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Abstract

Inferring the interactions between objects, a.k.a visual rela-
tionship detection, is a crucial point for vision understanding,
which captures more definite concepts than object detection.
Most previous work that treats the interaction between a pair
of objects as a one way fail to exploit the mutual relation be-
tween objects, which is essential to modern visual applica-
tion. In this work, we propose a mutual relation net, dubbed
MR-Net, to explore the mutual relation between paired ob-
jects for visual relationship detection. Specifically, we con-
struct a mutual relation space to model the mutual interaction
of paired objects, and employ linear constraint to optimize
the mutual interaction, which is called mutual relation learn-
ing. Our mutual relation learning does not introduce any pa-
rameters, and can adapt to improve the performance of other
methods. In addition, we devise a semantic ranking loss to
discriminatively penalize predicates with semantic similarity,
which is ignored by traditional loss function (e.g., cross en-
tropy with softmax). Then, our MR-Net optimizes the mutual
relation learning together with semantic ranking loss with a
siamese network. The experimental results on two commonly
used datasets (VG and VRD) demonstrate the superior perfor-
mance of the proposed approach.

Introduction

Visual understanding is a challenging task, as it requires
machines not only to recognize the concepts in the vi-
sual data (e.g., image or video), but also to analyse the
semantic meaning of the image/video. In the past decade,
visual understanding, especially in the fields of recogni-
tion, classification and object detection (Ren et al. 2015;
Li et al. 2018; Zhang et al. 2017b; 2018b), has achieved
remarkable accomplishments thanks to the flourish of deep
learning and CNN (Krizhevsky, Sutskever, and Hinton 2012;
Zhu et al. 2018). Recently, it moves forward to further in-
fer the interactions and relationships between concepts by
going beyond object detection, which is termed as visual
relationship detection (Lu et al. 2016; Zhang et al. 2017a;
Zhu and Jiang 2018; Zhuang et al. 2017). Specifically, as
shown in Figure 1, given an image, visual relationship detec-
tion aims to locate and recognize the visual entities, and then
infer all the possible triplet phrases. Detecting such relation-
ships enables the artificial intelligence to understand vision

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

8110

Input
image

Object
detection
Relationship  personi-near-person2, shirt-on-person3, bear-sit on-
prediction bear-wear- , person2-wear-jeans, -contain-bear,

-on-bear, ...

Figure 1: A general process for visual relationship detection.
Given an image, the model detects all the objects, and infers
the relationships between object pairs.

with more details and semantics, which is helpful to other
visual understanding tasks, such as visual captioning (Bin et
al. 2017; 2018; Gao et al. 2017), and visual question answer-
ing (Peng et al. 2018; Gao et al. 2018).

Sadeghi and Farhadi (Sadeghi and Farhadi 2011) first
define a triplet subject-predicate-object as a
visual phrase, and train classifiers for every triplet
phrase. Such pattern enables the model to predict
person-eating-breadand man-eating-bread as
two different phrases, though they share very similar enti-
ties and the same predicate. In other words, one may need
O(N?K) classifiers for N unique object categories and K
relationship categories. Moreover, because of the combina-
tion of infrequent subject, object and predicate, many triplet
phrases cannot be well discriminated suffering from the long
tail distribution. To address these problems, Lu et al. (Lu
et al. 2016) propose to detect objects and predicates sep-
arately, and combine the results together to jointly learn
the relationships. In this way, different triplet phrases share
the same predicate, such as person-eating-bread and
man-eating-bread, can be detected by the same classi-
fier. Even more, horse-eating—grass with very dif-
ferent objects context can share the same classifier, and
an unseen triplet (e.g., dog-ride-bike) can be han-
dled if the objects and predicate are in the training set.
Therefore, O(N2K) classifiers reduce to O(N + K) ones.
Most of recent work (Lu et al. 2016; Zhang et al. 2018a;



Zhu and Jiang 2018; Han et al. 2018) choose to model vi-
sual relationship in the latter pattern.

