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Abstract

In multi-cycle assignment problems with rotational diversity,
a set of tasks has to be repeatedly assigned to a set of agents.
Over multiple cycles, the goal is to achieve a high diversity
of assignments from tasks to agents. At the same time, the
assignments’ profit has to be maximized in each cycle. Due
to changing availability of tasks and agents, planning ahead
is infeasible and each cycle is an independent assignment
problem but influenced by previous choices. We approach the
multi-cycle assignment problem as a two-part problem: Profit
maximization and rotation are combined into one objective
value, and then solved as a General Assignment Problem.
Rotational diversity is maintained with a single execution
of the costly assignment model. Our simple, yet effective
method is applicable to different domains and applications.
Experiments show the applicability on a multi-cycle variant of
the multiple knapsack problem and a real-world case study on
the test case selection and assignment problem, an example
from the software engineering domain, where test cases have
to be distributed over compatible test machines.

1 Introduction
In this paper, we address the problem where multiple cycles
of assignment problems have to be solved, with the additional
goal to assign each task to different agents in subsequent
cycles and eventually to all compatible agents.

In general, assignment problems are well-studied in artifi-
cial intelligence and can be solved efficiently. Their goal
is to assign a set of weighted tasks to a set of agents,
such that capacity constraints are satisfied and a profit func-
tion is maximized. These problems are relevant in a broad
context, of which many consider rotation aspects, too. In
nurse rostering (Chiaramonte 2008; Azizi, Zolfaghari, and
Liang 2010) and workforce scheduling (Ernst et al. 2004;
Musliu, Schutt, and Stuckey 2018), rotation is relevant to
avoid boredom and fatigue or to cover a constrained shift
system. In aircraft rotation (Clarke et al. 1996) or machine
scheduling (Ma, Chu, and Zuo 2010), rotation mechanisms al-
low to keep maintenance schedules or optimize usage patterns
of machinery. Not always can such scheduling requirements
and needs be addressed upfront, albeit for changing demand
patterns, personnel availability due to vacations and sickness,
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or short-term planning horizons for other reasons. Therefore,
it is necessary to include rotation mechanisms for iterative,
recurring planning scenarios.

The presented approach addresses multi-cycle assignment
problems with varying availability of tasks and agents under
the additional goal to rotate assignments from tasks to agents
over multiple cycles. Tasks and agents can be unavailable for
one or several cycles without previous notice or information
about their next availability. We refer to the subsequent di-
verse assignments as rotational diversity. A full example of
the problem and our solution is given in Section 4.1.

This work defines the term rotational diversity in a tem-
poral manner. That is, the solution to multiple subsequent
instances of a problem has to differ in the assignments made.
This is different from the notion of solution diversity, where
it is desirable to find multiple distinctly diverse solutions
to one instance of a problem (Glover, Løkketangen, and
Woodruff 2000; Hebrard et al. 2005; Trapp and Konrad 2015;
Petit and Trapp 2015).

We present an optimization model that combines prof-
its and affinities, a metric to describe the state of rotation,
into a single optimization criterion. Solving this model incre-
mentally, that is, at each cycle, allows to control rotational
diversity. A central component for this control is the strategy,
that defines how profits and affinities are combined.

We discuss five strategies for this combination of values
and evaluate them on two case studies. A first case study is a
multi-cycle extension of the multiple knapsack problem, and
the second is a real-world case study of test case selection and
assignment problem (TCSA), originating from the problem
of testing software for robotic systems. Our results show that
rotation is achieved while sacrificing less than 4 % of the
original goal of profit maximization in TCSA.

2 Related Work
The general multi-cycle assignment problem is a variant of
the General Assignment Problem (GAP) (Pentico 2007). A
set of tasks, each associated with a profit and a weight, has
to be assigned to a set of agents with limited capacity. The
goal is to maximize (or minimize) the summed profits of the
assigned tasks, while the weights do not exceed the agent
capacities. Not all tasks have to be assigned, and profits and
weights can vary between agents. The classical assignment
problem formulates a cost minimization objective, although
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maximization, which we use throughout this work, is also
commonly found in problem variants.

In this paper, we formulate rotational diversity as a gen-
eral assignment problem, as our contribution is steered to-
wards the general rotation mechanism. The closest problem
variant is the group of knapsack problems. One or multi-
ple agents have to be filled to maximize the value of the
selected tasks (Martello and Toth 1987). A multi-cycle knap-
sack variant is presented in (Faaland 1981), although only
the unassigned items from previous cycles are available in
subsequent cycles.

