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Abstract
Reinforcement learning (RL) has shown its advantages in
image captioning by optimizing the non-differentiable met-
ric directly in the reward learning process. However, due to
the reward hacking problem in RL, maximizing reward may
not lead to better quality of the caption, especially from the
aspects of propositional content and distinctiveness. In this
work, we propose to use a new learning method, meta learn-
ing, to utilize supervision from the ground truth whilst opti-
mizing the reward function in RL. To improve the proposi-
tional content and the distinctiveness of the generated cap-
tions, the proposed model provides the global optimal solu-
tion by taking different gradient steps towards the supervision
task and the reinforcement task, simultaneously. Experimen-
tal results on MS COCO validate the effectiveness of our ap-
proach when compared with the state-of-the-art methods.

Introduction
Image captioning, which aims to automatically generate de-
scriptions of a given image, is a prominent research problem
in computer vision (Farhadi et al. 2010; Fang et al. 2015;
Vinyals et al. 2015). It’s a challenging task because it re-
quires advanced techniques of object recognition and natu-
ral language processing, in order to translate an image into
human-like description accurately.

Based on a CNN-LSTM structure (Vinyals et al. 2015;
Mao et al. 2015; Karpathy and Fei-Fei 2015), significant
progress has been made in recent years, especially by using
reinforcement learning (RL) (Sutton and Barto 1998). Rein-
forcement learning has been exploited as a training method
to deal with the out-of-context problem (Choi, Torralba, and
Willsky 2008). For implicit optimization towards the evalu-
aition metric, (Rennie et al. 2017) train the model directly on
non-differentiable metrics by using test-time reward as the
baseline in the target function. For better estimation of the
reward function, (Liu et al. 2017) use a linear combination of
different evaluation metrics and expoit Monte Carlo rollouts
instead of mixing Maximum Likelihood Estimation (MLE)
training with policy gradient (Ranzato et al. 2016). (Ren et
al. 2017) present a policy network and a value network us-
ing an actor-critic reinforcement learning model, where the
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RL: a little girl holding a cat in
a of a. (1.48)
GT: girl with a yellow shirt
holding a small cat. (1.39)
occupy

RL: a red fire hydrant in the
snow with a. (2.57)
GT: a fire hydrant and sign
covered in snow. (2.10)
occupy

RL: a street sign on a pole with
a in the. (1.21)
GT: a no bicycles, skates or
skateboards sign on a pole.
(0.94)

RL: a bathroom with a toilet
and a sink and a. (1.80)
GT: a modern looking bath-
room has a toilet and a sink.
(1.05)

Figure 1: Comparison of some ground truth captions (i.e.,
GT) and the RL generated captions using CIDEr optimiza-
tion (i.e., RL). Digit next to the caption is its corresponding
CIDEr score, where RL generated captions achieve signifi-
cantly high CIDEr score but not necessarily better quality.

reward is learned instead of pre-defined using the evaluation
metrics .

Although RL has been proven to achieve significant per-
formance improvements on the evaluation metrics (Rennie
et al. 2017; Anderson et al. 2018; Yao et al. 2017), the
model may overfit to the reward function,which causes re-
ward hacking (Irpan 2018). Specifically, given a reward as
the objective function, RL can maximize the reward but the
increasing reward may not come from the intended solu-
tion. Since the reward function may not accurately represent
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a caption’s quality, some incorrect expressions may have
higher reward than the correct ones. As shown in Figure 1,
captions generated by RL have significantly higher CIDEr
scores even than the ground truth, but not with necessarily
better quality, especially with regard to propositional con-
tent and distinctiveness. We will elaborate on this issue in
the next section.

In this paper, we propose to use a new learning method,
meta learning (Finn, Abbeel, and Levine 2017), to ensure
the propositional correctness and distinctiveness of the gen-
erated captions whilst optimizing the evaluation metrics.
Specifically, a meta model is built to maximize the proba-
bility of the ground truth caption (i.e., supervision task) as
well as maximize the reward of the generated caption (i.e.,
reinforcement task). In our approach, different gradient steps
are taken to learn these two tasks, simultaneously, which en-
ables the meta model to adapt to the global optimal solu-
tion of each task. The optimization of the reward function
is thus guided to avoid reward hacking to some extent, and
thus ensures the propositional content and distinctiveness of
the generated captions.