To model the objects and predicates, existing work ap-
ply two paradigms: 1) two-stage learning (Lu et al. 2016;
Zhuang et al. 2017), which first employs an object detector
(e.g., Faster RCNN (Ren et al. 2015)) to detect all the pos-
sible objects in an image, and then predicts the relationship
between objects, a process known as predicate prediction
at the second stage; 2) structural learning (Xu et al. 2017;
Zhu and Jiang 2018) that takes an image as input, and pre-
dicts objects and fused relationships simultaneously. In two-
stage learning, object detection is independent of the pred-
icate prediction, and the word embeddings of object cate-
gories enable the relationship detection to bring in semantic
information. Obviously, the drawback of two-stage learning
is that bad object detection may mislead the predicate classi-
fier. The latter paradigm, structural learning overcomes this
issue by learning the object detector and predicate classifier
simultaneously, which is capable of capturing the dependen-
cies between objects and predicates (Zhu and Jiang 2018).
However, limited to performance of current relationship de-
tection (with about 0.2 of recall@50), the object detector
may be harmed by the noise of predicates.

In this paper, we focus on the exploration of mutual
relation between paired objects. Specifically, mutual
relationship of given objects can be either their parts, prop-
erties, or spatial locations (e.g., person-wear—shirt
VS. shirt-on-person, person-has—arm vs.
arm-belong to-person, and person-in front
of-building vs. building-behind-person).
In (Zellers et al. 2018), Zellers et al. divided the relation-
ships into four categories: geometric, possessive, semantic
and misc. They also gave the distribution of each type of
category, where there are more than 90% relationships that
belong to geometric and possessive. It is reasonable to
assume that such mutual relationships not only exist with
explicit labels, but also implicitly occur in the visual feature.
For example, one may say man-hold-fork rather than
fork-be holden-man. But the fork is actually holden
by the man in vision, it just miss an explicit relationship
label to describe this scene. We also note that traditional
loss functions for multi-classification (e.g., cross entropy
with softmax) fails to measure the semantic similarities
among predicates. Therefore, we propose mutual relation
net (MR-Net) to exploit the mutual interaction for visual
relation detection. We construct a mutual relationship space,
where paired relationship triplets are modelled to satisfy
a linear constraint for exploiting mutual interaction. We
call this process mutual relation learning. In addition, to
help the classifier capture semantic similarity, we replace
cross entropy with a semantic ranking loss, which penalizes
similar predicates more mildly than others (e.g., near
receives less penalty than in under the ground-truth
man-next to-tree). Finally, we model the mutual
relation between objects by feeding the pair into a Siamese
network (Chopra, Hadsell, and LeCun 2005), and optimize
it with the proposed semantic ranking. More importantly,
our mutual relation learning is parameter-free and can be
inserted into all of other methods to boost the performance.
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To eliminate the influence of dependencies between objects
and predicates, we employ the two-stage learning to verify
our mutual relationship modelling.

In summary, the main contributions of our work are as
follows: 1) to the best of our knowledge, our work is the first
to explore mutual interactions between paired objects for vi-
sual relationship detection; 2) We propose to apply ranking
loss with semantic embedding for predicate classification,
which is optimized together with mutual relation learning in
the siamese network; 3) To handle the noise introduced by
the bounding boxes of detected objects, we randomly shift
or scale a fraction of bounding boxes with a small range in
training phase, which is also a way to augment samples for
small dataset (e.g., VRD).