Assignment rotation is found in job rotation scheduling.
Here, a common goal is to find schedules and work assign-
ments for humans to avoid fatigue and boredom (Bhadury
and Radovilsky 2006), or to evenly distribute shifts to per-
sonnel (Bard and Purnomo 2005; Ayough, Zandieh, and Far-
sijani 2012). This is approached by a static schedule, where
the assignment between workers and their tasks frequently
changes. We do not fix one assignment over multiple cycles,
but have to repeatedly create individual assignments at each
cycle due to changing availability of agents and tasks. Op-
posite to diverse rotations is the concept of persistence in
robust optimization (Bertsimas, Natarajan, and Teo 2006;
Morrison 2010). Persistence (Brown, Dell, and Wood 1997;
Bertsimas, Natarajan, and Teo 2006) considers finding stable
assignments during optimization, such that improvements
in the solution objective only cause small changes in the
variable assignment of the solution. By maximizing the affin-
ity between tasks and agents, we can adjust the presented
method to support persistent instead of diverse assignments in
subsequent iterations of a problem using similar techniques.
We note, that the concept of affinity, which we introduce in
Section 3.1, can be transferred to multi-cycle problems with
persistence as well.

Fair allocations, which maximize a social welfare func-
tion, are considered in game theory research. Mechanisms for
the resource distribution include combinatorial auctions and
exchanges (de Vries and Vohra 2003; Endriss et al. 2006).
Both have shown to result in a balanced and fair distribu-
tion of resources, although it is complex to determine which
resources to offer in an auction or exchange and who is the re-
sulting winner (Sandholm and Suri 2003). Recent works fur-
ther discuss aspects of repeated matching between tasks and
agents, under consideration of dynamic preferences and fair-
ness (Hosseini, Larson, and Cohen 2015), or repeated match-
ing of previously unmatched tasks (Anshelevich et al. 2013).
Because combinatorial auctions and exchanges can be decen-
tralized, these techniques are commonly used for resource
allocation in multi-agent systems (Liu and Mohamed 2008;
Nongaillard et al. 2009).

In this work, we do not directly solve the GAP, but instru-
ment a general solver to maintain a fair distribution of tasks
to agents. An alternative is a system where agents exchange
tasks among them to achieve rotation. However, preliminary
experiments showed this approach to be inferior to the one
presented. The evaluated exchange model first focused on
profits only, and afterwards aimed for a fair rotation by al-
lowing one-task exchanges between agents. It showed that
a good GAP solution leaves only few choices for one-task

Cycle 1: GAP(T1,A1)

Balance
Profit vs. Rotation

Cycle 2: GAP(T2,A2)
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. . .

Cycle k: GAP(Tk,Ak)

Balance
Profit vs. Rotation

. . .

T1

T2

...

Tn

A1

A2

...

Am

T1

T2

...

Tn

A1

A2

...

Am

T1

T2

...

Tn

A1

A2

...

Am

Inner Problem

Outer Problem

Figure 1: Multi-Cycle Assignment Problem: At each cycle
an independent GAP has to be solved.

exchanges and only minimal improvements in rotational di-
versity occurred.

3 Problem Description
We first introduce the multi-cycle assignment problem as a
combination of two problems, which we further define after-
wards. We discuss the characteristics of the class of general
assignment problems at the core of our approach. Finally,
we formulate and discuss the requirements for maintaining
multi-cycle rotational diversity.

In multi-cycle assignment problems, every cycle is a dis-
tinct planning unit, because, due to the availability of tasks
and agents, planning ahead is not possible. Therefore, rota-
tional diversity has to be considered at every cycle.

This separates the overall problem into two partial prob-
lems (as visualized in Figure 1): First, the inner problem is to
solve an independent GAP in each cycle k. The GAP selects
a subset of the available tasks while maximizing the sum of
their values.

Second, the outer problem aims to maintain a diverse as-
signment between tasks to agents, meaning that the tasks are
frequently assigned to all compatible agents over subsequent
cycles. As a mechanism for this balance, we utilize the affinity
between a single task and each agent, and the affinity pres-
sure as a metric to evaluate the whole set of tasks and agents.
The balancing mechanism between profit optimization and
rotation of tasks, is called a strategy.

The inner problem, as well as both the affinity and the
affinity pressure will be further defined and introduced in the
following section. As part of our method, we introduce five
strategies for achieving rotational diversity in Section 4.2.

