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Abstract

A novel coordination framework between the segmentation
and the recognition is proposed, to conduct the two tasks col-
laboratively and iteratively. To accomplish the cooperation,
objects are expressed in two aspects: shape and appearance,
which are learned and leveraged as constraints to the segmen-
tation so that the object segmentation mask will be consistent
with the object regions in the image and the knowledge we
have. For the shape, a bottom-top-bottom pathway is built us-
ing an encoder-decoder network with capsule neurons, where
the encoder extracts the features of the shape that used for
recognition and the decoder generates reference shapes ac-
cording to these features and the recognition result. During
this procedure, capsule neurons can parse the existence of
the object and cope with the interference in the segmenta-
tion. The appearance knowledge is utilized in another path-
way to assist the segmentation processing. Both the shape and
appearance information are dependent on the recognition re-
sult, thus allowing the classifier to convey object information
to the segmenter. Experiments demonstrate the effectiveness
of our framework and model in collaboratively segmenting
and recognizing objects that can be recognized using their
shapes/shape-patterns.

Introduction

There has been great progress in fundamental computer vi-
sion tasks like fore-/background segmentation and recogni-
tion during the past years. In most researches, segmentation
and recognition are two separate tasks that have few inter-
actions. The result is that, the segmentation does not nec-
essarily produce a object that can be recognized, and the
interpretability of the recognition procedure is not ensured:
whether the feature used for recognition truly counts for the
present object (e.g., it can be used for reconstructing or gen-
erating the object). While for humans, the two tasks are con-
nected to some degree (Vecera and Farah 1997). It’s more
like a chicken-and-egg problem, where recognition depends
on the target segmented out. Segmentation, in turn, count on
an understanding of the object. During this procedure, the
recognition process has to offer the prior information and
knowledge of objects to assist the segmenter.
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Figure 1: Scheme of coordination between segmentation and
recognition. The bottom-up and top-down pathways form
an encoder-decoder structure. Other priors may also involve
within it.

We believe this perspective of joint segmentation and
recognition is worth exploration. Nevertheless, few re-
searchers (George et al. 2017) ever attempted to combine
them in object level, despite the effort in semantic segmen-
tation in pixel-level. Therefore, we focus on the cooperation
of segmentation and recognition, and put forward with a co-
ordination framework between them, which we hope will
bring a novel view to the joint tasks and both tasks can be
benefitted from the coordination.

The collaboration between the two tasks requires two
pathways: a bottom-up inference procedure to extract fea-
tures of segmented objects for recognition, and a top-down
one which works like a generator, to provide object infor-
mation (shape, appearance, etc.) from the classifier to the
segmenter, according to the prediction and the features. Two
pathways comprise an encoder-decoder structure, and the
framework of the coordination can be abstracted as Fig.1.

To estabish such a framework, one of the keys is to prop-
erly express of the knowledge about objects. Objects can
be decomposed into two aspects : (a) shape, describing the
global silhouette of the object and (b) appearance (color, tex-
ture, etc.), characterizing the local regions inside the silhou-
ette. ! Many objects have a specific or unique shape or shape
pattern that can be recognized. It is much easier to deal with
and recognize an object based on its shape than the appear-

"We use shape to represent both the basic shapes, circle, square
and etc., and the complex shapes that are composed of these basic
shapes. The latter is also referred to as shape pattern in this paper.
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Figure 2: Sign (a) can be recognized using the shape pattern.
However, at least four shapes are plausible masks for sign
(a), with colored texts indicating the foreground regions. For
example, in shape (1), white and black regions are taken as
foreground. Conventional models usually segment out the
whole like the shape (2). To distinguish (a) from other signs
(especially like (b)) and for better discrimination using the
shapes, (4) is the best choice while (3) is actually taken as
the shape of sign (b). Appearance knowledge is necessary in
this case, indicating that white regions in (a) and (b) are the
least favorable.

ance, because its appearance can be severely affected by the
environments or lighting conditions, which may bring obsta-
cles to the segmentation and recognition. The background is
another strong interference if we are dealing with the ap-
pearances. Hence, for the top-down generative process, we
go for the shape knowledge in the encoder-decoder. Still, in
the case where objects have similar shapes or contain multi-
regions with different colors, appearance is necessary. For
example, in Fig.2, both sign (a) and (b) are consist of several
regions and can be recognized using certain shape patterns.
The problem is that there might be several possible shape-
patterns for a single sign (a). Among them, shape (4) is the
most appropriate one for sign (a) so that it is distinguishing
from others and can be recognized. However, additional in-
formation must be provided to ensure that the segmentation
of sign (a) we obtain is (4). In this scenario, shape, appear-
ance, segmentation, and recognition must coordinate with
each other. Therefore, we try to fully utilize the appearance
knowledge of objects, such as color and texture, based on
the training samples. It is leveraged and expressed in an-
other pathway (non-generative, which we call preference) in
our model, which is dependent on the recognition result.

