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Abstract

Quantization has been widely adopted for large-scale mul-
timedia retrieval due to its effectiveness of coding high-
dimensional data. Deep quantization models have been
demonstrated to achieve the state-of-the-art retrieval accu-
racy. However, training the deep models given a large-scale
database is highly time-consuming as a large amount of pa-
rameters are involved. Existing deep quantization methods
often sample only a subset from the database for training,
which may end up with unsatisfactory retrieval performance
as a large portion of label information is discarded. To allevi-
ate this problem, we propose a novel model called Similarity
Preserving Deep Asymmetric Quantization (SPDAQ) which
can directly learn the compact binary codes and quantization
codebooks for all the items in the database efficiently. To do
that, SPDAQ makes use of an image subset as well as the
label information of all the database items so the image sub-
set items and the database items are mapped to two different
but correlated distributions, where the label similarity can be
well preserved. An efficient optimization algorithm is pro-
posed for the learning. Extensive experiments conducted on
four widely-used benchmark datasets demonstrate the superi-
ority of our proposed SPDAQ model.

Introduction
The sheer volume of high dimensional multimedia data like
images and videos in search engines and social networks
makes precise and yet efficient retrieval a challenging re-
search problem which has attracted a lot of attention in re-
cent years (Wang et al. 2018; Yu et al. 2018).

To achieve the two often conflicting objectives of pre-
cision and efficiency, hashing and quantization, as two
most popular Approximated Nearest Neighbor (ANN)(An-
doni and Indyk 2006) approaches, have been widely used
due to their low storage cost and computational efficiency.
Basically, hashing and quantization both encode high-
dimensional data items with compact binary codes, where
the similarities between items can be preserved, i.e., index-
ing semantically similar images with similar binary codes.

Image hashing aims to learn a mapping function that
projects real-valued visual features into a binary vector
space. More conventional methods (Gong and Lazebnik

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2011; Liu et al. 2012; Shen et al. 2015; Liu et al. 2018b;
Chen, Wang, and Cheung 2018) learn the hashing func-
tion based on some pre-defined features. With the progress
of deep learning (Krizhevsky, Sutskever, and Hinton 2012),
deep learning based hashing methods have been proposed
(Zhu et al. 2016; Li, Wang, and Kang 2015; Li et al. 2017;
Qiu et al. 2017; Lai et al. 2015), where compatible vi-
sual features and binary hash codes can be simultaneously
learned from raw pixel images using one deep network.

Nevertheless, the Hamming distance is less distinct and
would lose much fine-grained information as discussed in
(Chen, Cheung, and Wang 2018; He et al. 2018), leading to
unsatisfactory retrieval performance. In parallel, quantiza-
tion is another popular coding approach that can avoid these
two problems as it tries to minimize the distance between
items with learned binary indexes and their corresponding
real-value codewords, resulting in more accurate ranking
and fine-grained information preserved. Existing quantiza-
tion methods like vector quantization (VQ) (Gray 1984),
production quantization (PQ) (Jegou, Douze, and Schmid
2011) and composite quantization (CQ) (Zhang, Du, and
Wang 2014) are designed for unsupervised coding based on
some predefined features. Recently, a number of deep super-
vised quantization methods have been proposed (Cao et al.
2016; 2017; Yu et al. 2018; Liu et al. 2018a) to incorporate
quantization into a deep supervised learning framework so
that the feature learning and quantization can be jointly opti-
mized. Thus, the extracted visual features from a deep model
(e.g. deep convolution network) can result in more compati-
ble codebooks, leading to a higher retrieval accuracy.

Most of the deep quantization methods use deep convo-
lution network as the backbone for image representations
learning. As a large amount of parameters is needed for con-
volution networks, training deep quantization models given
a large-scale database is time-consuming. For example, the
complexity of triplet training in DVSQ (Cao et al. 2017) is
O(N3), which grows cubically as N increases. To make it
tractable, existing deep quantization models only sample a
subset from the database for training. Unfortunately, dis-
carding a large portion of the supervision information of-
ten leads to poor retrieval performance as the inferred code-
books will not good enough for quantizing the whole large-
scale database. In this paper, we propose a novel quantiza-
tion model named Similarity Preserving Deep Asymmetric
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Figure 1: The framework of the proposed SPDAQ model which make use of a CNN network and composite quantization to
learn unquantized and quantized embeddings for training set images and database images respectively.