3.1 Multi-Cycle General Assignment Problem
The general assignment problem, GAP(T k,Ak), receives
as inputs the tasks and agents available at cycle k. The set
of agents, Ak, consists of m integers i, each with a fixed
capacity, bi, and the set of tasks, T k, consists of n integers
j. Both sets are given at each cycle and can unpredictably
change from cycle k to k + 1.

The relation between a task and an agent has three fixed
attributes: both the profit pij and the weight wij are exter-
nally fixed and describe the benefit respectively the resource
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demand of task j when assigned to agent i. Each task further
has a set of compatible agents, Ckj , that it can be assigned to.

The affinity aij is not fixed, but changes between cycles.
The affinity numerically describes the preferred assignments
from tasks to agents, with higher values giving a higher pref-
erence for a task to be assigned to that agent.

Additionally, we refer to values in the context of the op-
timization objective of the GAP. Here, the value vij is a
combination of profits and affinities, a way to balance profit-
and rotation-oriented assignments. For a standard assignment
problem without affinities, the values equal the profits.

The affinity between a task and an agent, aij , is the number
of cycles since the last assignment of task j to agent i. The
affinity quantifies the preference of a task to be assigned to
certain agents during the next cycles. The affinity pressure
is the maximum of all affinities in the set of tasks. Both the
affinity and the affinity pressure will be further discussed
after a definition of the inner assignment problem.
Definition 1. Multi-Cycle General Assignment Problem

Maximize
∑

i∈Ak

∑

j∈T k

xijvij (1)

subject to
∑

j∈T k

xijwij ≤ bi, ∀ i ∈ Ak (2)

∑

i∈Ak

xij ≤ 1, ∀ j ∈ T k (3)

with

k : Index of the current cycle

Ak : A set of integers i labeling m agents

T k : A set of integers j labeling n tasks
bi : Capacity of agent i
vij : Value of task j when assigned to agent i (4)
wij : Weight of task j on agent i

xij :

{
1 Task j is assigned to agent i ∧ i ∈ Ckj
0 otherwise

(5)

The problem’s objective is to maximize the total sum val-
ues of the assigned tasks (Eq. 1). Each agent can hold multiple
tasks up to its resource limit (Eq. 2) and each task is assigned
to at most one agent (Eq. 3). The assignment of tasks to
agents is constrained by compatibility constraints (Eq. 5),
such that each task can only be placed on a subset of agents.

We state a very general GAP formulation, although our
proposed approach is able to handle different GAP variants.
The most important and required properties of the formula-
tion are: a) the possibility to have different values per task and
agent (Eq. 4), and b) the value maximization objective (Eq. 1).

GAP is NP-hard as it reduces to the NP-hard one-
dimensional knapsack optimization problem (Karp 1972).

3.2 Rotational Diversity
To maintain rotational diversity, it is necessary to control the
affinities between tasks and agents. As an indicator, the affin-
ity pressure must not grow too high, which can be avoided
by a diverse rotation between tasks and agents.

Profits Affinities Values[ p1,1 ··· p1,n

...
. . .

...
pm,1 ··· pm,n

]
©

[ a1,1 ··· a1,n

...
. . .

...
am,1 ··· am,n

]
=

[ v1,1 ··· v1,n

...
. . .

...
vm,1 ··· vm,n

]

Figure 2: In the outer problem, profits p and affinities a are
combined by a strategy© into one values v. These values
are used to optimize the GAP in the inner problem.

As part of solving the outer problem, it is necessary to bal-
ance profit maximization and reducing affinities by rotating
the assignments from tasks to agents. Additional complexity
stems from the fact, that at each cycle different sets of agents
and tasks are available and the assignment can only take the
current cycle into account.

The optimization in the outer problem could be solved
by an exhaustive search of possible combinations between
profits and affinities, such that an optimal solution can be
found. In practice, this is infeasible, as it requires to solve
the computationally expensive inner GAP problem multiple
times before deciding for the final solution.

4 Solution Approach
The central idea to maintain rotational diversity is to ma-
nipulate the values contributing to the objective of the inner
assignment problem (see Figure 2). This adjustment steers
the optimization process towards an assignment which is bal-
ancing profit maximization and making diverse assignments.
The adjustment is made according to a strategy and the state
of the available resources, that is tasks and agents available
in the current cycle, and their affinities.

Before introducing different adjustment strategies, we de-
scribe the mechanism to calculate the affinities and the affin-
ity pressure, and the relevance of their values.

4.1 Assignment Diversity
To achieve rotation of tasks over agents in subsequent cycles,
the cycle-specific assignment problem needs an incentive to
assign a task to a different agent than in previous assignments.

