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Abstract

Most person re-identification (re-ID) approaches are based
on supervised learning, which requires intensive manual an-
notation for training data. However, it is not only resource-
intensive to acquire identity annotation but also impractical
to label the large-scale real-world data. To relieve this prob-
lem, we propose a bottom-up clustering (BUC) approach to
jointly optimize a convolutional neural network (CNN) and
the relationship among the individual samples. Our algorithm
considers two fundamental facts in the re-ID task, i.e., diver-
sity across different identities and similarity within the same
identity. Specifically, our algorithm starts with regarding in-
dividual sample as a different identity, which maximizes the
diversity over each identity. Then it gradually groups sim-
ilar samples into one identity, which increases the similar-
ity within each identity. We utilizes a diversity regulariza-
tion term in the bottom-up clustering procedure to balance
the data volume of each cluster. Finally, the model achieves
an effective trade-off between the diversity and similarity. We
conduct extensive experiments on the large-scale image and
video re-ID datasets, including Market-1501, DukeMTMC-
reID, MARS and DukeMTMC-VideoRelD. The experimen-
tal results demonstrate that our algorithm is not only supe-
rior to state-of-the-art unsupervised re-ID approaches, but
also performs favorably than competing transfer learning and
semi-supervised learning methods.

1 Introduction

Person re-identification (re-ID) aims at matching a target
person in a set of query pedestrian images. In recent years,
the widespread adoption of deep convolutional neural net-
works (CNN) has led to impressive progress in the field of
re-ID (Yi et al. 2014; Li et al. 2014; Varior, Haloi, and Wang
2016). However, supervised re-ID methods require inten-
sive manual labeling. It is expensive and not applicable to
the real-world applications. The limited generalization abil-
ity motivates the research into unsupervised approaches for
person re-ID.

Traditional unsupervised methods focus on hand-crafted
features (Farenzena et al. 2010; Liao et al. 2015; Lisanti
et al. 2015), salience analysis (Zhao, Ouyang, and Wang
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Figure 1: The bottom-up clustering method. Each circle de-
notes an individual image for training. /N denotes the num-
ber of training samples, while C' denotes the number of clus-
ters after clustering. After the current stage of network train-
ing, we apply clustering based on the previous clustering re-
sult and the feature similarity of the current stage. By clus-
tering from bottom to up, individual pedestrian samples are
gathered to represent an identity.

2013; Wang, Gong, and Xiang 2014) and dictionary learn-
ing (Kodirov, Xiang, and Gong 2015). These methods pro-
duce much lower performance than supervised methods and
are not applicable to large-scale real-world data. In recent
years, some transfer learning methods (Hehe et al. 2018;
Peng et al. 2016; Deng et al. 2018) are proposed upon
the success of deep learning (Dong et al. 2018a; Li, Tang,
and Mei 2018). These methods usually learn an identity-
discriminative feature embedding on the source dataset, and
transfer the learned features to the unseen target domain.
However, these methods require a large amount of annotated
source data, which cannot be regarded as pure unsupervised
approaches.

Previous deep learning based “unsupervised” person re-
ID approaches leverage the prior knowledge learned from
other re-ID datasets. However, we aim to solve the problem



in a more challenge and practical setting, i.e., without any
re-ID annotation. To learn discriminate features in this dif-
ficult condition, we propose a novel Bottom-Up Clustering
method (BUC) for unsupervised re-ID that maximizes the
diversity over the identities while maintaining the similarity
within each identity. As illustrated in Fig. 1, during the train-
ing process, the individual samples are gathered into clus-
ters, and the clusters will merge gradually. Specifically, our
framework BUC applies network training and the bottom-up
clustering in an iterative way. We propose the repelled loss
that can optimize the network without actually having any
label and obtain decent initial accuracy. At the beginning of
network training, we view individual images as exemplars,
i.e., each image belongs to a distinct cluster. We then grad-
ually incorporate similarity within identities by a bottom-up
clustering, which is to merge similar images (clusters) into
one cluster. Moreover, in practice, different identities should
have a similar probability to be captured by cameras, and
thus the image number for different clusters should be bal-
anced. To enforce this property, we incorporate a diversity
regularization term in the merging procedure. Finally, dur-
ing the bottom to up clustering procedure, our framework
exploits the similarity and the diversity to learn discrimina-
tive features.
Our contributions can be summarized in four-fold:

We propose a bottom-up clustering framework to solve
the unsupervised re-ID problem. By exploiting the intrin-
sic diversity among identities and similarity within each
identity, our framework can learn robust and discrimina-
tive features.