The overall interaction proceeds as follows: the encoder
first extracts the features of the current mask, followed by
the recognition. The reference shape is then generated based
on both the features and the prediction in the decoder, along
with the appearance score map feedback in another path-
way. The joint tasks are carried out while the two mod-
ules cooperate with each other dynamically, during which
noise and interference mainly introduced by the segmenter
are inevitable. The encoder-decoder is hence required to be
capable of coping with such interference, which is one of
the main considerations of our framework. Capsule (Sabour,
Frosst, and Hinton 2017) neuron is used to address this is-
sue, by analyzing the existence of the truly occurred entity
in the present segmentation.

The contributions of our work are:

e Motivated by the interactive processes of human visual
mechanism in (Vecera and Farah 1997), we propose a
novel framework where object segmentation and recogni-
tion can corporate with each other, and make fully knowl-
edge of the objects in both tasks. By considering both
tasks at the same time, the segmentation has to be dis-
criminative to humans and computers, and the recognition
is much more explanatory.

e In the framework, two aspects of knowledge of object are
learned and modeled for joint tasks separately: shape and
appearance. Both are dependent on recognition, and used
as feedback to guide the segmenter and process the object
as a whole in both tasks.

e Capsule neurons are employed in the network to perform
shape learning, feature extraction, and recognition, to deal
with planar transformations and deformations, as well as
the interference during the joint-task evolvement.

e The encoder-decoder architecture in our model can be im-
plemented with numerous different modules. There is a
great possibility to extend our model to a more advanced
one for collaborative segmentation and recognition.

Relate Work
Variational Segmentation with Shape Priors

Segmentation in the presence of priors has already been
widely studied during the past decades. Given an image I,
the task can be formulated as the minimization of

E(Q) = Edata(I; Q) + aEshape(q) (1)

where q is object mask that can be viewed as the confidence
or probability of the pixel inside the object g(z) € [0, 1].
FEgaa denotes the image energy that is designed to describe
image energies inside and outside the contour, which also
works as a base segmenter. Parametric models like (Mum-
ford and Shah 1989; Chan and Vese 2001) are classic data
terms. There are also non-parametric method (Kim et al.
2002), local descriptors (Li et al. 2007; Khan et al. 2015)
and etc., to facilitate the model ability in characterizing the
objects and background.

The shape term Egqape participates as a regularization to
constrain the contour based upon the prior shapes {q;}.
PCA-based methods were first introduced into the segmen-
tation model in (Leventon, Grimson, and Faugeras 2000) to
model the variation of the shapes. Later to avoid making
assumptions on the distribution of the prior shapes, (Cre-
mers, Osher, and Soatto 2006) proposed to use kernel den-
sity estimation in the shape term to model the shape variation
and approximate arbitrary distributions. High-order multiple
shape model (Lecumberry, Pardo, and Sapiro 2010), mani-
fold learning (Prisacariu and Reid 2011), sparse represen-
tation model (Chen, Yu, and Hu 2013) are also proposed
to improve the robustness and flexibility of the shape rep-
resentations. (Erdil et al. 2016) proposed to use a MCMC
sampling method to select proper shapes in {q; }.

Nevertheless, given a series of possible shapes {q;} of
multiple categories, most methods above have limitations on
handling the unknown deformations between the observed



shape q and {q;}. Besides, they obtain the shape term by
measuring the similarities between q and q; one-by-one,
which humans aren’t likely to do. Using a generative pro-
cedure to produce reference shape collaboratively may be
more in line with human visual cognition mechanism. Sev-
eral authors (Chen et al. 2013; Kihara, Soloviev, and Chen
2016) proposed to use Restricted Boltzmann Machine to
model multiple classes of shapes with global and local defor-
mations and generate reference shapes. The similarity mea-
surement between q and {q; } is avoided in these methods.