It’s worth mentioning that our method is generic and can
be built upon any CNN-LSTM based captioning model. In
our experiments, we adopt state-of-the-art captioning model
in (Anderson et al. 2018) as a high-performing baseline. Ad-
ditionally, the idea of using meta learning to utilize supervi-
sion in RL is also applicable to other RL related tasks (Ra-
makanth and Mohit 2017; Hongyu 2015).

Background
A large source of problem in RL stems from the difficulty
in designing a proper reward function (Irpan 2018). In im-
age captioning, caption with good quality should be correct
in both content and grammar, furthermore, should be dis-
tinctive (Dai 2017). However, the evaluation metrics sim-
ply compute the generated caption’s n-gram overlapping or
object-relation overlapping with the ground truth, which can
not ensure the propositional content and uniqueness of the
generated caption. Optimizing the evaluation metrics alone
can make the model overfit to achieve high score.

In fact, after empirical studies, we find RL generated cap-
tions using CIDEr optimization (Rennie et al. 2017) have ab-
normal patterns: some sentences tend to end with “prep.+a”,
as shown in Figure 2. This is caused by the design of the
evaluation metric: CIDEr gives punishment to sentence that
is too short and puts less weight on phrase that is too com-
mon. When the model generates short caption, RL enforces
it to add less-weighted but commonly-used phrases to avoid
punishment whilst hitting correct pairs. Therefore, the model
may achieve high evaluation score, but produce captions
with poor quality.

Such problem is called reward hacking in RL (Irpan
2018), meaning that out-of-the-box solution (i.e., weired
sentence endings) gives more reward than the intended an-
swer (i.e., normal sentence endings). Attempts have been
made to alleviate the reward hacking problem in CIDEr op-
timization, by importing other evaluation metric as an ad-
ditional reward term, especially SPICE (Liu et al. 2017).
SPICE (Anderson et al. 2016) focuses on semantic propo-
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Figure 2: Examples of some abnormal sentence endings of
RL generated captions on MS COCO test set using CIDEr
optimization. Percentage means the ratio of sentences with
the corresponding sentence ending.

Table 1: Performance on SPICE and CIDEr using different
reward functions. None means MLE method without opti-
mization of the evaluation metric.

Reward Function SPICE CIDEr
None 20.3 110.2
CIDEr 21.0 120.9

CIDEr+SPICE 21.3 120.4

sitional content and performs evaluation on scene graph.
The abnormal endings are viewed as an unmatched object-
relation pair in scene graph and thus is punished in SPICE.
As shown in Table1, compared with optimizing CIDEr, max-
imizing CIDEr+SPICE has higher SPICE score and lower
CIDEr score, indicating that optimizing SPICE helps im-
proving grammatical and propositional content. However,
SPICE has its own reward hacking problem because it does
not punish repeated tuples in a scene graph. Technically, it’s
hard to design a perfect evaluation metric that considers ev-
ery aspect of the intended goal.

To alleviate the reward hacking problem, supervision
from the ground truth is necessary to guide the reward learn-
ing process such that the model optimizes towards the in-
tended direction. In other words, we aim to improve the
propositional content and distinctiveness of the generated
captions whilst maintaining the evaluation scores.

Related Work
Based on Maximum Likelihood Estimation (MLE), meth-
ods with various model architectures have been proposed
in image captioning. (Xu et al. 2015) use attention to high-
light corresponding image area for each word in the cap-
tion. (Wang et al. 2017) decompose a caption to a skeleton
sentence and its attributes, which are processed in different
streams. In (Lu et al. 2017), a sentinel gate is designed to
change attention adaptively and suppress visual attention for
non-visual words. (Anderson et al. 2018) use an attention
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cell and a language cell to process the visual and linguistic
information separately.