We adopt the repelled loss to optimize the model with-
out labels. The repelled loss directly optimizes the cosine
distance among each individual sample / cluster. It can
facilitate the model to exploit the similarity within each
cluster and maximize the diversity among each identity.

We propose a diversity regularization term to enable the
balanced image number in each cluster. It makes the clus-
tering results align with the real world distribution.

The experimental results demonstrate that our approach
is superior to the state-of-the-art methods on both image-
based and video-based re-ID datasets. We achieves top-1
accuracy of 66.2% on Market-1501 (Zheng et al. 2015)
and 61.1% on MARS (Zheng et al. 2016). Moreover, the
one-shot re-ID methods utilize more annotation than ours,
whereas our approach also obtains a higher performance
than them.

2 Related Work

Most re-ID methods are in a supervised manner, in which
sufficient labeled person pairs across cameras are given.
They mainly focus on designing feature representations
(Zhao, Ouyang, and Wang 2014) or learning robust distance
metrics (Zheng, Gong, and Xiang 2011; Liao et al. 2015).
Recently, deep learning methods achieve great success (Li et
al. 2014; Varior, Haloi, and Wang 2016; Zheng et al. 2015;
Zheng, Zheng, and Yang 2017) by simultaneously learning
the image representations and similarities. In this paper, we
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focus on the unsupervised setting and do not discuss more
supervised methods here.

2.1 Unsupervised Person Re-identification

The existing fully unsupervised methods usually fall into
three categories, designing hand-craft features (Farenzena et
al. 2010; Liao et al. 2015; Lisanti et al. 2015), exploiting lo-
calized salience statistics (Zhao, Ouyang, and Wang 2013;
Wang, Gong, and Xiang 2014) or dictionary learning based
methods (Kodirov, Xiang, and Gong 2015; Yan et al. 2018).
However, it is a challenging task to design suitable features
for images captured by different cameras, under different il-
lumination and view condition. These methods are unable
to explicitly exploit the cross-view discriminative informa-
tion without pairwise identity labels. Thus the performance
of these methods is much weaker than supervised methods.
Recently, Xiao et al. (Xiao et al. 2017) propose the OIM loss
for semi-supervised person search. It can also be used for un-
supervised re-ID. Compared to OIM, our BUC has three ad-
vantages. (1) We constrain the feature to distribute on a unit
sphere to improve its robustness. (2) We design the cluster
merging to exploit the similarity among identities. (3) We
propose a diversity regularization term to avoid the model
collapse.

Another category of the unsupervised method makes use
of additional information (Dong et al. 2018b; Peng et al.
2016; Deng et al. 2018; Li and Tang 2015). Recently, cross-
domain transfer learning is used in the unsupervised re-ID
task (Hehe et al. 2018; Wang et al. 2018), where information
from an external source dataset is utilized. Fan et al. (Hehe
et al. 2018) propose a progressive method, where the K-
means clustering and the IDE (Zheng et al. 2015) network
pre-trained on the source dataset are updated iteratively.
Wang et al. (Wang et al. 2018) propose to learn an attribute-
semantic and identity discriminative representation from the
source dataset, which is transferable to the target domain.
There are also some recent works (Liu, Wang, and Lu 2017;
Ye et al. 2017; Ye, Lan, and Yuen 2018) focusing on the un-
supervised video-based re-ID. However, these methods re-
quire some very useful annotations of the dataset, i.e., the to-
tal number of identities and their appearance. To conduct ex-
periments, they annotate each identity with a labeled video
tracklet, which only reduces part of the annotation workload.
As discussed in (Wu et al. 2018a), these approaches are ac-
tually the one-example methods. Different from these meth-
ods, our work focuses on the fully unsupervised setting in
which there is no annotation on the dataset.