Simultaneous Segmentation and Classification

Semantic models, such as deep learning models(Long, Shel-
hamer, and Darrell 2015; Chen et al. 2016), try to per-
form simultaneous segmentation and classification by dense
pixel-labeling. The object is treated as a cluster of pix-
els in the same category instead of a whole, which usu-
ally ignores the overall appearances and shapes of the ob-
jects. Some other models try to make structured label pre-
diction by using RBM, like CHOPPS(Li, Tarlow, and Zemel
2013), GLOC(Kae et al. 2013) and MMRBM(Yang, Safar,
and Yang 2014). However, the object being recognizable is
never under consideration in these models, nor are they ca-
pable of recognition. As a result, the segmentation may be
too coarse and inaccurate to be discriminative for humans
and computers. To segment out and identify each instance,
models, like (He et al. 2017), focus on instance segmenta-
tion in a multi-task fashion. They do the coordination during
the training by optimizing the combined loss, but in the test
time, it is hard to tell that there exists coordination between
the tasks. One may remove the segmentation branch and the
classification maintains the same performance, and/or vice
versa, which suggests that the tasks probably won’t commu-
nicate with each other in the inference time.

The main focus of our work is to coordinate the two tasks,
rather than the single segmentation or recognition task. We
aim to combine object-level classification and segmentation
and make them interact with each other. To fully utilize the
knowledge of objects is another concern of our work.

Capsule Neuron

A capsule (Sabour, Frosst, and Hinton 2017) is a multi-
dimension vector neuron v, where each element v; repre-
sents a property (e.g, scaling, angle, etc.) of the correspond-
ing entity and the length ||v|| € [0, 1] represents the prob-
ability that entity exsits in the image. It is introduced to
capture the geometric and spatial relationships between the
object-part entities from low-level to high-level. Only when
most low-level object parts can agree on the existence of
a high-level part, then the corresponding high-level capsule
gets a higher ||v||. This property of capsules differs from
that of a standard CNN, and enables them to parse the ob-
jects that suffer from heavy interference, while a normal
CNN basically only analyzes the existence of these features.
The spatial correlations are discarded during the forward in-
ference in a normal CNN. The consequence is that given
a jumbled object (for instance, a face with misplaced eyes,
nose, and mouth), a conventional CNN may recognize it as
a normal object. What is more important is that a normal

8475

Convl

Primary Capsule  Category Capsulé, (" Prediction

(12

Encoder

Appearance Score Map Preforences

Selection,

Figure 3: Framework of the proposed model.

Appearance
Model

CNN cannot recover the object when there is much interfer-
ence. Experiments have illustrated the effectiveness of the
capsules in modeling multiple objects with various defor-
mations and segmenting overlapping objects.

Another interesting feature of capsule neurons is that each
dimension of the features encoded with the capsule neurons
represents a specific property or local part of the object and
is interpretable to the computers and even humans (Fig.4 in
(Sabour, Frosst, and Hinton 2017)).

Proposed Model

Our model is illustrated in Fig.3. For clarity, we first de-
scribe the notations. Given an image I with height H and
width W, q € [0,1]#*"W denotes the object mask, and
c€{1,2,---, L} denotes the object label, both to be solved
in the optimization. V = Enc(q) is the encoder in the cap-
sule network, which outputs L category capsules grouped
as V. € RI*D and each with D elements, while Dec(x)
the decoder or reconstruction subnetwork, which takes la-
bel prediction c and category capsule data V as input. q;
Dec(i, V) denotes the reconstruction using i-th category
capsule data v; (others masked out during reconstruction,
as in (Sabour, Frosst, and Hinton 2017)). w; = ||v;]| is the
existence probability of a category i entity, and {s; };=1....
represents the preferences (see the Appearance Constraint
section) for each category.

Compared to Eq.1, the objective function of our model
consists of three terms:

E(q, c) = Edata(I; CI) + (aEshape(CIa c) + 5Eappearance(cb C))

2
where the first term describes the energy produced by the
present image and segmentation, and the other two describe
the constraint given by the present segmentation and prior
knowledge of objects.

Shape Constraint

Classic shape models are incapable of generating samples.
RBM can, but it requires an external classifier to do predic-
tion. Moreover, the procedure to infer all the layers jointly is
usually intractable as RBM gets deeper, which makes RBM
less scalable, practical and popular. These drawbacks have
limited the performance of RBMs in recognition tasks.