To give a detailed explanation on MLE, given image I and
its caption S = w1, w2, ..., wN , MLE aims to maximize the
probability of S conditioned on I:

p(S|I) =

N∑
t=1

log p(wt|I, w1,...wt−1) (1)

where p(wt|I, w1,...wt−1) is the probability of word wt
given image I and previous words w1,...wt−1.

MLE produces a description word by word in a supervised
manner. However, it can not directly optimize the evaluation
metric, which is non-differentiable. Regarding this issue, RL
based methods are proposed in image captioning (Liu et al.
2017; Rennie et al. 2017; Ren et al. 2017). Given caption S,
RL can optimize any non-differentiable reward function by
maximizing its expected value E[r(S)]:

E[r(S)] = E[

N∑
t=1

r(wt) log p(wt)] (2)

As explained in the second Section, due to the reward
hacking problem, RL generated captions have higher reward
but not necessarily better quality, especially with regard to
propositional correctness and distinctiveness. Prior to this
work, some relevant ideas about this issue have also been
explored. (Dai et al. 2017) construct a discriminator in con-
ditional GAN to evaluate distinctiveness of the caption. The
distinctiveness is learned as a parameterized approximation,
but the approximation accuracy is not ensured in GAN. (Liu
et al. 2017) adjust the coefficients of multiple evaluation
metrics for a more comprehensive reward function, but the
empirically set coefficients can not ensure to be the optimal
solution. In our meta learning based method, aiming to im-
prove the propositional correctness and distinctiveness of the
generated captions whilst maintaining evaluation score, the
evaluation metrics are directly optimized with proper super-
vision from the ground truth captions. And the global opti-
mal solution is provided by taking different gradient steps
towards the supervision task and the reinforcement task.

Approach
Generally, we want the model to directly optimize the evalu-
ation metric and optimize towards the intended goal, which
means supervision towards the goal is necessary in RL.
However, using MLE equipped with RL directly has no ben-
efits on either task because each task is independent and has
different gradient directions. As shown in Figure 3, adding
up their loss (i.e., λ∇L1(θ) +∇L2(θ)) causes the gradient
to move towards a direction in between (the brown arrow),
which can not ensure a optimal solution for either task.

Now we first introduce the basic concept of meta learning.
Meta learning is to learn a meta model that can be trans-
ferred quickly to multiple different tasks and learns the opti-
mal point to adapt to these tasks (Finn, Abbeel, and Levine
2017). Two gradient steps are taken to update parameter θ:
the first step is to adapt parameter θ to different tasks (the
black arrows in Figure 3) and to calculate their loss L1, L2,

Figure 3: Illustration of the proposed meta learning model
and the MLE+RL model. (θ1,∇L1), (θ2,∇L2) are (parame-
ter, gradient) for MLE and RL task, respectively. θ is the pa-
rameter of the meta model. The meta learning model learns
θ that is optimal to adapt to both tasks (marked in green)
after one gradient step, whereas MLE+RL takes a gradient
step in between (marked in brown).

but θ itself is not updated; the second step is to update θ it-
self, which is called “meta update” (the green arrow in Fig-
ure 3). In the following sections, we first introduce detailed
techniques of meta learning, and then explain its formulation
in our model.

Model Agnostic Meta Learning
Model agnostic meta learning trains a model’s parameters
to adapt to multiple tasks within a few gradient steps (Finn,
Abbeel, and Levine 2017). Let θ be the model’s parameter
and Ti be the ith task, θ adapts to Ti after one gradient step:

θ′i = θ − α∇θLTi
(θ) (3)

where θ′i and LTi is the parameter and loss for task Ti, re-
spectively, and α is the step size. The meta-objective is to
minimize lossLTi

using the adapted parameter θ′i for Ti with
respect to θ:

min
θ

∑
i

LTi(θ
′
i) = min

θ

∑
i

LTi(θ − α∇θLTi(θ)) (4)

θ ← θ − β∇θ
∑
i

LTi
(θ′i) (5)

where β is the step size. Generally, the meta parameter θ is
adapted once in Equation (3) and updated once in Equation
(5), with no extra parameters imported. Note that the gradi-
ent descent in Equation (5) is performed over θ, thus back
propagation of a second derivative is required. To reduce the
computational cost, we use a first-order approximation in-
stead (Finn, Abbeel, and Levine 2017).