2.2 Unsupervised Feature Learning

Unsupervised feature learning is widely studied in many
tasks, such as image recognition, image classification, and
image retrieval (Tang and Liu 2016). Some works use
hand-crafted features combined with conventional cluster-
ing methods (Han and Kim 2015; Hariharan, Malik, and Ra-
manan 2012; Singh, Gupta, and Efros 2012). However, the
hand-designed features are not as effective as deeply learned
features. A number of works (Dosovitskiy et al. 2014;
Bautista et al. 2016) sample patches from images and gener-
ate labels for the patches as supervision. In (Dosovitskiy et
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Figure 2: (a). The proposed framework takes unlabeled images as input to train the network and extract the image features for
clustering. The framework do three steps alternatively, i.e., extracts the CNN feature for each image, merges clusters over the
whole training set, and re-train the CNN model. Fig. (b)-(d) depict the cluster merging procedure. In this example, each step we
merge two cluster pairs with minimum dissimilarity. The solid points with the same color represent images in the same cluster.
The colored line indicates the connected two clusters have been merged into one. In (b), the learned features discriminatively
span a unit sphere, which the diversity is maximized. In (c), after merging the clusters, feature embeddings of the same cluster
get closer in the sphere. In (d), the upper sphere shows the cluster merging result without diversity regularization: (Point 1,
Point 3) and (Point 4, Point 8) have the shortest distances, and are then merged into one cluster. The lower sphere shows the
cluster merging result with diversity regularization: though the distance between the yellow and green clusters is the shortest,
these two clusters are too large and should not be merged. The Point 6 and Point 7 are merged instead.

al. 2014), exemplar-CNN is proposed to discriminate among y; < k and k is the number of identities. A classifier

a set of surrogate classes, where the surrogate classes are flw; ¢(0;2;)) € RF parameterized by w is used to pre-

formed by applying a variety of transformations to randomly dict the identity of the image x;. The classifier parameter w

sampled image patches. and the embedding parameter # are jointly optimized by the
Wu et al. (Wu et al. 2018b) propose a non-parametric soft- following objective function:

max classifier and use noise-contrastive estimation to tackle

the computational challenges. Different from these works, . N
our BUC not only considers the diversity over each sample O U(f (w; ¢(6;.24)), i), (D

but also exploits the similarity within each class. Compar- =1
ing with these unsupervised feature learning methods on the where ¢ is the softmax cross entropy loss. However, y; is
classification task, our BUC obtains superior performance. not available in the unsupervised setting, and it is challeng-
ing to find another objective function that can learn a robust

3 Methodology embedding function ¢.

3.1 Preliminary

Given a training set X = {z1, xo, ...,z } of N images, our 3.2 The Bottom-up Clustering Framework

goa] is to learn a feature embedding function ¢(9’ xi) from Without the manual annotation, it is important to dCSigH a
X without any manual annotation, where parameters of ¢ supervision Signal that can be used to train CNN models. To
are collectively denoted as . This feature embedding func- achieve this goal, we aim to exploit the similarity and di-
tion can be applied to the testing set, X! = {z}, z%, xgvt} versity properties from the training data as the supervision

information. As shown in Fig. 2 (a), the framework mainly
contains two components: (i) A network trained with a re-
pelled loss to let the cluster centers repelled by each other.
(ii) A clustering procedure in the feature embeddings space
to merge existing clusters. The clustering and network up-
dating is done iteratively.

of N; images, and the query set X? = {z{, 21, ...:c‘}vq} of
N, images. During the evaluation, we use the feature of a
query image ¢(0;x!) to search the similar image features
from the testing set. The query result is a ranking list of
all testing images according to the Euclidean distance be-
tween the feature embedding of the query and testing data,

ie,d(x}, xf) = ||p(0;x]) — $(0; x})||. The feature embed- Network with Repelled Loss. Since we do not have

dings are supposed to assign a higher rank to similar images ground truth labels, we assign each image to a different clus-

and keep the images of a different person a low rank. ter initially, ie., {§; =i |1 <i < N },1 In this way, the
To learn the feature embedding, traditional methods usu- network learns to recognize each training sample instead of

ally learn the parameters with manual annotations. That is, -

each image z; is associated with a label y;, where 1 < '9; is the cluster index for x; and is dynamically changed.
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the identities, and the diversity over each training sample is
maximized. We then gradually incorporate similarity within
identities by grouping similar images into clusters. The clus-
ter ID is used as the training label, and the network is trained
to minimize total intra-cluster variance and maximize the
inter-cluster variance.