Another candidate for Fgyape is the standard CNN autoen-
coder network. The problem is that a conventional CNN en-
coder cannot parse the object when there’s a lot of interfer-
ence. The features of the object and the interference entangle
with each other, which is then fully utilized for reconstruc-
tion. Therefore, the reference shape produced by a standard
CNN network still contains much interference and is much
less instructive and meaningful. Since the interference will
surely emerge during the joint tasks, a conventional CNN
encoder is insufficient for our framework.

For a trained capsule network with dynamic routing, given
an object with interference, capsules will determine whether
the object exists and what its pose is. Noise, interference
and irrelevant parts can be filtered and only features of the
objects that is believed to exist will contribute to the recon-
structed reference shape. The capsule network is incredibly
suitable for the bottom-up parsing processing.

Based on the extracted features V by the capsule net-
work, the reference shapes can be generated by {q; =
Dec(%, V) }i=1,... 1. A simple shape constraint term then can
be defined using the present segmentation q and the predic-
tion c:

L
Eshape(qa C) = Z I(Z = C)CE(qv (il) (3)
i=1
where CE(x,y) = — >, (2, In(y;) + (1 —z;) In(1 —y;)) is

the cross entropy, and I(-) the indicator, ¢ = arg max; w; =
arg max; ||v;||. Notice that q; is depending on the category 4
as well. An alternative for Eq.3 is a weighted version, which
may be better than a hard assignment in Eq.3 in the early
stage of the segmentation (because the segmentation in the
beginning may be a mess):

L
Wy
Eshape(qa C) = E 7
i1 2k

=1 Wk

Appearance Constraint

If we were to see a white elephant, the first glimpse may
surprise us. We probably won’t consider it’s something non-
elephant after that (instead we may think it gets the al-
binism). This intuition suggests that for human, shapes are
more relied on than appearances when they make recog-
nitions on objects, considering that appearances can be
affected severely by the environments and circumstances
(light, materials, etc.). Nevertheless, many objects, like traf-
fic signs, human skins, and some animals usually contain
some certain colors or specific textures. These are auxil-
iary knowledge about objects that can contribute to the joint
tasks.

Currently we utilize the appearance based on the present
image and scenario, rather than generating one, because gen-
erating real colored objects is much complicated and re-
mains an open question (Kingma and Welling 2013; Good-
fellow et al. 2014; Larsen et al. 2015), while it’s much sim-
pler to generate a shape (the fore- and background are mean-
while partitioned). Preference expresses such knowledge by
assigning different biases on different regions or parts of ob-
jects, depending on object categories. It can be viewed as
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something like “attention”, popular in visual processing :
some parts should be more focused on than others.

For image I, preferences can be obtained by applying L
linear classifiers to the pixels, cliques or superpixels. For cat-
egory 1, its linear classifier is trained by regarding the re-
gions of the objects with label ¢ as positive and others neg-
ative, including background and regions of objects in other
categories. Suppose Uj; is the weight for the ¢-th linear clas-
sifier, then the preference for the pixels in region {2, accord-

. . Q .
ing to class i is, s; " = U,;z‘%, where z*% is the feature of
region £),,. Given an image I, its class-dependent preferences
are then {s; };=1.... 1 and thus the appearance term is as fol-

lows:
ZI i=c q S;

Same as the shape term, the appearance term as well relies
on the present recognition ¢ and the segmentation q. The
minimal E,p,. (aprcis short for appearance) is obtained with
the right segmentation q, the correct recognition ¢ and the
corresponding appearance s.. With Eyp., we then make the
appearance influential to the recognition c!*! by evaluating
the energy with present segmentation q?, the old label ¢! and

the new prediction y:
Ct+1 _ {y Eaprc(qta y) < pEaprc(qt; Ct)
Ct Eaprc(qta y) > pEaprc(qta Ct)

where p is a tolerance parameter which is slightly larger than
1. The idea is straightforward: if the new prediction does
not make any (potential) positive progress on minimizing
the appearance energy, then the model will keep the old one.