Related Work
Mutual Relation Exploration

Mutual relations widely exist in our world, e.g., social re-
lations (wife and husband in a marriage), spatial relations
(on and under), and semantic relations (hypernym and hy-
ponym). In the field of computer vision, most of existing
work of mutual relation fall into multiple objects track-
ing. In (Duan et al. 2012), Duan et al. proposed to model
the mutual relation between objects for multi-object track-
ing, which constructed a relational graph for mutually re-
lated objects, and group tracked via the mutual relation of
objects. Helbing and Molnar (Helbing and Molnar 1995)
proposed a social force model that consists of desired ac-
tion, territorial effect, attractiveness to describe pedestrian
dynamics in crowds, and proved that simulations of inter-
action of pedestrian in crowds are capable of describing
pedestrian behavior very realistically. Zhou et al. (Zhou et
al. 2018) employed asymmetric pairwise terms to model
the inter-objects relations between object tracklets, which
is able to constrain the displacement and control the direc-
tional influences between the pair of objects. Semantic rela-
tions are commonly exploited in word embedding (Mikolov
et al. 2013; Pennington, Socher, and Manning 2014). Even
more, in (Mikolov et al. 2013), the mutual relation between
words can be represented by a linear vector arithmetic, e.g.,
vec(“Paris”) - vec(“France”) + vec(“Italy”) ~ vec(“Rome”),
and vice versa.

Visual Relationship Detection

Visual relationship detection is first introduced in (Sadeghi
and Farhadi 2011), where a triplet of (subject, interaction,
object) is defined as “visual phrase”, and regarded as a sin-
gle category for classification. While this way suffers from
low scalability of model and lack of diversity of visual rela-
tionship tuple. To overcome these drawbacks, Lu et al. (Lu
et al. 2016) redefined visual relationship as a combination
of objects and predicates, which reduces the magnitude of
classifier from O(N2?K) to O(N + K), and has capabil-
ity to generate triplet phrase unseen. They integrated visual
appearance and language priors, and optimized with a bi-
convex loss function. Subsequently, a large amount of work
applied such two-stage learning to detect visual relationships
in images. Dai et al. (Dai, Zhang, and Lin 2017) designed a
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Figure 2: An overview for the flowchart of our mutual relation network. As the same of most two-stage paradigm, we first extract
visual appearance representation and spatial configuration with VGG16, Faster-RCNN and custom CNN. Then the visual and
spatial feature of object pair is injected to the mutual relation learning module, a siamese network, for mutual interaction
exploration. We predict the relationships based on previous object detection and mutual relation learning in the final stage.

deep relational network to infer the predicate between ob-
ject pairs by jointly exploiting their spatial information and
statistical dependencies. They employed convolutional neu-
ral networks (CNNs) to process the binary masks for spa-
tial configuration, and achieved the state-of-the-art. Zhang
et al. (Zhang et al. 2017a) interpreted a relation triplet as a
visual translation embedding manner (VTransE), and trans-
ferred knowledge between context and predicates. Liang et
al. (Liang, Lee, and Xing 2017) implemented deep variation-
structured reinforcement learning to predict relationships
and attributes of objects together with global context cues.
In (Zhuang et al. 2017), Zhuang et al. devised a framework
to learn predicates classifier adapting to its context, which
encourages the model to predict similar context with similar
classifiers.

Another strategy to detect visual relationships is employ-
ing structural learning to predict a struct of objects and pred-
icates simultaneously, and format to a triplet of relationship.
Xu et al. (Xu et al. 2017) applied a dual graph to model the
objects and predicates with node and edge, and employed
Gated Recurrent Units (GRU) to iteratively update the graph
along time, which passes messages between node GRU and
edge GRU dually. Li et al. (Li et al. 2017) constructed a
multi-level scene description network to generate phrase and
captions, which consists of a module for dynamical graph
construction, a feature refiner, and classifiers. Their frame-
work constructed a dynamical graph to represent the scene
and updated the graph via feature refining, then output the
relation phrases and captions in the end. Zhu and Jiang (Zhu
and Jiang 2018) proposed a deep structural learning frame-
work to predict objects and relationships at feature and label
level, then fused the predictions of both levels. They argued
that their model enables the communication between objects
and predicates at the label level, which helps the object de-
tector and relationship classifier to be more accurate.
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Method