Quantization (SPDAQ) to address the aforementioned chal-
lenge. The framework of proposed SPDAQ is shown as in
Figure 1. Our contributions are summarized as follows:
• Unlike existing deep quantization methods which perform

metric learning on unquantized embeddings, our model
takes the first attempt to adopt Asymmetric Quantizer
Distance (AQD) (Jegou, Douze, and Schmid 2011) to ap-
proximate the predefined metric for optimization. Further-
more, SPDAQ can directly learn quantization codebooks
and binary codes for each database items by formulating
it as Maximum Inner Product Search (MIPS) (Shrivastava
and Li 2014) problem. To the best of our knowledge, it is
the first time to learn directly the quantization codebooks
and the explicit binary codes for each database item dis-
cretely in a deep learning framework.

• By sampling a subset of M images as input into the deep
convolution network, the complexity of the pairwise train-
ing can be reduced to O(MN) (M � N ), which al-
lows us to utilize all the available label information effi-
ciently. Specifically, the subset images and database items
are mapped to two different but correlated distributions,
where the pairwise label similarity is largely preserved by
the AQD between the inferred image embedding and the
composite quantized representation.

• Furthermore, a well-designed optimization algorithm is
derived which is highly scalable to large-scale datasets.

• Extensive experiments conducted on four widely-used
benchmark datasets show that SPDAQ outperforms the
existing deep quantization methods and achieves the state-
of-the-art performance for the image retrieval task.

Related Work
Deep Pairwise Supervised Hashing (DPSH) (Li, Wang, and
Kang 2015) and Deep Hashing Network (DHN) (Zhu et al.
2016) are two deep models which jointly learn visual fea-
tures and hash codes by approximating pairwise similarity.
Deep Supervised Discrete Hashing (DSDH)(Li et al. 2017)

tries to preserve discrete constraints, and DSH-GANs (Qiu
et al. 2017) learns to hash with a generative adversarial net-
work (Goodfellow et al. 2014). In parallel, DQN (Cao et al.
2016) and PQN (Yu et al. 2018) were proposed to jointly
learn product quantization codebooks and visual features
in a supervised deep learning framework. DTQ (Liu et al.
2018a) adopts composite quantization and learns visual fea-
tures in a triplet manner. DVSQ (Cao et al. 2017) learns
quantization codebooks with labels and auxiliary text em-
beddings.

NAMVH (Da et al. 2018) is a model which is similar to
our proposed SPDAQ model where the quantized embed-
dings for all the database items are also explicitly learned.
However, they differ in a number of aspects. NAMVH
adopts binary embeddings with limited model capacity as
a consequence while SPDAQ uses composite quantization
which gives real-valued embeddings so that the label simi-
larity can be better preserved thus resulting in more accurate
ranking. Also, NAMVH takes a set of pre-defined features
as input and feed them to a fully connected multi-layer feed-
forward network for non-linear dimension reduction. CNN
is adopted in SPDAQ instead to learn features directly from
raw images. To make the CNN training with large-scale
database possible, SPDAQ’s pairwise training complexity is
O(MN) (M << N), while that of NAMVH is quadratic
O(N2).

Methodology
In this paper, we propose a novel model named Similarity
Preserving Deep Asymmetric Quantization (SPDAQ) that
tries to learn unquantized embeddings for an image subset
(for the efficiency reason) and at the same time another set
of composite quantized embeddings for the whole database
so that the Asymmetric Quantizer Distance (AQD) between
the unquantized and quantized representations should pre-
serve the image label similarity. Details of the model formu-
lation and the optimization algorithm are presented in the
following.
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Notation
We use lowercase letters like b to denote a vector while up-
percase letters like B to denote a matrix. Bij denotes the
(i, j)th element of matrix B. B∗j denotes the jth column
and Bi∗ denotes the ith row of matrix B respectively. Fur-
thermore, we will use ‖ · ‖F , ‖ · ‖2 and ‖ · ‖0 to denote
Frobenius norm, L2 norm and L0 norm.