&)

Eappearance q,c

(6)

Formulation and Optimization

The data term can be written as F(q) = fTq + g”(1 —
q), where f, g are foreground and background descrip-
tors, for example f(x) —log(pin(I(z))) and g(x)
—log(pout (I(x))) where py, (x) and pey(*) are the color
probabilities of object and background, given the current
segmentation q. The basic segmenter can be formulated as

follows:
a) + Z re(

1 .
THoT 18 the edge detector. We use kernel den-

sity estimation to compute p;,, (I) and pq: (I).

The descriptor f, g for regions inside and outside the con-
tour change as the segmentation q changes. The variational
segmenter is based on the assumption that parts in the same
region share some certain homogeneities, thus it is always
exploring possible regions and trying to find the best q to fit
the image data. The result is that it usually is more consis-
tent with image on the boundaries and borders. Moreover,
the variational framework allows the segmentation and clas-
sification to coordinate with each other.

Our final model can be formulated as:

+ZIZ—C

Edata( |Vq (7)

where r, =

E(qv C) = Edata ﬁS ) (8)

(ar; —



Algorithm 1: Optimize Eq.8

Input :Image I, coefficients «, 3, p, max iteration T’
and other parameters.
Output: Object mask g, object label ¢
1 Compute the generic preference s,, to generate the
initial shape probability q° < s, > 0.
2 Compute the class-wise preferences {s;, 7 =1--- L}.
3 fort«+ 1toT do
4 | Inference:V <« Enc(q'™!)
5 fori <+ 1to L do
6 Generate reference shapes: §; < Dec(i, V)
7 For each x, Compute 7;(z) ln(%ix()x))
8 end
9 y < argmax; |[vi|
Decide to accept or reject new prediction y
according to Eq.6 to update ¢t
— (F—g)+ i, 1(i = c')(ori — Bs:)
Update q' < SplitBregman(I,q’~!,r,, r.)

end

where r;(z) = ln(quf‘(;)) Here, (ar; — Bs;) is the whole

expression for the target object, assuming it’s of class ¢, ac-
cording to the knowledge we have. Performing the joint seg-
mentation and recognition is equivalent to optimizing the en-
ergy formulation Eq.2. Since c is the classification depend-
ing on q, the minimization of E(q, ¢) boils down to opti-
mizing q, which can be done by standard gradient descent
methods or other optimization techniques. We employ Split
Bregman Method (Goldstein, Bresson, and Osher 2010) to
perform the minimization, like (Chen et al. 2013).

A proper initial value q” is needed for this optimization.
Therefore, besides the class-wise preferences {s,;}izl,.“ Ls
a class-independent preference s,, is also established, with
the regions of objects (regardless the categories) viewed as
positive and background negative. It’s more like an attention
map to tell the model which regions to focus on, thus it is
not accurate and detailed enough as the final segmentation
result and too coarse for recognition. The initial contour is
defined by q° s, > 0, and the full procedure is sum-
marised in Algorithm.1. During the optimization, in the first
half iterations, we use the soft assignment version of Esj,qpe
Eq.4, then the hard assignment version Eq.3 for the second
half iterations.

Experiments
Signs and Logos

To evaluate our model, we made a dataset including 30 cat-
egories of signs and logos commonly found in the wild and
on the internet (see Fig.4). These signs and logos can be rec-
ognized using specific shape patterns. White regions inside
the signs and logos are viewed as the background so that
each category differs from others and is recognizable and
discriminative to humans and computers. Objects and their
corresponding masks are then cropped randomly with differ-
ent scales ([0.5,0.7] of image size) and locations, generating
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Figure 4: Some information about the dataset. (a) 30 classes
of signs and logos. (b) Sample of each class. (¢) Numbers of
instances of each class.

1436 sample images each with a single sign or logo. Among
them, 1080 instances are randomly selected for training,
while the other 356 for testing. The 1080 training shapes are
augmented using randomly translation, rotation, and projec-
tion (within a certain range), generating about 20 thousand
shapes in all for the capsule network to capture the deforma-
tions and variations.

The structure of the capsule network in this experiment
is similar to the one in (Sabour, Frosst, and Hinton 2017):
the input is of size 80x80, followed by a standard conv layer
with 256 channels of kernel size 11x11 and stride 3, and then
16 types of 16D convolution capsules with kernel size 9x9
and stride 2, finally fully connected with 30 types of 24D
capsules, each representing a category (CategoryCaps). The
decoder is an MLP of layer size [512, 1024, 6400], which
takes the output of CategoryCaps as the input.