Meta Learning for Image Captioning
We define two tasks T1, T2 for the captioning model: 1)
maximizing the probability of the ground truth caption
(i.e., MLE), which is a supervision task; 2) maximizing
the reward of the generated caption (i.e., RL), which is
a reinforcement task. By achieving these two tasks, the
learned meta model is sensitive to both loss and is able to
optimize the evaluation metric with supervision from the
ground truth caption. In the following, we use θ to denote
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the parameter of the meta model, and θ′1, θ′2 are the adapted
parameters for the corresponding tasks. wt is the tth word
in sentence S and p(wt) denotes its probability.

Maximizing probability. Instead of using standard MLE
method to maximize p(S|I) as in Equation (1), a baseline
model is imported to reduce variance of a batch and to en-
courage distinctiveness of the generated caption (Dai 2017).
The target and the baseline model are both pretrained us-
ing standard MLE loss, which outputs p(S|I) and pb(S|I),
respectively. Then the baseline model is fixed to give sta-
ble output pb(S|I). p(S|I) is then further maximized with
pb(S|I) as its baseline. We use S+ to represent the paired
caption, and S− to represent the unpaired caption of image
I . Given positive image-caption pairs (S+, I) and negative
pairs (S−, I), p(S+|I) is maximized whilst p(S−|I) is min-
imized with relative to the baseline model:

G((S, I)) = σ(log p(S|I)− log pb(S|I)) (6)

L1 = − log(G(S+, I))− log(1−G(S−, I)) (7)
where σ indicates sigmoid function. Same as (Dai 2017),
negative samples are included in the loss function to encour-
age distinctiveness of the generated captions. Since pb(S|I)
is fixed, the gradient of this task only involves p(S|I):

∇θ′1L1(θ′1) = − 1

∇θ′1G(S+, I)
− 1

1−∇θ′1G(S−, I)
(8)

∇θ′1G(S, I) = ∇θ′1σ(log(pθ′1(S|I))) (9)

Maximizing reward. Following (Rennie et al. 2017), a
baseline reward b is imported to Equation (2) to reduce vari-
ance of the gradient estimate without changing its expected
value, which is calculated by greedy sampling:

E[r(S)] = E[

N∑
t=1

(r(wt)− b) log p(wt)] (10)

Using policy gradient method, the gradient of this task
∇θ′2L2(θ′2) should be:

∇θ′2L2(θ′2) = −∇θ′2E[r(S)]

= −E[

N∑
t=1

(r(wt)− b)∇θ′2 log pθ′2(wt)]
(11)

The reward function r(S) is CIDEr+SPICE in our model,
considering both n-gram overlapping and object-relation
overlapping with the ground truth captions.

Meta learning. The meta learning steps include update to
task-specific parameter (i.e., θ′i) and update of meta param-
eter (i.e., θ), as in Equation (12) and Equation (13), respec-
tively.

θ′i = θ − α∇θLi(θ),i = 1, 2 (12)
θ ← θ − β∇θ(λL1(θ′1) + L2(θ′2)) (13)

where Li(θ) is loss for the ith task with parameter θ,
and α/β is the step size. λ is a constant value between
0 to 1, deciding the ratio of these two tasks in the meta

model. Supervision from the ground truth gets stronger
with larger λ. Note that we sample twice of the caption in
the second task when taking one gradient step of the meta
model: the first sampling for adapting parameter θ to θ′2 in
Equation (12), and the second sampling for meta-updating
θ in Equation (13). Different from θ′1, θ′2 is updated using
supervision from the ground truth instead of sampling.

By adapting the meta model to maximize the probability
of the ground truth caption as well as maximize the reward
of the generated caption in different gradient directions,
its reward learning process is guided by supervision of the
ground truth labels. Thus the generated caption can present
both high evaluation score and good quality.