Model Formulation
Given a large image database with N items Xdata =
{xi}Ni=1 and their corresponding semantic labels Ydata =
{yi}Ni=1, the problem is to perform the quantization by learn-
ing D codebooks {Ci}Di=1 for the construction of look-
up tables where each entry (i.e. codeword) is indexed by
its corresponding D binary vectors {bi}Di=1. High efficient
image retrieval can thus be achieved via the look-up ta-
bles. As most of the deep learning methods proposed for
the learning task (Cao et al. 2017; 2016; Li et al. 2017;
Li, Wang, and Kang 2015), we also first sample a small
subset of M items for training Xtrain = {xi}Mi=1 and
Ytrain = {yi}Mi=1. Only the subset of images are fed into
the deep model for parameter tuning to avoid linearly scan-
ning the whole database, which is very time-consuming.

In this paper, we adopt composite quantization follow-
ing (Cao et al. 2017; Liu et al. 2018a) as the basis due to
its superiority over other quantization methods and the ma-
trix implementation simplicity. The overall framework of
our proposed SPDAQ model is depicted in Figure 1. It con-
tains three parts: (i) a deep convolution network to learn the
unquantized visual embeddings for the image subset, (ii) a
composite quantization part to directly learn the quantiza-
tion codebooks and the indexes for the database items, and
(iii) an objective functions including a classification loss and
a similarity preserving loss to guide the model training.
Similarity Matrix Construction Inspired by the Max-
imum Inner Product Search (MIPS), we adopt pairwise
training and compute the pairwise similarity matrix S ∈
[0, 1]M×N from labels. For two items xi and xj associated
with label vectors yi and yj , we compute their similarity as

sim(xi, xj) =
yTi yj

‖yi‖2‖yj‖2
∈ [0, 1] (1)

Note that the complexity of similarity matrix S is O(MN),
which is unacceptable for large-scale datasets given a large
value of N even though M � N . To address this high com-
plexity issue, we rewrite matrix S as the multiplication of
two matrices

S = Ltrain(Ldata)T (2)

where Ltraini∗ =
yTi
‖yi‖2

is a L2-norm normalized label vector.
A similar normalization trick can be applied to Y data to get
the normalized label matrix Ldata.
Unquantized Embedding Learning Following (Li,
Wang, and Kang 2015; Li et al. 2017), we adopt CNN-F
(Chatfield et al. 2014) as the backbone to learn unquan-
tized visual embeddings for the image subset. CNN-F is

a deep convolution network consisting of five convolu-
tion layers and three fully-connected layers as AlexNet
(Krizhevsky, Sutskever, and Hinton 2012). We replace the
last fully-connected layer with a linear projection which
maps the seventh high-dimensional visual features to
low-dimensional embeddings.
Similarity Preserving Loss Given a query sample q and
a database item x, the AQD as in (Cao et al. 2017) is formu-
lated as

AQD(q, x) = (zq)T
D∑
i=1

Cibi (3)

where zq is an unquantized embedding of the query sam-
ple q. We directly adopt Eq. (3) to approximate the simi-
larity matrix S computed with Eq. (2). Thus, the similarity
preserving loss is formulated as a constrained optimization
problem, given as

min
M∑
i=1

N∑
j=1

‖F(xi)T zj − γ · Sij‖22

s.t. zj =

D∑
p=1

Cpbpj , ‖F(xi)‖2 = 1

bpj ∈ {0, 1}
K , ‖bpj‖0 = 1,∀p ∈ {1 . . . D}

(4)

where F(xi) ∈ RL is the low-dimensional unquantized
embedding obtained through a deep convolution network
for raw pixel image xi from the subset. γ is a suitably se-
lected scaling parameter which scales the similarity as the
range of distance. We simply set γ as the number of code-
books γ = D. zj is the embedding for jth item in the
database obtained by composite quantization

∑D
p=1 Cpbpj ,

where Cp ∈ RL×K denotes the pth codebook and each
codebook contains K codewords. bpj is a one-hot vector of
jth item associated with Cp . Since the value of inner prod-
uct is not only affected by the angle between vectors but
also their norm scale, we add the unit norm constraint to the
unquantized embedding but relax this constraint on database
items for model training flexibility. The unit-norm constraint
is easily satisfied using the internal operator in Tensorflow.