We define the probability that image x belongs to the c-th
cluster as,

exp(V. v /7)
> eap(Viv/7)’
¢(0;z)

6@ V € R%"s ig a lookup table that

stores the feature of each cluster, V; is the j-th colum of V,
and C' is the number of clusters at the current stage. At the
first training stage, C = | X | = N. At the following stages,
our approach will merge similar images into one class, and
C will gradually decrease. 7 is a temperature parameter
(Hinton, Vinyals, and Dean 2014) that controls the softness
of probability distribution over classes. Following (Xiao et
al. 2017), we set 7 = 0.1 in this paper. In the forward opera-
tion, we compute cosine similarities between data x; and all
the other data by V7' . v;. During backward, we update the
g;~th column of the table V' by Vj, + 1(V;, + v;). Finally,
we minimize the repelled loss, which is formulated as,

L = —log(p(¥i|i, V). (€)

During the optimization, V;; will contain the information
of all images within the j-th cluster. It can be considered as
a kind of “centroid” of this cluster. We do not directly cal-
culate the centroid feature in each training stage due to the
high time complexity. The lookup table V' can avoid exhaus-
tive computation of extracting features from all data at each
training step. The proposed objective has two advantages.
First, it can maximize the cosine distance between each im-
age feature v; and each centroid features V;4,. Second, it
can minimize the cosine distance between each image fea-
ture v; and the corresponding centroid feature V;_,. With
these two advantages, our approach can trade off the simi-
larity and diversity over the whole training set.

p(clz, V) = @)

where v =

Cluster Merging. After the first training stage, the train-
ing samples are prone to be away from each other in the
learned feature space. However, images of the same iden-
tity are usually visually similar and should be close, which
we call similarity. To exploit the similarity, we apply the hi-
erarchical clustering on the CNN features to merge the im-
ages from bottom to up. In the start, each image is treated
as a cluster. Then pairs of clusters are merged into one by
measuring their similarity. In order to decide which clusters
should be merged, we consider the minimum distance cri-
terion to calculate the dissimilarity value D (A, B) between
cluster A and cluster B.

The minimum distance criterion takes the shortest dis-
tance between images in two clusters as dissimilarity. This
criterion only considers the shortest distance: if two im-
ages in the cluster look really alike, the clusters tend to be
merged, no matter how dissimilar other images look. The ad-
vantage is that images of the same identity under the same
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Algorithm 1 The Bottom-Up Clustering (BUC) Framework

Require: Unlabeled data X = {x,x,..2x};
Merge percent mp € (0,1);
CNN model ¢(+; 6).
Ensure: Best CNN model ¢(-; 8*).
1: Initialize: Cluster label Y = {g;| 1 <i < N}

2: Number of cluster C = N
3: Number of merging image m = [mp x C'|
4: while C > m do

5: Train CNN model ¢(z;0) with X and YV’

6:  Clustering with m:

7: C+—C—-m

8 Update Y with the new cluster labels

9: Initialize the lookup table V' with new dimensions

10:  Re-train the CNN model with parameters 6

11:  Evaluate on the validation set — performance P
12:  if P > P* then

13: pP* =P

14: Best model = ¢(x; 0)

15:  endif

16: end while

camera are visually alike and tend to be merged into one
cluster under this criterion, which guarantees the accuracy
of merged images. It is formulated as:

Ddistance (A7 B) =

min
. €A, 2, EB

d(zq,Tp), “)
where d(x,,xp) is defined as the Euclidean distance be-
tween the feature embeddings of two images, i.e., v, and
vy Specifically, d(zq, xp) = ||[va — vb|-

As shown in Fig. 2 (b)-(d), at each merging step, we aim
to reduce m clusters. We define m = N X mp, where
mp € (0,1) denotes the speed of cluster merging. Each
time, the clusters with the shortest distance are merged. The
number of clusters is initialed as C' = N, i.e., the number of
training samples. After ¢ times of cluster merging, the num-
ber of clusters is dynamically decreased to C' = N —t X m.