This incentive is described by the notion of affinities be-
tween tasks and agents, describing how important an assign-
ment of a task to an agent is to achieve high rotational diver-
sity. A low affinity value corresponds to a recent assignment
from the task to the agent, whereas a high affinity indicates
the necessity to make this assignment again soon.

The affinities are determined by Affinity Counting.

Definition 2. Affinity Counting

akij =





0 if i /∈ Ckj (6a)

1 if k = 1 ∨ xk−1ij = 1 (6b)

ak−1ij + 1 if i ∈ Ak ∧ j ∈ T k (6c)

ak−1ij otherwise (6d)

Affinity Counting counts the number of cycles since the
last assignment from task j to agent i, starting from 1 at the

7726



first cycle or the last assignment (6b). If a task and agent are
incompatible, the affinity is always 0 (6a). At cycle k, the
affinity increases for non-selected, but possible assignments
in the previous cycle k − 1 (6c)(6d).

Naturally, the affinity values increase over time as each
task can only be assigned to one of the compatible agents
in each cycle. This growth is anticipated and acceptable to
a certain degree, while at the same time, growing affinities
show the need to make the corresponding assignment soon.

To monitor the overall state of rotational diversity, we
define the Affinity Pressure metric.

Definition 3. Affinity Pressure (AP)
The Affinity Pressure is defined per cycle k and task j:

APkj =

∑
i∈Ak akij
|Ckj |

−
|Ckj |+ 1

2

It is the scaled difference between the actual and ideal
affinities, as described below. For the AP calculation, only
the task and agents available in that cycle are considered.
Hence, tasks and agents can be added or completely removed
without affecting the AP values of the remaining tasks.

In an ideal rotation setting, the affinities of a task j form
the set { i | 1 ≤ i ≤ |Ckj | }, with its sum being the triangular
number 1

2 · |Ckj | · (|Ckj |+ 1). As the task is (ideally) assigned
in every cycle, the last assignment has affinity 1, the previous
assignment has affinity 2, and so on. With |Ckj | compatible
agents, the longest unassigned task then has affinity |Ckj |.

However, in a practical rotation setting, this perfect rota-
tion is hindered by non-availability and limited capacities of
the agents. To evaluate the state of rotational diversity, it is,
therefore, crucial to consider how long a task has not been
assigned to each agent, but also, from an agent’s perspective,
the time it has not executed certain tasks.

The AP metric is derived from the difference between the
sum of current affinities and the ideal values. For comparabil-
ity and normalization, it is scaled by the number of possible
agents: 1

|Ckj |
·
[∑

i∈Ak akij − 1
2 · |Ckj | · (|Ckj |+ 1)

]

In this formula, the minuend describes the current affini-
ties relative to the number of possible agents, the subtrahend
the ideal case with fully regular rotation. A positive excess
indicates missed assignments to achieve ideal rotation. Note
that the bottom value of 0 is an ideal value, which in prac-
tice is usually not achievable, due to selection and limited
availability of tasks and agents, and the necessary selection
in the GAP assignment problem. During the first |Ckj | cycles,
the AP for a task is negative, as initially all affinities equal 1.
After |Ckj | cycles, the AP is always ≥ 0.

Example. Figure 3 presents an example of affinities and their
development over four cycles. In the initial cycle 1, all affini-
ties equal 1 (or 0 for incompatible assignments) and there is
no preferred assignment among all possible assignments.

Over the next cycles, tasks T1 and T2 rotate over all com-
patible agents, resulting in the AP value 0 for T1 and T3.
Task T3 does not rotate, but is assigned to agent C in two
subsequent cycles, which increases the affinity for the assign-
ment to agent B and raises the AP to 0.5, an indicator for the

A B C AP

T1 1 1 0 -0.5
T2 1 1 1 -1.0
T3 0 1 1 -0.5

(a) Cycle 1

A B C AP

T1 1 2 0 0
T2 2 1 2 -0.3
T3 0 2 1 0

(b) Cycle 2

A B C AP

T1 2 1 0 0
T2 1 2 3 0
T3 0 3 1 0.5

(c) Cycle 3

A B C AP

T1 1 2 0 0
T2 2 3 1 0
T3 0 3 1 0.5

(d) Cycle 4

Figure 3: Affinities and Affinity Pressure of three tasks T1,
T2, T3 and agents A, B, C over four cycles (Bold: Ideal;
Highlighted: Assignment in cycle k; Strikethrough: Task
unavailable)

imbalance of T3. Note that, in cycle 3, T3 is unavailable, but
this does not affect its affinities in cycle 4.