Eq. (4) can be equivalently written as

min
M∑
i=1

N∑
j=1

‖F(xi)T zj−γ ·Sij‖22+η
N∑
j=1

‖zj−
D∑
p=1

Cpbpj‖
2
2

(5)
The newly introduced parameter η is important to bal-
ance the similarity approximation and the quantization error,
which, however, is time-consuming to tune. Equivalently,
we take one more step by directly learning the quantized
embedding for database items in a discrete way, formulated
as

min
M∑
i=1

N∑
j=1

‖F(xi)T
D∑
p=1

Cpbpj − γ · Sij‖
2
2

s.t. bpj ∈ {0, 1}
K , ‖bpj‖0 = 1,∀p ∈ {1 . . . D}

‖F(xi)‖2 = 1.

(6)
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Note that the unquantized embeddings for subset samples
are obtained through the deep network, while the quan-
tized embeddings for database items are directly learned
by preserving the correlations (i.e. the predefined similar-
ity). By doing so, SPDAQ actually maps subset samples and
database items to two different but correlated distributions,
which makes the model more flexible and better preserve
the semantic similarity. Also, utilizing more supervision in-
formation ensures that the learned quantization codebooks
can encode more semantic information, thus leading to bet-
ter performance in retrieval stage. We will verify this in ex-
perimental part.

Eq. (6) can be rewritten in a matrix form as

min Q = ‖F(X)TCB− γ · S‖2F
s.t. B ∈ {0, 1}DK×N

bj ∈ {0, 1}DK , ‖bpj‖0 = 1,∀p ∈ {1 . . . D}
‖F(xi)‖2 = 1,∀i ∈ {1 . . .M}

(7)

where F(X) ∈ RL×M is the embedding matrix of sub-
set images obtained through CNN. C is the concatenation
of D codebooks C = [C1 · · ·CD] ∈ RL×KD, and B is
the concatenation of N binary vectors B = [b1 · · · bN ] ∈
{0, 1}DK×Nof N database items.
Classification Loss To learn discriminative embeddings
of subset images, a classification loss is added

min
M∑
i=1

H(F(xi), yi) (8)

where label vector yi could be one-hot (i.e. single-label
dataset) or k-hot (i.e. multi-label dataset). H is a prede-
fined classification loss function. For classifying single-label
dataset, H will be a softmax loss function. For multi-label
datasets, binary entropy is applied to each label as the clas-
sification loss.
Overall Objective We formulate the overall objective as:

min L(θ,C,B) = Q+ λ

M∑
i=1

H(F(xi), yi)

=‖F(X)TCB− γ · S‖2F + λ

M∑
i=1

H(F(xi), yi)

s.t. B ∈ {0, 1}DK×N

bj ∈ {0, 1}DK , ‖bpj‖0 = 1,∀p ∈ {1 . . . D}
‖F(xi)‖2 = 1,∀i ∈ {1 . . .M}

(9)
where λ is a hyper-parameter to balance the classification
loss and the similarity preserving loss, which is adaptively
updated. θ denotes the deep convolution network parame-
ters.

Optimization
We propose an alternative algorithm to optimize the objec-
tive function Eq. (9). We learn the visual embeddings F(X),
the codebooks C and the binary index B alternatively. Each
step decreases the objective Eq. (9) until convergence.

Initialization We randomly initialize each codeword in
a codebook C and then normalize each codeword to unit
length using L2 norm. The binary index bpj is randomly ini-
tialized to be a one-hot vector.
Learning F(X) with C and B fixed The standard back
propagation (BP) is used to update the model parameters θ
and F(X). We take the gradient of the objective L(θ,C,B)
with respect to θ as follows:

∂L(θ,C,B)

∂θ
=2 · ((CB)T (CB)F(xi)− γCBSTi∗)

F(xi)
∂θ

+ λ
H(F(xi), yi)

∂θ
(10)

To optimize the deep model, we back-propagate the gradient
∂L(θ,C,B)

∂θ through the chain rule and update the parameters
using the gradient descent method.
Learning C with F(X) and B fixed To optimize C, we
first filter out non-related terms in Eq. (9) and obtain

min ‖F(X)TCB− γ · S‖2F . (11)

Many optimization methods can be used to optimize Eq.
(11), such as gradient descent. Here, we introduce an auxil-
iary parameter Z so that analytical solutions can be obtained.