Captioning model. Since the meta learning method only
modfiies the loss function, it is universal for all sorts of
model architectures for captioning, including the models we
referred to in Related Work. We choose the state-of-the-art
architecture in (Anderson et al. 2018) for high-performing
baseline, which consists of an attention LSTM and a lan-
guage LSTM. Let h1t , h

2
t denote the hidden state of language

LSTM and attention LSTM at time t, respectively, their for-
mulations are given as follows:

h1t = LSTM([xt, v̄, h
2
t−1], h1t−1) (14)

h2t = LSTM([v̂t, h
1
t ], h

2
t−1) (15)

where LSTM(x, ht) is the LSTM function with input x and
hidden state ht. xt be the word embedding of wt. Given im-
age features of N objects v = v1, v2...vN , v̄ is the average-
pooled image feature and v̂t is the attention-driven image
feature, whose attention is calculated using soft attention
(Xu et al. 2015):

αi,t = softmax(WT
a tanh(Wavvi +Wahh

1
t )) (16)

v̂t =
∑
i

αi,tvi (17)

where WT
a , Wav and Wah are learned weights. αi,t is the

attention value of object i at time t. With learned matrixWp,
the model outputs a probability distribution of the next word
wt using softmax function:

p(wt) = softmax(Wph
2
t ) (18)

When maximizing the probability of the ground truth cap-
tion (i.e., MLE), wt is the ground truth word and p(wt) is
maximized. However, when maximizing the reward of the
generated caption (i.e., RL), wt is sampled according to dis-
tribution p(wt) for higher reward, regardless of the ground
truth. By learning both tasks at the same time using meta
learning, the meta model has higher probability to sample
the ground truth caption since it’s ensured in MLE task. With
supervision from the ground truth captions, RL can explore
proper vocabularies in the vicinity of the ground truth, thus
alleviating the reward hacking problem to some extent.

Experiments
To validate the effectiveness of our model, we conduct
experiments on MSCOCO (Lin et al. 2014) dataset with
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Table 2: Examples of the generated captions on MS COCO test split. The first four rows are successful cases whilst the bottom
row is a typical failed one. Number in the bracket is the corresponding evaluation scores (i.e., CIDEr+SPICE).

Image Generated Captions Ground Truth

MLE: a bathroom with a walk in shower and a
glass shower. (0.72)
RL: a bathroom with a toilet and a sink in a. (1.76)
MLE+RL: a bathroom with a toilet and a sink and
a. (1.87)
Ours: a bathroom with a toilet and a sink and a
shower. (2.46)

1. a clean, spacious bathroom with a large shower
stall.
2. there are a toilet, a sink, and a shower stall in a
large bathroom.
3. a bathroom with an enclosed shower next to a
sink and a toilet.
4.bathroom with a shower, sink, and toilet in it.
5.a bathroom featuring a walk in shower, mirror,
sink and toilet

MLE: a horse drawn carriage on a street with a
horse. (1.08)
RL: a horse drawn carriage on a street.(3.25)
MLE+RL: a group of horses standing next to a
building. (1.47)
Ours: two horses pulling a carriage in front of a
building. (1.15)

1. a pair of horses carrying a carriage that is
parked by a street.
2. a horse drawn carriage is in front of an old
large building.
3. people walking pass a horse drawn carriage
sitting at the curb.
4. a horse drawn carriage parked on the street.
5. a horse drawn carriage is parked along the curb.

MLE: a dog is running with a frisbee in the grass.
(1.97)
RL: a dog jumping in the air to catch a frisbee.
(1.85)
MLE+RL: a dog jumping in the air to catch a fris-
bee. (1.85)
Ours: a dog jumping to catch a frisbee in the
grass. (2.27)

1. a dog in the grass catching a frisbee.
2. a tan dog leaping to catch a frisbee.
3. a dog is opening his mouth to catch a frisbee.
4. a yellow dog runs to grab a yellow frisbee in
the grass.
5. a dog is on the grass playing frisbee.