From our statistical results, there are a considerable portion
of images owning mutually paired relationship triplets in the
visual relationship detection datasets. Naturally, when there
is a relationship that can be expressed as subject-predicate-
object, we observe that there is usually a mutual interaction
between object and subject. Sometimes these interactions
are explicit relationship pairs that are semantically relative,
such as cloud-in-sky and sky—-has—-cloud. While
some other mutual interactions are improper to be presented
as an direct language expression. For instance, one may say
man—-hold-fork rather than fork-be holden-man,
because the latter phrase is not a general expression in our
grammar habits. Obviously, the mutual relations between
objects in such phrases do exist as some kinds of latent rep-
resentation, and we can infer any one from the mutually
paired one (e.g., from sky-has-cloud, one can easily
predict the mutual one cloud-in-sky and vice versa).
It means that visual relationships have great potential to be
learned better with the knowledge from the mutual interac-
tions between paired objects. Therefore, we construct a mu-
tual relation space to present the visual relationship triplet,
and learn to explore the mutual interaction between them.
We call this process mutual relation learning.

For convenient description in following sections, we de-
note a subject-object pair as (s,o0), and vice versa. The
(s,0) and (o, s) are different instances for relationship de-
tection. To explore the mutual interactions between paired
objects, we propose to construct a siamese network (Chopra,
Hadsell, and LeCun 2005) to model paired input instances
and optimize the constraint of interaction in mutual relation
space. Figure 2 visually summarizes the primary flowchart
of our approach, which consists of visual appearance repre-
sentation, spatial module, and mutual relation learning.



Visual Appearance Representation

Visual appearance directly presents the facets and relation-
ships in an image, which is the key point to visual rela-
tionship detection. Given an image, human can easily rec-
ognize the entities and infer the interactions between them.
Therefore, to obtain a good visual appearance representa-
tion is crucial to make machines have a holistic understand-
ing of images like human, and then predict the relationship
between recognized objects. Deep convolutional neural net-
works has been demonstrating excellent performance in vi-
sual representation (Ren et al. 2015; Simonyan and Zisser-
man 2014). In this work, we employ Faster R-CNN (Ren et
al. 2015) to detect objects and infer the labels, and then ex-
tract C'onvb_3 feature map of VGG16 (Simonyan and Zis-
serman 2014) with ROI-pooling to obtain the visual appear-
ance representation of subject and object according to the
detected bounding boxes, i.e., by and b, respectively. These
two branches further enter two fully-connected layers to be
4096-d vectors hy and hg, which are then integrated with
union feature ho of the union area of b, and b, as visual
cues for relationship inferring. Following (Dai, Zhang, and
Lin 2017), we represent the union feature by computing the
union area with a small margin to capture surrounding in-
formation, extracting fc7 of VGG16 trained on ImageNet
by resizing the shape to 224 x 224. To help learn the mu-
tual relation, we make that the features of subject and ob-
ject change symmetrically with the input order. As Figure 2
depicted, when (s,0) is fed into framework, we concate-
nate hi, ho and hs and map it to a 4096-d feature vector
h,. When we input (o, s), representation hq and hg inter-
change positions, hence we obtain a different feature vector
hy, which is concatenated with spatial configuration in the
next step.

Spatial Module

Spatial configuration is supplementary to visual represen-
tation, which describes the position relationship between
paired objects. In (Peyre et al. 2017), Peyre et al. divided
the coordinate computation into & components, and com-
bined these components by the Gaussian Mixture Model,
which has verified that the spatial configuration is helpful
to discriminate different types of relationships. There are
two ways for spatial feature representation: mask convolu-
tions and coordinate computation. The difference between
two configurations is that coordinate computation presents
representations for (s, 0) and (o, s) independently, while the
mask convolution exploits the locations of the paired objects
simultaneously, which may help mine the interaction be-
tween objects. Therefore, in our work, we extract spatial rep-
resentation with convolution of binary masks of paired ob-
jects. Following previous work (Dai, Zhang, and Lin 2017;
Liang et al. 2018), we generate a spatial mask with a bi-
nary matrix with the shape of original image, and fill the
area of object bounding box with 1 and set the other area
as 0. The obtained masks of object pair are down-sampled
to 32 x 32, and concatenated in channel to obtain the input
with 2 x 32 x 32. We then devise a 3-layers CNN to extract
the compressed spatial configuration as the same with (Dai,
Zhang, and Lin 2017).
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Mutual Relation Learning