Let Z = F(X)TC. We can rewrite Eq. (11) as a con-
strained optimization problem, given as

min ‖ZB− γ · S‖2F
s.t. Z = F(X)TC

(12)

which can be further rewritten as a Lagrange function

min ‖ZB− γ · S‖2F + µ‖Z−F(X)TC‖2F (13)

where µ is a hyper-parameter which is simply set as µ = 1.0.
Then, we can alternatively update Z and C until conver-
gence. For updating C, we take the derivate of Eq. (13) w.r.t
C as

F(X)F(X)
TC−F(X)Z = 0 (14)

The updating formulation for C becomes

C = (F(X)F(X)
T

)−1F(X)Z. (15)

Similarly, the updating formulation for Z will be

Z = (γ · SBT + F(X)
TC)(BBT + I)−1. (16)

Computing S explicitly incurs high complexity. With the
factorization in Eq. (2), we can first compute G =
(Ldata)TBT and then compute SBT = LtrainG to avoid
the high complexity problem.
Learning B with F(X) and C fixed We first rewrite the
objective by keeping only the parts related to B, given as

min ‖F(X)TCB− S‖2F
s.t. bj ∈ {0, 1}DK ,B ∈ {0, 1}DK×N

‖bpj‖0 = 1,∀p ∈ {1 . . . D}.
(17)

For convenience, we eliminate the scale term γ. With the
binary constraint on b, Eq. (17) becomes a mixed-integer
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programming problem (MIP). To solve an MIP, greedy local
search is usually applied to find an approximated solution.

For the ith item, the binary vector is a concatenation of
D binary sub-vector bi = [b1

i · · · bDi ]. We define its neigh-
bor as b

′

i with only one binary sub-vector different (e.g.
bji 6= bj

′

i ), and then perform local search. That means we
iteratively update {bji}Dj=1.

Note that each item bi in B is independent of each other.
Since the size of database N is typically large, we can op-
timize B batch by batch. We first sample a batch index
Ω ∈ {1 · · ·N}. Then we obtain BΩ ∈ {0, 1}DK×Ω and
SΩ ∈ {0, 1}M×Ω. Note that SΩ can be computed explicitly
since |Ω| can be small. In the following, we reuse notations
B and S to denote the sampled sub-matrix for convenience.

Let Z = F(X)TC ∈ RM×DK , which is decomposed
as D components Z = [Z1, · · · ,ZD]. Similarly, we have
B = [B1, · · · ,BD]. Eq. (17) can be rewritten as

min ‖
D∑
i=1

ZiBi − S‖2F (18)

For the optimization of the ith component, we can rewrite
Eq. (18) as

min ‖ZiBi − Ŝ‖2F (19)

where Ŝ = S −
∑D
k=1,k 6=i ZkBk. Minimizing Eq. (19) is

equivalent to

min Tr((Bi)T (Zi)TZiBi)− Tr(Ŝ
T

ZiBi) (20)

where Tr(·) is the trace norm. Let G = diag((Zi)TZi) −
Ŝ
T

Zi, where diag(·) means selecting the diagonal vector.
The solution of Eq. (20) is to set the element in each column
of Bi as 1, whose index equals to the index of the minimum
value in each row of G.

Out-of-Sample Extension
For testing, given a new query point xq , we can compute the
AQD as formulated in Eq. (3) between xq and the data item
xi in the image database based on the inferred binary codes
B and codebooks C for the retrieval.

To compute the AQD efficiently, we first pre-compute the
inner product look-up table of size 1 ×K between the em-
bedding zq and codewords. So, there will be D 1×K look-
up tables altogether. With the D pre-computed look-up ta-
bles, the distanceAQD(q, x) can be efficiently computed by
summing up the codeword distance directly obtained from
look-up tables. It is only slightly more costly than computing
the Hamming distance (Jegou, Douze, and Schmid 2011).