MLE: a dog jumping up catch a frisbee in its
mouth. (2.73)
RL: a dog jumping in the air to catch a frisbee.
(3.29)
MLE+RL: a dog jumping to catch a frisbee in the
air. (2.72)
Ours: a dog jumping in the air with a frisbee in its
mouth. (4.21)

1. a dog leaping in the air to catch a frisbee.
2. a dog jumping high in the air catching a frisbee
in its mouth.
3. a brown dog jumping in the air and catching a
frisbee.
4. a dog jumping high in the air with a frisbee in
its mouth.
5. a brown dog flying through the air with a red
frisbee in his mouth.

MLE: a man standing in a room with a bike.
(1.04)
RL: a man standing next to a bike in a store.
(1.21)
MLE+RL: a man standing with a bike in a store.
(1.19)
Ours: a man standing in a store with a bicycle.
(1.06)

1. the bike shop employee is helping a customer.
2. a bicycle store shows two males leaning toward
a bike.
3. a man and a boy are talking about a bicycle in
a store.
4. a man adjust a bicycle in a bike shop with a
child.
5. two people in a shop looking at a bike.

123,287 labeled images. Each image has 5 human annotated
captions as reference. We use public available splits (Karpa-
thy and Fei-Fei 2015) which have 5000 randomly selected
images for validation and test. Our vocabulary size is fixed
to 10,000 including special start sign <BOS>and end sign
<EOS>. With Faster R-CNN (Ren et al. 2015) as image fea-
tures, the number of proposals for each image is fixed to be
36 instead of chosen adaptively (Anderson et al. 2018) for
shorter training schedule. For pre-processing, we convert all
sentences to lower case and filter all punctuation except the
period. Sentences that have more than twenty words or less
than five words are discarded.

Implementation Details
The number of hidden nodes of our network is set to 512 for
the LSTM cell, with word embedding size of 512. We use
Adam optimizer (Kingma and Ba 2014) with learning rate
decay and set initial learning rate α = 0.01, β = 5 × 10−4.
λ is set to be 0.1 since we find empiracally that it’s a good
value for maintaining the overall performance performance
whilst ensuring propositional correctness and distinctiveness
of the generated captions. We use 0.5 dropout before the
last layer and feed back 0.05 sampled words every 4 epochs
starting from the the 10th epoch until reaching a 0.25 feed-
ing back rate (Bengio et al. 2015). We add a batch normal-

8630



Table 3: Results of SPICE and breakdown of SPICE F-scores over various sub-categories on the MS COCO test split.

Method SPICE Objects Relations Attributes Color Count Size

MLE 20.3 37.2 5.6 8.6 13.4 2.2 4.9
RL 21.3 38.5 5.8 9.2 14.3 12.7 3.7

MLE+RL 21.2 38.0 5.6 9.7 12.4 12.7 3.9
Ours 21.7 39.0 7.4 9.5 14.7 12.9 4.9

Table 4: Results of self-retrieval on MS COCO test split.
R@k represents the top-k recall rate.

Method R@1 R@5 R@50

MLE 55.6 78.5 89.5
RL 38.9 68.0 88.1

MLE+RL 42.6 71.8 88.9
Ours 56.9 79.5 90.2

ization layer (Ioffe and Szegedy 2015) in the beginning of
the LSTM model to accelerate training with mini-batch size
of 50.

Qualitative Analysis
Our aim is not to improve all the evaluation metrics because
of the reward hacking problem in RL. Instead, we stress
more on improving the propositional correctness and dis-
tinctiveness of the generated caption whilst maintaining the
evaluation scores. To prove this point, we present the results
in three aspects: 1) breakdown of SPICE F-scores for propo-
sitional correctness; 2) self-retrieval rate for distinctiveness
of the caption; 3) model performance on the evaluation met-
rics. For fair comparison, instead of using meta learning, we
train three baseline models for ablation studies: 1) train for
task one alone using Equation (7), denoted as MLE; 2) train
for task two alone using Equation (11), denoted as RL; 3)
train for these two tasks together but simply add up their
loss, i.e., ∇θL = ∇θ(λL1(θ) + L2(θ)), λ = 0.1, denoted
as MLE+RL.