Theorem 1. For any set of tasks T k and agents Ak with
constant availability, if a task j is always assigned to one
of the agents for which it has the highest affinity, a perfect
rotation is achieved and the Affinity Pressure is 0.

Proof. With N possible agents, it takes N cycles to assign
a task once to every agent. The affinity is set to 1 after the
assignment was made and is increased by 1 at every cycle.
After each assignment was made once, the affinity to the first
assigned agent is N again, the affinity of the second assigned
agent is N − 1, and the affinity of the last assigned agent is 1.
The sum of affinities is

∑
i∈Ak akij =

∑N
i=1 i =

1
2N(N+1).

Using Definition 3, and because the number of available
agents is constantly |Ckj | = N , it follows AP = 0.

4.2 Strategies
A central strategy balances profit maximization and diverse
assignments, by controlling the combination of profits and
affinities into values. This combination then steers the focus
of the single-objective GAP solver.

The general optimization scheme is such that, first, the
state of the system, given by available tasks and agents, and
the affinity pressure are gathered. Second, the task values are
derived, and the cycle’s GAP is solved. Finally, based on
the actual assignments, the affinities of the available tasks
are updated. This procedure adds little overhead to a process
where no rotation is considered, as the main computational
effort remains in the central GAP.

A strategy is fixed in the optimization process, such that it
is not exchanged between cycles. However, a strategy can be
adaptive towards the current state of tasks, agents, and affini-
ties. At the beginning of every cycle, the strategy calculates
the profit values, based on profits, affinities, and (if required)
other information about the current state. These values are
then taken as parameters in the current cycle’s GAP instance.

In the following, we present five strategies to control rota-
tional diversity and combine profits and affinities.
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Strategy 1: Objective Switch (OS/γ)
The Objective Switch strategy maintains rotational diversity
by monitoring the affinity pressure, and, if it reaches a thresh-
old γ, switches from profit to affinity values:

vij ,

{
pij if γ > maxj∈T k APkj
aij otherwise

The threshold γ is a fixed, user-defined configuration pa-
rameter, and selected according to the desired trade-off be-
tween maximized profits and high rotational diversity.

Strategy 2: Product Combination (PC)
In the Product Combination strategy, profit and affinities are
multiplied to form the task values:

vij , pαij · aβij
The exponents α and β allow configuration of the strategy

to emphasize one aspect or to account for different scales of
profits and affinities in specific applications. However, we
found using a standard configuration of α = β = 1 to be in-
tuitive and well-performing. Therefore, this strategy does not
require additional configuration, but allows for adjustments
if necessary.

In the PC strategy, there is not active reaction on the overall
state of rotational diversity, as in the OS/γ strategy, but higher
affinities values implicitly influence the profits and put an
emphasis on tasks with missing rotation.

Strategy 3: Weighted Partial Profits (WPP)
The WPP strategy calculates task values with a weighted
sum:

vij , λkj ·
pij

max
i∈Ak

max
j∈T k

pij
+ (1− λkj ) ·

aij
max
i∈Ak

max
j∈T k

aij

The task- and cycle-specific weight parameter λkj balances
the influence of each objective on the final value vij . λkj is
self-adaptive and depends on the ratio between ideal and
actual affinities, similar to the affinity pressure. When the
rotational diversity is high, the influence of the profits is high,
too, otherwise the affinities have higher influence:

λkj =
1
2 · |Ckj | · (|Ckj |+ 1)∑

i∈Ak aij

To account for different value ranges, both profits and
affinities are scaled to [0, 1] by their respective maxima.

Strategy 4: Fixed Objective: Profit (FOP)
Each task value equals the static profit value: vij , pij

Strategy 5: Fixed Objective: Affinity (FOA)
Each task value equals the affinity value: vij , aij

FOP and FOA represent special cases of the PC strategy,
with β = 0 respectively α = 0. These strategies are the two
most extreme approaches, because each of them ignores the
other goal, albeit profits or affinities. They serve as compari-
son baselines to evaluate the trade-offs by the other strategies.

5 Experimental Evaluation
We consider two problem types for evaluation: a) a multi-
cycle variant (MCMKP) of the known multiple knapsack
problem (MKP) to evaluate trade-offs between the strategies;
b) test case selection and assignment (TCSA) as a real-world
case study from the area of software testing to evaluate the
practical interest of our approach.