Experimental Results
We apply the proposed SPDAQ model to a number of pub-
licly available image datasets and compare its performance
with a number of state-of-the-art methods.

Datasets and Experimental Settings
Four datasets are adopted: CIFAR-10 (Krizhevsky and Hin-
ton 2009), NUS-WIDE-21, NUS-WIDE-81 (Chua et al.
2009) and MS-COCO (Lin et al. 2014).

CIFAR-10 contains 60, 000 labeled color images in 10
classes. Each class contains 6, 000 images of size 32× 32.

NUS-WIDE-81 contains 269, 648 labeled images col-
lected from Flickr in 81 classes. It is a multi-label dataset
and each image is annotated with some of the 81 labels. Note
that it is challenging because it is highly class-imbalanced,
where some labels are associated with tens of thousands of
images while some labels with only tens of images.

NUS-WIDE-21 is a subset of NUS-WIDE-81, containing
195, 834 images. Images in NUS-WIDE-81 associated with
the most-frequent 21 labels are selected. In this way, each
label will be associated with at least 5, 000 images.

MS-COCO contains 82, 783 training images and 40, 504
validation images, where each image is labeled by some of
the 80 labels. After pruning the images without labels, we
obtain 122, 218 images in total. This dataset is also highly
class-imbalanced.

We compare the performance of the proposed SPDAQ
model with several state-of-the-art models including hashing
and quantization : COSDISH (Kang, Li, and Zhou 2016),
LFH (Zhang et al. 2014), DSH-GAN (Qiu et al. 2017),
DAPH(Shen et al. 2017), DSDH (Li et al. 2017), DPSH (Li,
Wang, and Kang 2015), PQN (Yu et al. 2018), DQN (Cao
et al. 2016), DTQ (Liu et al. 2018a), DHN (Zhu et al. 2016)
and DVSQ (Cao et al. 2017). All of them are deep models,
except COSDISH and LFH.

For CIFAR-10, we randomly select 1, 000 images (100
images per class) to form the testing query set and take the
rest 59, 000 images as the database as in (Liu et al. 2018a;
Li, Wang, and Kang 2015). Since training with the whole
image database is time-consuming for the existing deep
quantization methods, we follow the original settings as in
their papers and sample a subset of 5, 000 images (500 im-
ages per class) from the database for training. For NUS-
WIDE-21, we adopt the widely-used protocol and randomly
sample 2, 100 images (100 images per class) as the test-
ing query set while the remaining images as the retrieval
database. A subset of 10, 500 images (500 images per class)
will be further sampled for training. Note that our proposed
SPDAQ model also only has the sampled subset of images
fed into the CNN for learning the parameters as the exist-
ing methods. For the conventional methods COSDISH and
LFH, we use the identical training set as that of the deep
methods. For fair comparison, we use the deep features ex-
tracted from the 7th layer of CNN-F as the inputs for both
COSDISH and LFH. For the more challenging datasets MS-
COCO and NUS-WIDE-81, we randomly sample 10, 000
images as the subset for training and 5, 000 images as the
testing query set, as in (Liu et al. 2018a). The remain-
ing images forms the retrieval database. For the dimension
of the inferred embedding, we set L = 300 for CIFAR-
10, NUS-WIDE-81 and MS-COCO as in (Cao et al. 2017;
Liu et al. 2018a). For NUS-WIDE-21, we set L = 128
which works well for our implementation of SPDAQ. The
learning rate is fine-tuned in the range of [10−3, 10−7] for
each dataset. For the composite quantization, we set the
number of codewords in each codebook asK = 256. There-
fore, each one-hot vector b can be encoded using a binary
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Method CIFAR-10 (mAP@All) NUS-WIDE-21 (mAP@5000)
8 bits 24 bits 32 bits 48 bits 8 bits 24 bits 32 bits 48 bits