As aforementioned, relationships depend on the in-
volved contexts, and very different contexts can share
the same predicate, e.g., man-eating-bread and
cow—eating-grass. Therefore, the mutual interaction
between paired objects cannot be well modelled in the dis-
crete label space that ignores the contextual information of
predicate. Moreover, one predicate may reasonably co-occur
with other predicates, even with itself, in a relationship pair.
Such as near can be paired with near, next to, or on
the left side with different object contexts. To ap-
propriately exploit the mutual relation between paired ob-
jects, we deem that the representation should contain all
the facets (objects and interaction), and be regarded as a
triplet phrase representation. We construct a mutual relation
space that integrates visual appearance features and spatial
configuration to model the latent interaction between ob-
ject pair. In the mutual relation space, both explicitly paired
triplets (man-wear-shirt and shirt-on-man) and
implicitly paired triplets (nan-hold-fork and fork-be
holden-man) can be modelled to exploit the mutual rela-
tion, even be holden isnotin the label set and will be pre-
dict as background. Motivated by the semantic relation
transformation with linear vector calculation in (Mikolov
et al. 2013), we propose that the latent representations in
mutual relation space of paired triplets should satisfy v,
—v,, and can be optimize with a surrogate form as:

~
~

(D

where || - || is L2 norm of vector. ¢y, and ¢, denote triplet
relationship of (s, 0) and (o, s) pairs. To avoid the latent rep-
resentations of triplets shrinking to zero during the training
phase, we add a constant margin to encourage them to keep
away from 0 with:

M(cso, Cos) = ”Up + UP’H )

2

where [ -]+ denotes maxz(0, -) and m is a constant margin.

We then predict the relationships based on the mutual rep-
resentations, together with semantic presentation of objects.
Specifically, given an image and an input pair (s, 0), we de-
note the latent representations of subject, predicate and ob-
ject as v,, v, and v,. The compatibility representation of
each instance C(p|s, o) is formulated as follow:

v = [m = llopll = llvg [l ]+,

3)

where [-, -] means vector concatenation, and w), is the param-
eter to transform the latent representation to the compatible
label space of p'" predicate, where the index of the high-
est score represents predicted category of predicate. Vector
[vs,vp,V,] is the fused feature of a relationship instance.
Most of existing work treat visual relationship detection
as a task of multi-classification, and optimize the model with
cross entropy loss with softmax. Zhang et al. (Zhang et al.
2018a) pointed out that visual relationships always associate
with several similar classes of relationships. We hope similar
classes to obtain the higher score than incorrect ones as well
as ground-truth. Therefore, we design a semantic ranking

C(pls,0) = wg[USaUpWo],



loss to adaptively model the similarity between relationships
as:

“

Lso Z [A+C(p7‘8,0) —C(p+|5,0)}+,

p-€P~ ptePt

where L, represents the ranking loss for input (s, 0), and
C(pl|s,o0) is the compatibility representation of prediction
score for pt" class aforementioned. We use p* to denote
ground-truth and P to denote the set of all annotated re-
lationships in a batch. p~ is an element of P, the set of
negative relationship samples which do not appear in the
annotations. [-]4 is maz(0,-). As a result, the loss func-
tion does not stop training until the margin is larger than
the margin threshold A. For most applications, the A is a
hyper-parameter and hard to set empirically, because large
threshold makes the loss function difficult to converge, while
too small one may cause insufficient learning. Therefore, we
aim to find an adaptive and reasonable margin that pushes
the loss function to discriminate negative and positive in-
stances according to the difference of semantic meaning. For
example, the predicted instance man-near-tree is sup-
posed to be penalized more mildly than man—-in-tree un-
der the ground-truth man—-next to-tree. To achieve this
purpose, we employ an adaptive threshold based on the se-
mantic embedding of predicates with:

A = 1.0 — a(word(p™),word(p™)), ®)

where word(-) is the word embedding of predicate and
a(-,-) means cosine similarity. We use p~ and p* to de-
note the predicates of negative sample and ground-truth re-
spectively. In our experiments, GloVe model (Pennington,
Socher, and Manning 2014) is used as the off-the-shelf tool
to embed words to vector space.