There are other criteria methods to measure the dissimi-
larity. (1) The maximum distance criterion takes the max-
imum distance between elements of each cluster as the dis-
similarity. However, images of the same identity under dif-
ferent cameras may have totally different visual appearance.
This strategy fails to merge images from different cameras.
(2) The centroid distance criterion takes the distance be-
tween mean features of elements in each cluster as the dis-
similarity. In the re-ID task, images come from different
cameras, which have different illumination, pose, and view-
point. The mean operation omits the diversity among images
within one cluster, therefore, it overlooks the useful camera
information. In experiments, we demonstrate the minimum
criterion is the best, and will discuss later in Section 4.4.

Dynamic Network Updating. The framework iteratively
trains the network and merges the learned image features
clusters. The clustering results are then fed to the network
for further updating. The whole updating process is de-
scribed in Algorithm 1. The number of clusters is initialized



Table 1: Comparison with the state-of-the-art methods on two image-based large-scale re-ID datasets, i.e., the Market-1501
dataset and the DukeMTMC-relD dataset. The column “Labels” lists the labels utilized by the method. “Transfer” denotes
the information from another re-ID dataset with full annotations. “OneEx” denotes the one-example annotation, in which each
person in the dataset is annotated with one labeled example. * denotes that the results are reproduced by us.

Market-1501 DukeMTMC-relD

Methods Venue Labels rank-1 rank-5 rank-10 mAP | rank-1 rank-5 rank-10 mAP
BOW (Zheng et al. 2015) ICCV15 None 35.8 52.4 60.3 14.8 17.1 28.8 349 8.3

OIM* (Xiao et al. 2017) CVPRI18 None 38.0 58.0 66.3 14.0 24.5 38.8 46.0 11.3
UMDL (Peng et al. 2016) CVPR16 Transfer 34.5 52.6 59.6 12.4 18.5 314 37.6 7.3

PUL (Hehe et al. 2018) TOMMI18 | Transfer 44.7 59.1 65.6 20.1 30.4 46.4 50.7 16.4
EUG™* (Wu et al. 2018a) CVPR18 OneEx 49.8 66.4 72.7 22.5 45.2 59.2 634 24.5
SPGAN (Deng et al. 2018) CVPRI18 Transfer 58.1 76.0 82.7 26.7 46.9 62.6 68.5 26.4
TJ-AIDL (Wang et al. 2018) CVPR18 Transfer 58.2 - - 26.5 443 - - 23.0
BUC without diversity regularizer | AAAII9 None 62.9 77.1 82.7 33.8 41.3 55.8 62.5 22.5
BUC AAAII9 None 66.2 79.6 84.5 38.3 47.4 62.6 68.4 27.5

as the number of training images. After each cluster merg-
ing, the labels of the training images are re-assigned as the
new cluster ID. The memory layer of the optimizer is ran-
domly re-initialized to avoid getting stuck in local optima.
We constantly train the network until we observe a perfor-
mance drop on the validation set.

3.3 Diversity Regularization

With the clusters being merged, the number of classes is de-
creasing, and the number of images in the clusters is increas-
ing. Although we do not know the exact number of images
in each identity, we can assume that the images are evenly
distributed to the identities, and different identities should be
scattered in different clusters, which we call diversity. This
implies that one cluster should not contain much more im-
ages compared to other clusters. To avoid one cluster being
redundant and boost the small clusters to merge together, we
incorporate a diversity regularization term into the distance
criterion.

Ddiversity(A7B) = |A| + |B|7 (5)

where |A| denotes the number of samples belonging to the
cluster A. Then, the final dissimilarity is calculated as:

D(A, B) = Ddistance(A7 B) + )\Ddiversity (A, B), (6)

where A is a parameter that balances the impact of distance
and regularization. The reason for adding a diversity regular-
ization term is that, there exist some visually similar identi-
ties wearing almost the same clothes. Without the regulariza-
tion term, the algorithm might merge these similar but dif-
ferent identities into one tremendous cluster by mistake. We
tend to merge small clusters, unless the distance d(z,, =) is
small enough. This procedure is illustrated in Fig. 2 (d).