COSDISH 33.7 42.3 46.9 47.6 60.4 66.4 69.8 72.4
LFH 23.2 33.8 36.1 42.9 63.5 73.9 73.2 76.2

DSH-GAN – 78.1 78.7 80.2 – 85.6 86.1 86.3
DAPH 75.7 82.1 83.1 84.5 71.7 77.1 78.7 81.6
DPSH 62.2 72.7 74.4 75.7 76.8 82.2 83.8 85.1
DSDH 65.0 78.6 80.1 82.0 76.5 80.8 82.0 82.9
PQN – – – – – 81.9 82.3 83.0
DQN 52.7 55.8 56.4 58.0 – 77.6 78.3 79.2
DTQ 78.5 79.0 79.2 – – – – –

DVSQ∗ 80.3 80.3 80.8 81.1 84.8 85.4 85.6 85.4
SPDAQ 88.4 88.4 89.1 89.3 90.0 93.1 93.1 93.4

Table 1: Mean Average Precision (%) for different numbers of bits on CIFAR-10 and NUS-WIDE-21 datasets. The best mAPs
are shown in bold. DVSQ∗ denotes we run the codes provided by the authors to get the results.

(a) CIFAR-10 @8bit (b) CIFAR-10 @24bit (c) NUS-WIDE-21 @8bit (d) NUS-WIDE-21 @24bit

Figure 2: Retrieval performance evaluated with Top-K precision curve (@8 bits and @24 bits respectively) on CIFAR-10 and
NUS-WIDE-21 datasets. Best view in color.

vector with log2K bits. Suppose there are D codebooks, the
length of the binary code will be Dlog2K = 8D. We set the
number of epochs as 50 for all the datasets.

Retrieval Accuracy
For performance evaluation, we adopt two widely-used eval-
uation metrics: mean average precision (mAP) and Top-K
precision. We compute mAP for CIFAR-10 with respect
to the whole database. For NUS-WIDE-21, NUS-WIDE-81
and MS-COCO datasets, we compute mAP@5000 with re-
spect to the top 5, 000 returned images as in (Li et al. 2017;
Liu et al. 2018a). All the results of the existing works re-
ported in this paper are obtained either from their corre-
sponding papers or by running the codes provided by the
authors. For the proposed SPDAQ model, we report the av-
erage results of five runs.

The performance comparison results on CIFAR-10 and
NUS-WIDE-21 in terms of mAP are shown in Table 1. We
see that the proposed SPDAQ model outperforms the state-
of-the-art methods by a large margin, including the deep
hashing models and the deep quantization models. In terms
of Top-K precision (we set K = 10, 000), the proposed
SPDAQ also significantly outperforms the existing models
as shown in Figure 2. Regarding the two more challenging
datasets NUS-WIDE-81 and MS-COCO, we find that the
proposed SPDAQ also achieves the best results (Table 2).

We believe the significant improvement is due to two rea-

(a) NUS-WIDE-21 @8bit (b) NUS-WIDE-21 @16bit

Figure 3: Training time evaluation of SPDAQ and other
state-of-the-art deep models on large-scale dataset NUS-
WIDE-21. Best view in color.

sons: (1) By effectively utilizing all the supervision infor-
mation of the database, SPDAQ directly learns quantization
codebooks and binary codes for the database items, so that
more semantic information is encoded. (2) SPDAQ tried to
map the subset of the data and the database items to two
different but correlated distributions via learning, which can
better preserve the similarity.

Efficiency for Model Training
We further compare our proposed SPDAQ model with the
existing deep models in terms of training efficiency under
8 bits and 16 bits settings. The large-scale NUS-WIDE-21
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Method NUS-WIDE-81 (mAP@5000) MS-COCO (mAP@5000)
8 bits 16 bits 24 bits 32 bits 8 bits 16 bits 24 bits 32 bits

DHN 66.8 70.2 71.3 71.6 60.7 67.7 69.7 70.1
DQN 72.1 73.5 74.7 75.2 64.9 65.3 66.6 68.5
DTQ 79.5 79.8 79.9 80.1 75.8 76.0 76.4 76.7

DVSQ 78.0 79.0 79.2 79.7 70.4 71.2 71.7 72.0
SPDAQ 80.5 84.2 85.1 85.1 80.1 84.4 84.5 84.7

Table 2: Mean Average Precision (%) on NUS-WIDE-81 and MS-COCO datasets for different deep models. The best results
are in bold.