To exploit both mutual interaction and semantic relation-
ship, we train our model with the combination of Eq. 1,
Eq. 2, Eq. 4 as our final loss function as:

1
L= Q(Lso + Los) + A Z M(Csoa Cos) + Y, (6)

(so0,0s8)eTl’

where A = 0.005 is a hyper-parameter and the mutual con-
straint M is accumulated over all paired objects I in a batch.
By this model, knowledge from the mutual relations can be
used to constrain the training process and possibly mine rea-
sonable relationships which are not annotated.

For relationship triplet prediction, confidence scores ob-
tained from object detector also provide discriminative in-
formation. Objects with low confidence usually fail to form
relationships with other objects. Hence during the test phase,
the final prediction score consists of confidence scores of ob-
ject detection and predicate prediction as:

S(r]s,0) = S(cs, ¢p, Cols,0)
= log[(S(cples, €0)S(cs]s)S(col0))],
where S(c;|s) and S(c,|o0) represent the confidence of de-
tected objects respectively, and are set as 1.0 for predicate

detection task. S(r|s,0) is the score of a relationship in-
stance r that is computed with softmax & as:

S(eples, co) = ®(C(pls, 0))-

N

®)
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Notice that our proposed model possesses good trans-
portability since the core of mutual relation learning is flex-
ible. The performance of existing methods can be enhanced
with our model if the latent representations of relationship
triplets are extracted appropriately and relations between ob-
jects are learned in a mutual way. We will validate and ana-
lyze the results of proposed approach in subsequent section.

Experiment
Datasets and Metrics

We conduct experiments on two common datasets, the Vi-
sual Relationship Detection (VRD) and Visual Genome
(VG), to evaluate our mutual relation network.

e VRD (Lu et al. 2016): VRD is the first benchmark for
visual relationship detection, which contains 4, 000 and
1,000 images for training and test, respectively. There are
7,701 types of relationship tuple with 100 types of ob-
jects and 70 types of predicates in total. To sum up, VRD
contains 37,993 relationship instances, of which 24.3%
(9, 224) instances involves in an explicit mutual relation-
ship pair. For fair comparison, we follow the default data
split (Lu et al. 2016) in all of our experiments.

VG (Krishna et al. 2017): VG is a large scale knowl-
edge dataset for VQA, region description, and relation-
ship detection, efc. We use VG vI.4, the latest version
of VG dataset. As relationships are annotated manually,
some annotations may not conform to the fact. Hence ex-
tremely infrequent relationships are removed during pre-
processing. Totally, we use 77,761 images that contains
150 types of objects and 50 types of predicates. There are
774,167 relationship instances with 196, 238 (25.3 per-
centage) instances that are with explicitly paired relation-
ships. We randomly split the dataset with 62, 253 images
for training and 15, 508 images for test.

In the experiments, we choose two kinds of tasks to eval-
uate the capability of our model: Predicate Detection and
Relationship Detection. For predicate detection, we input
an image and a set of object pairs with ground-truth labels
and bounding-boxes, and then predict possible predicates
between these known object pairs. For relationship detec-
tion, we firstly detect the locations and categories of objects
with confidence in an image, then predict possible relation-
ship triplets. This task can be regarded as a combination
of object detection and predicate detection, the two-stage
paradigm as aforementioned. Following previous work (Lu
et al. 2016; Dai, Zhang, and Lin 2017; Liang et al. 2018),
we use Recall@K as the performance metric (specifically,
recall@50 and recall@100 are employed in our evaluation).
Recall@K is the fraction of ground-truth relationships that
are correctly recalled within the top K predictions. Metric
mean average precision (mAP) is not employed because it
pessimistically omit some positive predictions due to incom-
pleteness of annotations.