4 Experimental Results
4.1 Datasets

Market-1501 (Zheng et al. 2015) is a large-scale dataset for
person re-ID captured by 6 cameras in a university campus.
It contains 12,936 images of 751 identities for training and
19,732 images of 750 identities for testing.
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DukeMTMC-relD (Zheng, Zheng, and Yang 2015) is
a large-scale re-ID dataset derived from the DukeMTMC
dataset (Ristani et al. 2016). It contains 16,522 images of
702 identities for training, 2,228 images of the other 702
identities for query, and 17,661 gallery images.

MARS (Zheng et al. 2016) is a large-scale video-based
dataset for person re-ID captured by six cameras in a uni-
versity campus. The dataset contains 17,503 video tracklets
of 1,261 identities, where 625 identities are used for training
and 636 identities are used for testing.

DukeMTMC-VideoReID (Wu et al. 2018a) is a large-scale
video-based re-ID dataset derived from the DukeMTMC
dataset (Ristani et al. 2016). It contains 2,196 tracklets of
702 identities for training, 2,636 tracklets of other 702 iden-
tities for testing.

4.2 Experimental Settings

Evaluation Protocols. For the image-based re-ID datasets
Market-1501 and DukeMTMC-relD, we take all the train-
ing image without ID labels to train the framework. For the
video-based datasets MARS and DukeMTMC-VideoRelD,
each training tracklet is regarded as an individual sample in
the model training. Note, our method does not utilize any
annotation information (e.g. ID labels or other annotated
datasets) for model initialization or training.

Evaluation Metrics. For person re-1D, we use the Cumula-
tive Matching Characteristic (CMC) curve and the mean av-
erage precision (mAP) to evaluate the performance of each
method. For each query, its average precision (AP) is com-
puted from its precision-recall curve. The mAP is calculated
as the mean value of average precision across all queries. We
report the Rank-1, Rank-5, Rank-10 scores to represent the
CMC curve. These CMC scores reflect the retrieval preci-
sion, while mAP reflects the recall.

Implementation Details. We adopt ResNet-50 as the CNN
backbone to conduct all the experiments. We initialize it by
the ImageNet (Krizhevsky, Sutskever, and Hinton 2012) pre-
trained model with the last classification layer removed. For
all the experiments if not specified, we set the number of
training epochs in the first stage to be 20, the batch size
to be 16, the dropout rate to be 0.5, mp to be 0.05 and A
in Eq. (6) to be 0.005. We use stochastic gradient descent



Table 2: Comparison with the state-of-the-art methods on two video-based re-ID datasets, MARS and DukeMTMC-VideoRelD.
The column “Labels” lists the labels utilized by the method. “OneEx” denotes the one-example annotation, in which each person
in the dataset is annotated with one labeled example. * denotes that the results are reproduced by us.

MARS DukeMTMC-VideoRelD
Methods Venue Labels rank-1  rank-5 rank-10 mAP | rank-1 rank-5 rank-10 mAP
OIM* (Xiao et al. 2017) CVPR18 | None 33.7 48.1 54.8 13.5 51.1 70.5 76.2 43.8
DGM+IDE (Ye et al. 2017) ICCV17 OneEx 36.8 54.0 - 16.8 423 57.9 69.3 33.6
Stepwise (Liu, Wang, and Lu 2017) | ICCV17 OneEx 41.2 55.5 - 19.6 56.2 70.3 79.2 46.7
RACE (Ye, Lan, and Yuen 2018) ECCV18 OneEx 432 57.1 62.1 24.5 - - - -
DAL (Chen, Zhu, and Gong 2018) BMVC18 | Camera | 49.3 65.9 72.2 23.0 - - - -
EUG (Wu et al. 2018a) CVPR18 | OneEx 62.6 74.9 - 42.4 72.7 84.1 - 63.2
BUC without diversity regularizer AAAII9 None 55.5 71.3 76.1 31.9 60.7 76.8 80.6 50.8
BUC AAAII9 None 61.1 75.1 80.0 38.0 69.2 81.1 85.8 61.9
with a momentum of 0.9 to optimize the model. The learn- e~ Rank-1 (%) —+~mAP (%) = Number of clusters
ing rate is initialized to 0.1 and changed to 0.01 after 15 66 70 16000
epochs. For video-based datasets, we take the average fea- 64 60 ﬂ,,w""
ture of all frames within a tracklet to be the tracklet feature g g 50 12000 5
for cluster merging and final evaluation. On Market-1501 T 62 3 gg ./ 8000 E
and DukeMTMC-relD, it takes about 4 hours to finish the § o S 5 ,.,/"‘XM‘ 1000 z
training procedure with a GTX 1080TI GPU. On Mars and 10
DukeMTMC-VideoRelD, it takes about 5 hours. 58 0 0
0.001 0.01 01 0246810121416
A Number of merging time