5.1 Implementation and Setup
Our strategies and the experimental setup are implemented
in Python. The assignment problem is modeled with MiniZ-
inc 2.0 (Nethercote et al. 2007), following the presented GAP
formulation, and is solved with IBM CPLEX 12.7.1.

Because the GAP model and its solver are a black-box to
our strategies, their optimization is not in the scope of our
work. To ensure the solution quality with a reasonable time-
contract for the solver, we compared it on a set of sample
instances with mulknap,1 an exact MKP solver (Pisinger
1999). With a 60 second timeout, CPLEX achieves on average
99.5 % of the optimal solution calculated by mulknap.

All strategies are run on each scenario with a 60 second
timeout for the GAP solver. The thresholds γ for the Ob-
jective Switch strategy are 10, 20, 30, and 40. We evaluate
the full rotation of tasks over agents, both looking at all
tasks, and at each individual task. One full rotation over all
tasks is achieved, when each task was assigned once to all
compatible agents. The rotation over one task reflects how
often a task in average is assigned to its compatible agents.
These numbers can be different. If few tasks are not rotated,
those forestall full rotations, but still allow other tasks to be
frequently rotated.

Furthermore, we compare the achieved profit of the assign-
ments with the profit of the FOP strategy, which does not
consider rotation and only maximizes profit. As the other
experimental parameters are the same and also the same as-
signment model is used, FOP simulates the baseline setting
without rotation-awareness.

We have considered an additional baseline, where the full
multi-cycle assignment problem is optimized as one single
optimization model. This differs from our method, as all avail-
abilities are known upfront. However, due to the exceeding
model size, solving the extended GAP model is computa-
tionally expensive and did not yield a comparable solution
within 24 CPU hours, which is substantially more than the to-
tal computational cost of successively optimizing individual
cycles. Therefore, we do not further consider this baseline.

5.2 Multi-Cycle Multiple Knapsack Problem
MKP is a variant of the 0-1 knapsack problem, and thereby
of GAP, with multiple agents (knapsacks) (Pisinger 1995).

We extend MKP to a multi-cycle variant (MCMKP) with
limited availability of tasks and agents. In every cycle, the
same MKP instance has to be solved under consideration
of the assignments made in previous cycles and changing
availability of tasks and agents.

To generate problem instances, we follow the procedure by
Pisinger (1999), as described in Fukunaga (2011), and extend

1http://www.diku.dk/∼pisinger/codes.html
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Avail. A 75% 75% 100% 100%
Avail. T 75% 100% 75% 100%

St
ra

te
gy

FOA 2.3 (4.5) 2.0 (4.8) 3.0 (5.8) 3.3 (6.2)
OS/10 2.0 (4.4) 2.0 (4.7) 3.0 (5.3) 3.3 (5.9)
OS/20 1.7 (3.9) 2.0 (4.4) 1.7 (4.0) 3.0 (5.2)
OS/30 1.0 (3.2) 1.7 (3.9) 1.3 (3.4) 2.3 (4.4)
OS/40 1.0 (2.8) 1.3 (3.4) 0.7 (3.0) 1.7 (3.8)
PC 0.0 (4.3) 0.0 (4.5) 0.0 (5.5) 0.0 (5.9)
WPP 1.3 (4.0) 1.3 (4.3) 1.3 (4.9) 1.7 (5.3)
FOP 0.0 (1.7) 0.0 (1.5) 0.0 (1.9) 0.0 (2.0)

Table 1: Rotational Diversity for MCMKP: Full rotations
of all tasks (Avg. rotations per task; Bold: Best, without
FOA/FOP baselines).

FOA PC OS/10 OS/20 OS/30 OS/40 WPP

Strategy

80

85

90

95

100

Pr
ofi

t(
%

of
FO

P)

Figure 4: MCMKP: Profits in comparison to baseline ( % of
FOP). The effect of different thresholds for OS/γ are clearly
visible.

it to the notion of compatibility and availability. Task weights
are drawn from a uniform distribution (wj ∼ U [10, 1000]),
and the profits are either uncorrelated or weakly correlated.
In the former case, profits are drawn from the same uniform
distribution. In the latter case, the profits are calculated by
pj = wj + U [−99,+99] ,∀ j ∈ T k. The agents’ capaci-
ties are set to 40–60 % of the tasks’ weight, except for the
last agent, whose capacity is set such that the total capac-
ity equals half of the tasks’ demand. The instance sizes are
30/75, 15/45, and 12/48 agents, respectively tasks. For this
generation scheme, a ratio |T k|/|Ak| slightly larger than 2
leads to hard instances, while instances of higher ratios be-
come easier to solve (Fukunaga 2011). The number of cycles
is three times the number of tasks, to allow multiple assign-
ments between tasks and agents, even if an agent has only
capacity for one task.