Implementation Details

We train 3 epochs for VG and 8 epochs for VRD respectively
on a single GPU, GeForce GTX TITAN X. The constant



Methods Predicate Det. Relationship Det.
R@50 R@100 R@50 R@100
Language priors  48.87  48.87 13.86 14.70
VTransE 4476  44.76 14.07 15.20
Context-Aware  53.59 53.59 15.63 17.39
VRDS 51.50  51.50 14.31 15.77
MR-NET (ours) 61.19  61.19  16.71 17.58

Table 1: Comparison with several state-of-the-art methods
on VRD.

margin term /m in the mutual constraint is set as 0.5. We ini-
tialize the parameters of VGG16 with weights pre-trained on
ImageNet (Deng et al. 2009). The weights of spatial model
and subsequent fully-connected layers are initialized ran-
domly. During visual relationship detection, only detected
objects with the confidence greater than 0.5 are retained to
be paired for further prediction. During training phase, all
paired instances in an image are regarded as a mini-batch
for one iteration. We choose Adam algorithm to optimize
our model, and set the learning rate as 0.00001 initially that
is decreased with the scale of 10 at the beginning of 3rd and
8th epoch respectively. In the last epoch, only mutual rela-
tionship instances are used to fine-tune the network.

Comparative Results

To verify the effectiveness of our model, we first compare
our model with several state-of-the-arts. (1)Language pri-
ors (Lu et al. 2016) utilizes visual appearance feature to train
models for objects and predicates separately, and then fine-
tune the network with language priors. (2)VTransE (Zhang
et al. 2017a) models relationship triplets as vector trans-
lation embedding in a low-dimensional space and trains
the model end-to-end. (3)Context-Aware (Zhuang et al.
2017) integrates contextual information with predicate
classifier, which makes the prediction more reasonable.
(4)VRDS (Zhu, Jiang, and Li 2017) takes advantages of a
variety of spatial distributions to infer visual relationships.
As shown on Table 1 and Table 2, we can observe that our
proposed MR-NET outperforms other methods in both pred-
icate detection and relationship detection tasks. We note that
both Language Priors and VRDS utilize the language infor-
mation, but in different ways, for relationship detection. The
former fine-tunes pre-trained model with language priors,
while the latter trains the entire framework that consists of
visual, language and region models jointly and achieves re-
markable improvements on both tasks. Context-aware mod-
els interactions adaptively with involved entities and outper-
forms other baselines, which means that explicitly integrat-
ing interaction and context makes predicate classifier more
flexible and robust. Our MR-NET predicts relationship by
considering the contextual information with implicit mu-
tual relation learning, which exhibits superior performance
compared to explicit context combination. We also note that
though our approach employs much less modules (i.e., less
spatial configuration and no language module), which also
surpasses VRDS with tremendous advance. It indicates that
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Methods Predicate Det. Relationship Det.
R@50 R@100 R@50 R@100
VTransE 62.63 62.87 5.52 6.04
VRDS 58.72  58.72 8.28 8.28
MR-NET (ours) 65.27  66.45 12.64 14.32

Table 2: Comparison with several state-of-the-art methods
on VG.

mutual relation between paired objects could provide abun-
dant information for visual relationship detection.

Due to the long tail distribution of the dataset, many types
of relationship have a few number of instances. Therefore,
a well-designed model is supposed to learn the relationships
efficiently with scarce annotations and even no annotations.
In our model, knowledge from input pairs are utilized jointly
for mutual relation learning. Besides, semantic similarities
in the ranking loss help penalize different negative answers
distinguishingly. As shown on the Figure 3, we visualize
several samples on the VRD dataset. Our model can not
only makes plenties of reasonable predictions (in the green
boxes), but also mine some correct relationships (in the blue
boxes) which do not appear in the ground-truth annotation
set. Notice that the images that contain newly discovered re-
lationships usually have mutual relationships among object
pairs. It means mutual interaction between paired objects has
been well explored for visual relationship detection.

Component Analyses

To investigate the effect of our semantic ranking loss and
mutual constraint, we conduct predicate detection with our
vanilla framework and its variants on VG.

- Baseline Our basic model with visual appearance and
spatial configuration that removes the mutual constraint.
Cross entropy with softmax is set as the loss function.