Some visualized examples are given in Table 2 for intu-
itive explanations about the propositional content and dis-
tinctiveness of the generated captions. The number at the
end of the caption corresponds to its evaluation score (i.e.,
CIDEr+SPICE).

Propositional Correctness We show SPICE score and the
accuracy of sub-categories in SPICE F-score in Table 3. By
utilizing supervision from the ground truth in reward op-
timization, our model outperforms the baseline models on
SPICE, and improves the recognition accuracy of most sub-
categories compared with RL and MLE+RL, especially on
objects and relations. This proves that our model enhances
the propositional content of the generated captions.

For visualized results, we give some examples in the first
two rows in Table 2. In the first picture, RL generated cap-
tion improve the evaluation metric greatly but suffer from

the reward hacking problem, manifested in abnormal sen-
tence endings such as “with/in a”. On the other hand, our
model further optimizes the evaluation metric by essentially
improving the propositional content of the captions. For ex-
ample, the primary objects of the first picture: sink, toilet
and shower, are included without a miss in our caption.

Note that in the second picture, the caption generated by
our model has lower evaluation score because it has less
overlapping with the ground truth captions, which do not
contain two horses and pulling. However, it also describes
the image faithfully and gives details such as in front of a
building. It’s a typical example that the generated caption
is semantically correct but has low evaluation score. Since
current evaluation metrics either depend on n-gram over-
lapping (e.g., BLEU,CIDEr) or object-relation overlapping
(i.e., SPICE) with the ground truth captions, designing a new
evaluation metric that relies on the semantic overlapping is
regarded as our future work.

Distinctiveness As for the distinctiveness of the generated
caption, we use self-retrieval rate as the evaluation criteria
(Mao et al. 2015; Dai 2017). Self-retrieval (Mao et al. 2015)
is a ranking problem which uses the generated caption of
image I to retrieve I . Specifically, the generated caption Sj
of Ij is paired with each image Im,m = 1, ..., N in the
test set to calculate probability p((Sj |Im),m = 1, ..., N .
Ij is Sj’s top-k recall if Ij is in the top-k of the ranked
p(Sj |Im),m = 1, ..., N . Higher recall rate indicates better
uniqueness of the caption.

As summarized in Table 4, RL has a large performance
drop on self-retrieval rate (38.9%) compared with MLE
(55.6%). This suggests that captions generated by RL only
focus on primary content of the image and loss details, thus
are similar for images look alike. However, in order to be
distinguishable, caption with good quality should describe
unique content of the given image. By encouraging resem-
blance with the ground truth captions in the MLE task whilst
optimizing the evaluation metric in the RL task, our model
outperforms both MLE+RL and RL, improving R@1 to
56.9%.

For visualized results, we give examples in the middle
two rows in Table 2. These two pictures look similar in that
there is a dog jumping to catch a frisbee in both scenes.
However, the difference is that the first frisbee is in the air
whereas the second frisbee is in the dog’s mouth. RL model
ignores such difference and uses a dog jumping in the air to
catch a frisbee to descibe both pictures, whereas our model
pays attention to the details in the image and thus generates
an accurate and distinctive caption for each scene.
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Table 5: Results of the overall performance on MS COCO test split. B-n stands for BLEU-n metric. - represents unknown result.
Methods marked with ∗ adopt RL for CIDEr optimization.