Method CIFAR-10 (mAP@All) NUS-WIDE-21 (mAP@5000)
8 bits 24 bits 32 bits 48 bits 8 bits 24 bits 32 bits 48 bits

SPDAQ-LD 88.8 88.7 89.0 89.3 89.5 93.0 93.3 93.7
SPDAQ-LL 13.8 17.1 17.5 17.4 38.4 49.6 60.1 65.8
SPDAQ-nQ 89.4 90.1 90.1 89.9 93.5 93.6 93.8 94.1
SPDAQ-nC 78.6 85.2 85.2 86.5 88.8 92.2 92.9 93.4

SPDAQ 88.4 88.4 89.1 89.3 90.0 93.1 93.1 93.4

Table 3: Mean Average Precision (%) for variants of the proposed SPDAQ model. The best results are in bold, while the second
best ones are underlined.

dataset is used for this evaluation. To show the superiority
of our model, we use the whole database as input for all
the models we tested so that all the supervised labels can
be used, denoted as DPSH-ALL, DSDH-ALL and DVSQ-
ALL. The learning curves of the different models in terms
of mAP@5000 are shown in Figure 3. All the models are
evaluated with Nvidia Tesla K80 Dual GPU Module.

For fair comparison, we run all the models for 50 epochs.
As shown in Figure 3, our model converges in around 3.5
hours and gives a much better performance in mAP. For
DPSH-ALL and DSDH-ALL, both converge slowly taking
more than 10 hours, but with mAP achieving only ≈ 84%
even with the whole database used. For the deep quanti-
zation method DVSQ-ALL, it also converges much slower
than the proposed SPDAQ model and achieves a much lower
precision than ours.

Variants of SPDAQ
We also evaluated the performance of some variants of SP-
DAQ using CIFAR-10 and NUS-WIDE-21. In particular,
SPDAQ-nQ learns the embeddings without quantization and
can be considered as the precision upper bound for SP-
DAQ. Also, we implement SPDAQ-LD as defined in Eq. (5).
SPDAQ-LL is another version that learns quantization with
only the input image subset, defined as

min
M∑
i=1

N∑
j=1

‖F(xi)T zj − γ · Sij‖22 + β

M∑
i=1

‖F(xi)−
D∑

p=1

Cpbp
i ‖

2
2.

SPDAQ-nC denotes SPDAQ without the classification term.
The empirical results are tabulated in Table 3.

We observe that: (1) SPDAQ and SPDAQ-LD achieve
similar performance as these two models are equivalent in
principle. However, SPDAQ-LD has a hyper-parameter η

(Eq. (5)) which critically influences the performance but is
time-consuming to tune (e.g., using grid search). This time-
consuming parameter tuning process makes SPDAQ-LD un-
desirable. (2) We find that the performance of SPDAQ-LL
severely drops compared to SPDAQ. Basically, the code-
books learned based on only the image subset fail in quan-
tizing well the whole database, which may verify the claim
that SPDAQ is able to map the subset items and database
items two different distributions. (3) SPDAQ-nQ shows the
upper bound of our method. We find that the performance
of SPDAQ is approaching that of SPDAQ-nQ as the length
of binary codes increases. (4) The comparison between SP-
DAQ and SPDAQ-nC shows that the classification term can
help to learn more discriminative embeddings and thus fur-
ther improve the retrieval accuracy.

Conclusions
We propose the Similarity Preserving Deep Asymmetric
Quantization (SPDAQ) model for fast image retrieval to ad-
dress the high complexity problem for training the deep
model with large-scale datasets. In contrast with the exist-
ing deep quantization methods, SPDAQ learns the quantiza-
tion codebooks and the binary codes directly for the database
items. By effectively mapping the subset and the database
items into two different but correlated distributions, simi-
larity can be better preserved. A comprehensive empirical
study is conducted for performance evaluation. Experimen-
tal results based on four benchmark datasets show that our
method outperforms the existing state-of-the-art models for
image retrieval in terms of both accuracy and efficiency.
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