A notion of compatibility is implicit in the generation
procedure. Tasks that do not fit into an agent’s capacity are
automatically incompatible. However, this skews the number
of compatible tasks to those agents with high capacities, and
puts more emphasis onto their assignments.

We take all combinations of the four parameters to generate
24 instances. The results are shown in Table 1 and Figure 4.
We look at the rotational diversity results grouped by agent
and task availability, that is in four different groups, as this is
the main differentiating attribute of the MCMKP scenarios.

The rotation-aware strategies, that balance profit maxi-
mization and rotation, rank in-between the baseline strategies
FOA and FOP, both regarding profit and rotation.

More specifically, the OS/γ strategies, which switch maxi-
mizing profit and diverse assignments based on an AP thresh-
old, are particularly effective in the MCMKP setting. With
its low γ value, OS/10 performs similar to FOA, as it more
frequently focuses on diverse assignments, but still achieves
slightly better profits, whereas OS/40, with its high γ, has the
highest profit of the strategies, with ¿90 % profit compared
to FOP, but better rotation than the FOP baseline.

Product Combination, the multiplication of profits and
affinities, is not particularly effective in the MCMKP setting.
Although it leads to a high profit utilization and a higher
rotation per task than the other strategies, it is not capable to
achieve full rotation. This shows, that there are a few tasks
that do not receive high enough task values by the PC strategy,
such that they are lucrative enough to be assigned in the GAP.
As noted before, the MCMKP generation procedure shifts the
compatibility of tasks to the last agent, to which most tasks
are compatible. Still, its capacity is limited and only a few
tasks, especially those with a high weight, can be assigned
per cycle. This bottleneck in the diverse assignment process
can hinder full rotations. Nevertheless, as other strategies
are capable to overcome the bottleneck and can achieve full
rotations, this is a negative aspect of the PC strategy.

The WPP strategy maintains a good level of average rota-
tions per task and a medium level of full rotations. However,
the profit trade-offs are not consistent, but vary between the
different scenarios, which makes WPP unsuitable as a general
strategy, compared to PC and OS/γ.

Furthermore, we analyze the influence of varying availabil-
ity on the achievable rotations. As the setting is such that a
selection of tasks has to occur (the resource demand is higher
than the resource supply), the availability of a large number
of agents has a stronger influence than a high task availability.

However, for making diverse assignments, a high task
availability is beneficial. This can be seen when comparing
the results with 75 %/100 % and 100 %/75 % agent respec-
tively task availability. The more profit-oriented variants of
OS/γ achieve better rotation in the former than in the latter
case, as OS/γ switches focus, and potentially the optimiza-
tion objective of a cycle does not match the availability of
the tasks. Then, one task might only be present at profit max-
imization, but not for rotation optimization.

5.3 Test Case Selection and Assignment
As a second case study, we employ the real-world application
of Test Case Selection and Assignment (TCSA) for cyber-
physical systems (Yoo and Harman 2012), such as industrial
robots. TCSA usually occurs in Continuous Integration (CI)
processes, where new releases of the robot control software
are regularly integrated and released (Mossige et al. 2017).
Typically, CI involves assigning test cases to test agents sev-
eral times a day. Comprehensive test suites exist, but available
time and hardware for their execution are limited. Then it is
necessary to distribute a selection of the most relevant test
cases over the available agents. The test case relevance is
given by an upstream test case prioritization process. This
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Agents 20 20 20 30
Tasks 750 1500 3000 3000 Total

St
ra

te
gy

FOA 96.1 79.0 67.4 74.4 79.2
OS/10 96.3 79.5 67.8 75.0 79.7
OS/20 98.2 80.0 68.3 75.4 80.5
OS/30 99.1 85.0 69.0 75.9 82.3
OS/40 99.6 90.9 69.6 76.6 84.2
PC 99.7 97.7 91.1 96.6 96.3
WPP 98.1 77.4 54.6 66.6 74.2
FOP 100.0

(a) Profit in comparison to baseline (% of FOP)