4.3 Comparison with the State of the Art

Image-based Person Re-identification. The comparisons
with the state-of-the-art algorithms on image-based datasets
are shown in Table 1. Note that the performances in (Peng et
al. 2016) are reproduced by (Hehe et al. 2018) and we bor-
row the numbers to our table. On Market-1501, we obtain
the best performance among the compared methods with
rank-1 = 66.2%, mAP = 38.3%. Compared to the state-
of-the-art method OIM (Xiao et al. 2017) in the fully un-
supervised setting, we achieve 28.2 points (absolute) and
24.3 points improvement in rank-1 accuracy and mAP, re-
spectively. Similarly, our method achieves 22.9 points (ab-
solute) and 16.2 points improvement in rank-1 and mAP on
DukeMTMC-relID. The significant improvement is mainly
due to the further cluster merging that exploits similarity
from the instances for supervision.

We also compare our method to the state-of-the-art trans-
fer learning methods in Table 1. Although these methods
utilize external images and human annotations, our method
with zero annotation still surpasses them by a large margin.
On Market-1501, our method outperforms the state-of-the-
art transfer learning method (Wang et al. 2018) by 8.0 points
and 11.8 points in rank-1 accuracy and mAP, respectively.

Video-based Person Re-identification. Table 2 shows the
comparisons with the state-of-the-art algorithms on video-
based datasets. On MARS, we obtain rank-1 = 61.1%,
mAP =38.0%. We beat the fully-unsupervised method OIM
(Xiao et al. 2017) by a large margins with 27.4 points in
rank-1 accuracy and 24.5 points for mAP. On DukeMTMC-
VideoRelD, our results achieve 18.1 points and 18.1 points
improvement on rank-1 accuracy and mAP, respectively.

In Table 2, we also compare our method to the state-of-
the-art methods (Liu, Wang, and Lu 2017; Ye et al. 2017;
Ye, Lan, and Yuen 2018) in the video-based one-example

(@) (b)

Figure 3: (a) Performance curve with different values of the
diversity regularization parameter A on Market-1501. (b)
The rank-1 accuracy, mAP, and the number of clusters on
Market-1501 after each cluster merging step.

setting. These methods initialize their models by annotat-
ing each person with a labeled video tracklet. As discussed
in (Wu et al. 2018a), these approaches are the one-example
methods, hence, are not actually unsupervised. Their meth-
ods rely on some very useful annotations on the dataset, i.e.,
how many identities exist in the dataset and what they look
like (from a tracklet for each person). Without any anno-
tation, our method still beats most of these methods with
one-example annotation, which indicates that our method is
more effective in exploiting the unlabeled data.

4.4 Ablation Studies

The Impact of Diversity Regularization. The perfor-
mance of with and without the diversity regularization item
is shown in Table 1 and Table 2, respectively. The diver-
sity regularization provides a large performance improve-
ment on all the four datasets. Specifically, on Market-1501
and DukeMTMC-relD, the diversity regularization item im-
proves the rank-1 accuracy by 3.3 points and 6.1 points, re-
spectively. We suspect that without the diversity regulariza-
tion, two similar identities may be easily merged into one
cluster by mistake. With the diversity regularization term,
we tend to merge small clusters first.

The diversity regularization parameter A\ in Eq. (6) bal-
ances the cluster size and cluster distance. We evaluate dif-



Table 3: The comparison of different merging criteria on
Market-1501.

