success plots on the OTB100 dataset.

OTB100 dataset in Figure 5. The plots show that ANT al-
gorithm performs favorably against state-of-the-art trackers
such as ECO, CCOT, and MDNet. Specifically, the ANT al-
gorithm ranks top 2 in terms of either the precision plots or
the success plots, and the performance gap between ANT
and ECO is only 0.3% in terms of the precision plots.

In Figure 6, we present the tracking results on the UAV-
Traffic dataset. This dataset is much more challenging than
the OTB100 dataset as its best results are nearly 20% lower
than that on OTB100 (precision: 77.0 vs. 90.8, success: 46.4
vs 68.7). On such a challenging dataset, the ANT algorithm
achieves the best performance in terms of the precision plots,
which is 4.5% higher than the runner-up MDNet. At the
same time, the performance of ANT in terms of the success
plots is very close to the best one. In addition, as the UAV-
Traffic dataset has significantly different attributes compared
to the training datasets, these tracking results demonstrate
the good generalization ability of the proposed network.

Figure 6: Precision and success plots on the UAV-Traffic
dataset.

Qualitative evaluation. We present sample tracking re-
sults of the evaluated methods in Figure 7. For presentation
clarity, only results of the top seven performing trackers are
shown.

Camera motion. In the UAV-Traffic video S0602, the cam-
era hovers at the crossroads, which leads to great appear-
ance changes of the target (the blue bus). The bounding
boxes show that the proposed ANT method locates the tar-
get more accurately than others during the hover, while AD-
Net falsely locates the road and MDNet fails to identify the
target from background as shown in frame 291. In the Blur-
Body sequence, the target appearance is blurred due to cam-
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Figure 7: Bounding box comparison on several challenging videos (from top to bottom, left to right: BlurBody, Girl2, Drag-
onBaby, Ironman, S1701, S0602, S1301, S0103, and S1303). The first four sequences are taken from OTB100 and the last five
from the UAV-Traffic dataset.

era shaking. In this video, both ANT and CCOT methods
are still able to precisely locate the target, while other track-
ers such as CFNet and MDNet locate the target with much
background as shown in frame 236. The effectiveness of the
ANT algorithm benefits from the camera motion branch as
evaluated in Figure 4 and Table 1.
Occlusion. The target in the UAV-Traffic sequence S0103
undergoes occlusions by trees. Only our ANT method and
MDNet are able to track the target, while other trackers such
as ECO and CCOT falsely locate on background out of the
view as shown in frames 75 and 152. Similar performance

can be observed in the OTB100 sequence Girl2, where the
target girl suffers occlusions by a man walking with a bi-
cycle. This can be attributed to the particular branch which
learn discriminative representations in occlusion scenarios
as evaluated in Figure 4 and Table 1.
Object motion. The target in the OTB100 sequence Drag-
onBaby is hitting his opponent using the turn-around kick.
As shown by the bounding boxes, both ANT and ECO meth-
ods are able to locate the target accurately in such a proce-
dure, while other trackers lose the target, such as ADNet.
With reference to the branch evaluations in Figure 4 and Ta-

8840



ble 1, the object-motion branch in our attribute network is
able to capture discriminative information in such a scene.

Scale. In the UAV-Traffic sequence S1701, the size of the
target bus varies largely and the observation view changes
from bird-view to side-view, which cause huge appearance
variations. In such a challenging scene, the proposed ANT
method locates the target more accurately than others such
as MDNet and ECO, as shown in frames 200 and 324. Con-
sidering that MDNet and ECO use the same basal network
as ours and referring to the branch evaluations in Table 1,
the performance gain of the ANT algorithm can be mainly
attributed to the attribute network, which learns specific rep-
resentations under various challenges.

Illumination. The target in Ironman has drastic movements
in a dark night with large illumination changes in the back-
grounds. In such a poor lighting condition, the ANT al-
gorithm accurately locates the target in most frames while
other trackers drift far away as shown in frames 129 and 165.
Similar performance can be observed in the UAV-Traffic se-
quences S1301 and S1303. As evaluated in Table 1, the illu-
mination branch contributes most in such situations.

5 Conclusion
To address the problem of lacking sufficient training data
in CNN-based tracking methods, this paper proposes an
attribute-based CNN framework with multiple branches.
Each branch is separately trained to learn an attribute-
specific representation. The representations of all branches
are combined together to obtain a more discriminative repre-
sentation to handle complicated tracking challenges. To the
best of our knowledge, the proposed algorithm is the first
to learn attribute-specific representations for visual track-
ing. Extensive experimental results on a large number of
sequences demonstrate the effectiveness and the generaliza-
tion ability of the proposed method.
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