Method B-1 B-2 B-3 B-4 METEOR CIDEr SPICE

ER (Ren et al. 2017) 71.3 53.9 40.3 30.4 25.1 93.7 -
Skel-Attr-LSTM (Wang et al. 2017) 74.2 57.7 44.0 33.6 26.8 107.3 19.6
Ada-ATT (Lu et al. 2017) 74.2 58.0 43.9 33.2 26.6 108.5 19.4
Ada-ATT+CL (Dai 2017) 75.5 59.8 46.0 35.3 27.1 114.2 -
ARNet (Chen et al. 2018) 74.0 57.6 44.0 33.5 26.1 103.4 19.0
∗ 4 Att2in (Rennie et al. 2017) - - - 34.8 26.9 115.2 -
∗ Up-down (Anderson et al. 2018) 79.8 - - 36.3 27.7 120.1 21.4

MLE 76.5 60.5 45.8 35.3 26.8 110.2 20.3
∗ RL 78.9 63.2 48.3 36.5 27.5 120.4 21.3
∗ MLE+RL 77.7 62.7 47.9 36.4 27.4 119.3 21.2
∗ Ours 79.1 63.9 49.4 37.5 27.8 121.0 21.7

Table 6: Results on the online MS COCO test server. All metrics are reported using c5 and c40 references. SPICE is not included
on the test server.

Method
c5 c40

B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr

Ada-ATT 74.8 58.4 44.4 33.6 26.4 55.0 104.2 92.0 84.5 74.4 63.7 35.9 70.5 105.9
Ada-ATT+CL 74.2 57.7 43.6 32.6 26.0 54.4 101.0 91.0 83.1 72.8 61.7 35.0 69.5 102.9
4 Att2in 78.1 61.9 47.0 35.2 27.0 56.3 114.7 93.1 86.0 75.9 64.5 35.5 70.7 116.7
Up-down 80.2 64.1 49.1 36.9 27.6 57.1 117.9 95.2 88.8 79.4 68.5 36.7 72.4 120.5

Ours 79.3 63.7 49.2 37.3 27.4 57.1 117.4 94.7 88.2 79.0 68.6 36.2 71.5 119.0

Model Performance We report our results with fre-
quently used evaluation metrics: BLEU-1,2,3,4 (Papineni
et al. 2002), METEOR (Banerjee and Lavie 2005), CIDEr
(Vedantam, Zitnick, and Parikh 2015) and SPICE (Anderson
et al. 2016), as provided by MSCOCO (Chen et al. 2015). In
Table 5, methods marked with ∗ involve RL for CIDEr op-
timization. Comparing MLE+RL with Ours, simply adding
up the loss of each task results in worse performance be-
cause each task is independent and thus has different direc-
tions of gradient. However, by taking different directions of
gradient corresponding to each task, our meta model is sen-
sitive to both objective loss and learns the optimal solution
to adapt to both tasks. As shown in Table 5, the proposed
model outperforms the baseline models on all evaluation
metrics. In Table 6, our model only outperforms Up-down
(Anderson et al. 2018) on BLEU3 and BLEU4 because: 1)
Up-down uses model ensembles whereas we use a single
model; 2) Up-down optimizes CIDEr whereas our model
optimizes CIDEr+SPICE with supervision, which stresses
more on the object-relation overlapping instead of 1-gram or
2-gram overlapping, and BLEU3/BLEU4 is relatively more
suitable to evaluate the object-relation overlapping.

Error Analysis Except for the successful examples, we
also present a typical failed case in the bottom row in Table
2. In the bottom picture, the squatter next to the bicycle is
missed out in the generated captions. In fact, we find the
model sometimes misses or mis-recognizes objects under

complex scene, especially when there are multiple similar
objects in the foreground. This is partly due to the inaccu-
racy of CNN features, the model of which is pretrained on
Visual Genome (Krishna et al. 2016) using Faster-RCNN,
with 10.2% mAP@0.5. In future work, we may consider im-
proving the CNN model to get better image features.

Conclusion

In this work, we first analyze the reward hacking problem in
RL, and then propose to use a new learning method, meta
learning, to alleviate the problem by utilizing supervision
from the ground truth whilst optimizing the reward function.
In our approach, aiming to improve the propositional content
and distinctiveness of the generated captions whilst main-
taining high performance towards the ground truth, the pro-
posed model provides the global optimal solution by taking
different gradient steps towards the supervision task and the
reinforcement task, simultaneously. Experimental results on
MS COCO validate the effectiveness of our approach when
compared with the state-of-the-art methods.
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