For comparison, we evaluate the fore- and background
segmentation performances by some existing models that
employ RBM, such as GLOC(Kae et al. 2013), CHOPPS(Li,
Tarlow, and Zemel 2013) and MMBM(Yang, Safar, and
Yang 2014), and DeepLab (Chen et al. 2016). We also tested
the framework Fig.3 implemented with a standard CNN en-
coder (and the classification layer), as the baseline model,
following (Sabour, Frosst, and Hinton 2017).

The baseline model begins with three 5x5 convolutional
layers of [128,256,256] channels of stride 1, each followed
by a 2x2 max-pooling. The last max-pooling layer is fol-
lowed by two fully connected layers [1080, 690], and then
connected to 30 class softmax layer. The classification result
(one-hot encoded) is concatenated with the extracted fea-
tures and fed to the decoder for reconstruction, so that the
features used for reconstruction have the same dimension
(24 * 30 = 690 + 30). The decoder has the same structure.
The amounts of parameters of the two networks (proposed
and baseline) are ensured to be at the same level.

To establish the preference terms s, and {s;}, we first
segment the image into superpixels. Like (Yang, Safar, and
Yang 2014), dense SIFT, color and contour histograms are
computed for each superpixel. Each pixel uses the features
of the corresponding superpixel. We set « = 0.7, 8 = 1.15
and p = 1.1. For all the test images, the optimization runs
for 100 iterations.

The mean image intersection over-union score (mean
IoU) is used to evaluate the segmentation performance, and
prediction accuracy for the recognition performance.

Some qualitative results are depicted in Fig.5.
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Figure 5: Results of some test samples by different models. Green lines indicate the contours. The recognition results are in the
upper left, represented by small category shape images (column (a),(b) and (c)). Best view in color. (a) Test image, the ground
truth mask, and the label. (b) Results by the proposed model: the contour and the object mask. (c) Results by the baseline model.
(d) Results by CHOPPS. (e) Results by GLOC. (f) Results by MMBM1 w/ GC. (g) Results by DeepLab.

[ Models [ ToU/% | Acc/% |
Proposed 91.00 | 98.01
Baseline 86.52 | 90.17
CHOPPS(Li, Tarlow, and Zemel 2013) || 69.90 /
GLOC(Kae et al. 2013) 74.12 /
MMBM(Yang, Safar, and Yang 2014) 84.43 /
DeepLab(Chen et al. 2016) 79.29 /

Table 1: Mean IoU and prediction accuracy of different con-
figurations for the signs and logos data.

As is seen, the segmentations obtained by the proposed
model with capsules are both accurate and reliable, and thus
are correctly recognized by the network meanwhile. For
other models, neither the overall segmented object shapes
nor their details on the boundaries and local parts are precise
as ours. The existing prior-based and RBM-based methods,
i.e. CHOPPS/GLOC/MMBM, perform well in structured
segmentation, due to the prior shapes learned via RBM.
However, only the structure of the segmentation is con-
strained. In some cases, the object masks can not be recog-
nized, for example, column (d-g) in line (1) in Fig.5. Need-
less to say, these models are not able to perform recognition.
Our model considers both the segmentation and recognition,
and based on the whole expression of the object, the pro-
posed model is able to extract the object shapes that are both
meaningful and recognizable in most cases. All the metrics
are listed in Fig.1, which tells the same result.

For ablation, the results by the same framework but with
a standard CNN encoder are as well presented in column (c)
of Fig.5 and in Table.1, which are less accurate, in both seg-
mentation and classification. We visualize some of the in-
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termediate generated/reconstructed shapes during segmen-
tation in Fig.6, for the capsule network and the baseline. It
is notable that the baseline model is not able to generate a
complete object shape or offer a valid reference shape along
the evolution of the segmentation. Therefore, its reference
shapes are usually less instructional for the segmenter, al-
though it gets the correct recognition sometimes. It is obvi-
ous that the baseline model suffers from the interference in
the segmentation. This fails it achieving better segmentation
and recognition performances. By contrast, in the first sam-
ple in Fig.6, the generated shape of the capsule network is
at first somehow fuzzy, yet complete. As the segmentation
evolves, the reference shape becomes more confident and
concrete, thus helping the model to get more accurate seg-
mentation. In the second case, the recognition is incorrect
at first, but as the joint tasks proceed, both evolve toward
the desired results and produces reliable segmentation and
correct recognition.