Agents 20 20 20 30
Tasks 750 1500 3000 3000 Total

FOA 15 (24.4) 6 (15.7) 3 (9.5) 3 (8.5) 27 (14.5)
OS/10 14 (22.2) 6 (15.5) 3 (9.4) 3 (8.4) 26 (13.9)
OS/20 9 (18.6) 6 (15.3) 3 (9.2) 3 (8.3) 21 (12.9)
OS/30 7 (16.9) 5 (14.3) 3 (9.1) 3 (8.1) 18 (12.1)
OS/40 7 (16.2) 4 (13.1) 3 (8.9) 3 (7.9) 17 (11.5)
PC 15 (24.0) 7 (14.4) 3 (8.3) 3 (7.5) 28 (13.6)
WPP 14 (24.1) 7 (14.2) 3 (7.3) 3 (7.0) 27 (13.2)
FOP 3 (15.7) 0 (10.8) 0 (7.1) 0 (4.6) 3 (9.6)

(b) Diversity: Full rotations of all tasks (Avg. rotations per task)

Table 2: Rotational Diversity for TCSA: The PC strategy is most effective. (Bold: Best, not considering FOA/FOP baselines)

priority can be different at each cycle, due to discovered fail-
ures or changes in the system-under-test. The assignment of
tests to agents is constrained by the available time and com-
patibility between test and agent. In the GAP terminology,
the test case priority resembles the profit, the test’s runtime
the task weight, and an agent’s available time its capacity.

Additionally, the availability of agents is influenced by
maintenance, technical faults, or short-term usage in other
projects, and the set of test cases changes due to the ongoing
development. Therefore, TCSA cannot be solved by a static
assignment without the need for frequent updates. Instead,
to capture the dynamic setting, an individual selection and
assignment has to be made at each cycle. Enforcing diverse
assignments increases the coverage of tasks and agents, and
thereby the confidence into the system-under-test.

We evaluate the strategies on TCSA, based on actual test
data from our industrial partner. All test agents have the
same capacity, that is the time available for a test cycle (10
hours). Due to unique hardware specifications and different
functionalities, a test case is compatible with approximately
60 % of the test agents. The runtime of a test case varies
from 1 to 21 minutes, but is identical for each test agent. In
practice, test agents are not exclusively available for testing
and test cases are temporarily removed from the test suite.
Therefore, an average of 40 % of the agents and 10 % of the
test cases are unavailable for 3–7 cycles.

We consider four scenarios, 20 agents with 750, 1500, and
3000 test cases, and 30 agents with 3000 test cases. Table 2
summarizes the results. All strategies, except FOP, which is
rotation-unaware, are able to maintain rotational diversity at
a similar level, regarding both the full rotations of tasks, and
the average number of rotations per task.

In the smallest scenario, a full rotation of all tests over all
possible agents is achieved 14–16 times over 365 cycles, i.e.
every 23–26 days. Here, each task is compatible to ˜12 agents
(60 %), and 60 % of the agents are unavailable for multiple
cycles. For the larger scenarios with the same number of
agents, the number of full rotations reduces approximately
linear, but not the number of average rotations per task. This
shows, that some tests are not evenly rotated and hinder the
completion of full rotations. With a larger number of agents,
the average number of rotations per tasks drops, as there are

more compatible agents and it takes more cycles to rotate.
The profits earned from the assignments (see also Table 2)

are close to the FOP baseline in the smallest scenario, but
decrease with a higher number of tests, except for PC, which
is able to balance profit maximization and rotation better than
the other strategies and even outperforms FOA for complete
rotations. For PC, the profit trade-off is always < 10%, and
on average < 4% in comparison to the profit-oriented FOP.

6 Conclusion
Rotational diversity is the frequent assignment of a task to all
its compatible agents over subsequent cycles. We present a
two-part model for its optimization in multi-cycle assignment
problems with variable availability of tasks and agents: 1) an
inner assignment problem, to optimize the assignment from
tasks to agents, and 2) an outer problem, to adjust the task
values for the maximization objective of the inner problem.

Five strategies, each having a different approach and trade-
offs, are evaluated on two case studies. Achieving rotational
diversity is possible with a profit trade-off of only 4 % in the
test case selection and assignment case study. Both the prod-
uct combination of profits and affinities, and the objective
switch strategy, that focuses on either profit maximization or
diverse assignments, efficiently achieve rotational diversity.

For applications of this method, we encourage the reader
to start from the product combination strategy. It is simple
to implement and does not require initial configuration, but
allows to be adjusted if necessary.

The combination of profits and affinities into a single
task value is efficient for balancing profits and rotation. This
is especially the case in settings where an extended multi-
objective optimization model is not an alternative. Splitting
the problem and its responsibilities allows to use problem-
specific, single-objective solvers for the inner problem, or to
use problems with additional requirements, e.g. precedence
constraints or task-dependencies.
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