- Sem-Rank All the same as baseline, except that the loss
function is replaced by our semantic ranking loss.

- Mutual Sem-rank with mutual relation learning (final).

From Table 3, we can see that Sem-Rank achieves better
performance compared with Baseline. It demonstrates that
semantic ranking is capable of capturing the similarity be-
tween predicates and optimizing with different penalties. In
the third row, our semantic ranking jointly optimizes (s, 0)
and (o, s) pair in the siamese network with mutual relation
learning, and improves the performance with a remarkable
gap. This means that our mutual relation learning enables
the model to infer the relationship learning the mutual inter-
action from each other as well as exploiting the predicate in
single track.

Transportability of Mutual Relation Learning

As aforementioned, the proposed mutual constraint is flex-
ible, and can adapt to other visual relationships detection
models without introducing any parameters. To verify the
transportability of our mutual relation learning, we inject
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Figure 3: Exhibition of several examples of our MR-NET. Correct predictions and wrong predictions are marked in green and
red boxes, respectively. Possibly correct predictions that miss in the ground-truth annotation set are marked in blue boxes.

Predicate Det.

R@50 R@100
Baseline 61.78 62.53
Sem-Rank  62.59 63.74
Mutual 65.27 66.45

Table 3: Results for component analyses on VG

the mutual constraint to one of the state-of-the-arts, DR-
Net (Dai, Zhang, and Lin 2017), and optimize together with
the original softmax losses. We revise their code to a siamese
network and optimize both relationships between a pair of
objects simultaneously. Table 4 exhibits the experimental re-
sults on VRD. The authors mentioned that they trained each
module in DR-Net individually and then fine-tuned jointly.
To balance the performance and time consuming (about a
quarter of theirs), we train all the modules of DR-Net simul-
taneously, and obtain comparable results (the second row).
We then fine-tune siamese network for mutual relation con-
straint based on the weights of DR-Net that we trained. To
retain more contextual information of relationships, we em-
ploy the first layer without activation in their relational net-
work as the representation in mutual relation space. Our mu-
tual relation networks achieve considerable improvements in
both predicate and relationship detection tasks, even better
than the pre-train and fine-tune training procedure in (Dai,
Zhang, and Lin 2017). We also note that their training proce-
dure performs well in Recall@50, which means that the pre-
training may bring in subtle improvements for fine-tuning.
From our previous statistic, there are only about 10K re-
lationship instances that are involved in mutual paired re-
lations. To augment training samples, we randomly change
the bounding boxes (including shifting and scaling) with 5
to 10 percent of the width or height, and no more than 20
pixels. We note this operation not only augments the train-
ing data, but also introduces reasonable noise, which makes
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Models Predicate Det. Relationship Det.
R@50 R@100 R@50 R@100
DR1 80.78 8190 1694  20.20
DR2 7773 79.84 16.05 19.82
DR2-A  78.21 79.76 16.06  20.12
Mutual  80.28  81.98 16.27 20.52

Table 4: Results for transportability analysis of mutual con-
straint on VRD. DR1 is the results reported in (Dai, Zhang,
and Lin 2017), which trained each module independently,
and then fine-tuned all the modules jointly. DR2 and DR2-
A indicate DR-Nets that we trained all modules directly and
augment the training set with random shift or scaling, re-
spectively. Mutual means DR2-A with mutual constraint.

the model more robust for relationship detection while does
not weaken the predicate detection.

Conclusion

In this paper, we presented a novel approach for visual re-
lationship detection, which employed a siamese network,
and explored the mutual interaction between paired objects.
Our model integrated visual and spatial information of ob-
jects to learn the mutual representations for mutual inter-
action exploration and predicates prediction. To discrimina-
tively optimize the predictions by semantic information, we
also applied word embeddings at the label level and ranked
predicates with previous feature presentations. The experi-
mental results compared with other methods on VRD and
VG demonstrated the effectiveness and superiority of our
approach. Moreover, the proposed mutual relation learning
also exhibited flexible transportability to other framework.
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