Criterion [ rank-1 rank-5 rank-10 rank-20 mAP
Maximum 62.5 76.8 82.6 87.1 35.0
Centroid 65.8 79.2 83.6 88.4 37.9
Minimum 66.2 79.6 84.5 88.5 38.3

ferent values for the parameter A in Fig. 3 (a). As )\ increases
from 0 to 0.005, the rank-1 accuracy on Market-1501 in-
creases from 62.9% to 66.2%. If we set A to be greater than
0.05, the too large diversity regularization term would begin
to introduce a negative effect.

The Impact of Cluster Merging Criterion. As shown
in Table 3, the results of three cluster merging criteria are
listed. We get the best result with the rank-1 = 66.2% when
using the minimum distance criterion. When using the cen-
troid distance criterion, we observe a slightly lower perfor-
mance with the rank-1 = 65.8%. When using the maximum
distance criterion, we observe a rank-1 accuracy of 62.5%.
We assume that images of the same identity from different
cameras suffer from large visual appearance difference. Us-
ing this criterion may fail to merge clusters including images
captured from different cameras.

4.5 Algorithm Analysis

Analysis over Cluster Merging. We show the perfor-
mance of re-ID and the number of remaining clusters on
Market-1501 in Fig. 3 (b). As the number of the remain-
ing clusters gradually decreases, the rank-1 accuracy and the
mAP accuracy are both increasing. After 16 times of merg-
ing, the rank-1 accuracy increases from 33.2% to 66.2%,
and the mAP accuracy increases from 12.3% to 38.3%. The
number of clusters is decreased from 12,936 to 2,023, while
the ground truth number of identities is 751. We observe that
both the improvement of the performance and the reduction
of the clusters are continuous and gradual. It indicates that
our method gradually learns from the diversified images to
generate a more discriminative feature representation.

Qualitative Analysis. To further understand the discrim-
inative ability of our unsupervised learned feature, we uti-
lize t-SNE (Maaten and Hinton 2008) to visualize the fea-
ture embeddings of the merged clusters by plotting them to
the 2-dimension map. As illustrated in Fig. 4, the images of
the same identity usually gather together, which represents
the learned similarity within identities. Besides, most iden-
tities are distinguishable from each other, which represents
the diversity among the identities. More qualitative results
over iterations can be found in the supplementary material.

4.6 Compare to Unsupervised Feature Learning

To compare with the unsupervised feature learning meth-
ods, we also conduct image classification experiments on
CIFAR-10 (Krizhevsky and Hinton 2009) to make a fair
comparision with them. CIFAR-10 contains 60,000 images
of 10 different classes. Following (Wu et al. 2018b), we take
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Figure 4: T-SNE visualization of the learned feature embed-
dings on a part of the Market-1501 training set (100 identi-
ties, 1,700 images). Points of the same color represent im-
ages of the same identity. We show the detailed images of
a positive example (the green circle) and a negative exam-
ple (the red circle). The points in the green circle are of the
same identity. In the red circle, the green and yellow points
gathered together, indicating that our algorithm merges them
into one cluster by mistake. However, the samples looks very
similar and are hard to be discriminated between each other.

Table 4: The top-1 accuracy on CIFAR-10.

Methods [ top-1
S-CNN (Ghaderi and Athitsos 2016) 72.7
NID (Wu et al. 2018b) 80.8
Roto-Scat + SVM (Singh and Kingsbury 2017) | 82.3
DCGAN (Radford, Metz, and Chintala 2016) 82.8
Ours 85.2

ResNet18 as the backbone model and extract the last pooling
layer’s features. The nearest neighbor classifier is adopted to
assess the learned feature, which reflects the quality of the
representation. As shown in Table 4, we achieve 85.2% top-1
accuracy on CIFAR-10, showing a 4.4% accuracy gain over
(Wu et al. 2018b). This improvement proves the superiority
of the cluster merging and network updating strategies.

5 Conclusions

In this paper, we propose a bottom-up clustering approach
(BUC) to tackle the unsupervised re-ID task. It jointly op-
timizes a CNN model and the relationship among the indi-
vidual samples. Specifically, the network training starts by
treating each individual image as an identity. Then, bottom-
up clustering is applied to the feature embedding extracted
from the network to reduce the number of classes. During
the whole process, the network gradually exploits similar-
ity from diverse unlabeled images. In experiments, BUC
achieves higher performance than the state-of-the-art meth-
ods in both image-based and video-based re-ID datasets.
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