Hand Gestures

The second experiment is conducted on (Memo, Minto, and
Zanuttigh 2015) hand dataset. There are 11 categories of
hand gestures acquired with Creative Senz3D camera. Hand
gestures typically vary among different persons in different
environments and at different times. Each type of hand ges-
tures has a unique shape or silhouette that can be identified,
but unlike the signs and logos, it is unnecessary to interpret
them as the combinations of simple shapes. However, skins
of the human body have the similar color with hands, that is
likely to introduce interference during segmentation. There-
fore it is not easy to segment out and recognize the hand
gesture using pure image data.

We firstly make the segmentation ground truth for the ges-
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Figure 6: Comparison of reconstructions during segmenta-
tion, between the proposed and baseline model. The initial
segmentations are the same for the two models.

[ Models [ ToU/% | Acc/% |
Proposed 90.57 | 97.75
Baseline 88.38 91.00
Original
(Memo, Minto, and Zanuttigh 2015) / 89.90
CHOPPS(Li, Tarlow, and Zemel 2013) || 82.30 /
GLOC(Kae et al. 2013) 78.67 /
MMBM(Yang, Safar, and Yang 2014) 87.26 /
DeepLab(Chen et al. 2016) 81.42 /

Table 2: Mean IoU and recognition accuracy of different
configurations for the hand gesture data.

tures, palms regions mainly excluding the wrists. The hands
are then cropped out with some margins. Of all 1320 im-
ages, 920 are chosen randomly for training, and the rest
400 for testing. Hand shapes are augmented with rotation
n [-15,15] degrees and small projections randomly, making
about 18 thousand hand shapes. The capsule network is ba-
sically the same as the one used before, but with 11 category
capsules. Again, to make sure the baseline has the similar
number of parameters and the features used for reconstruc-
tion have the same dimension, this time in the standard CNN
baseline, the encoder has two fully connected layers ([1024,
256], 24 « 11 ~ 256 + 11). The decoder remains the same.
Here @ = 0.65, 8 = 0.8. The others remain the same. The
authors (Memo, Minto, and Zanuttigh 2015) provided an av-
erage accuracy 90% over all the classes for all the 1320 ac-
quisitions.

The statistics of different methods are listed in Table.2.
In this dataset, we get similar results. The proposed model
with capsule neurons get the best statistics on segmentation
over the other models, and achieve better performance on
the recognition over the standard CNN model, as is expected
(90.57% mean IoU, 97.75% accuracy). Although the basline
model gets a considerable segmentation performance, its
recognition performance is still unsatisfied, compared to
the proposed model. The qualitative results are depicted in
Fig.7, obtained by the methods listed. Although the faces
and arms share the similar color with the hands, our model
is able to segment out the hands and meanwhile perform ac-
curate predictions. The segmentation results of the existing
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Figure 7: Results of some test samples by different models.
(a) Test image, and the label. (b) Results by the proposed
model with capsules. (c) Results by the baseline model. (d)
Results by CHOPPS. (e) Results by GLOC. (f) Results by
MMBM1 with GC. (g) Results by DeepLab.

methods, however, are relatively unsatisfied. Most of them
suffer from the interference that comes from the faces and
arms. Among them, the segmentation results produced by
the MMBM model are the closest to our best and are fairly
considerable. Other semantic and deep learning methods ob-
tain a lot of incorrect and coarse segmentation details. As a
result, these segmentations hardly can be recognized by hu-
mans. All these models need additional modules or branches
to tell what the target is.

Conclusion and Discussion

In this paper, we propose a framework that integrates seg-
mentation and recognition, where the two tasks interact and
cooperate with each other. Experiments have demonstrated
the effectiveness of our coordination model.

Such a framework can also be applied to the objects that
can be expressed and identified by their shapes. In fact, ob-
jects, such as humans, different animals, different vehicles,
alphabet letters, etc., indeed can be recognized using their
shapes/shape patterns. Therefore, the framework is not lim-
ited to the signs, logos, and hand gestures. The main short-
coming of the framework is the processing speed, since sev-
eral iterations are required for optimization. Yet, it can be
accelerated by parrallel computing methods. We believe that
the framework is worth further exploration and extension
with other techniques or modules, or combined with other
tasks, e.g, scene parsing, to utilize the context to promote
these tasks.
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