The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Quantifying Uncertainties in Natural Language Processing Tasks

Yijun Xiao, William Yang Wang
University of California, Santa Barbara
{yijunxiao,william} @cs.ucsb.edu

Abstract

Reliable uncertainty quantification is a first step towards
building explainable, transparent, and accountable artificial
intelligent systems. Recent progress in Bayesian deep learn-
ing has made such quantification realizable. In this paper, we
propose novel methods to study the benefits of characterizing
model and data uncertainties for natural language processing
(NLP) tasks. With empirical experiments on sentiment anal-
ysis, named entity recognition, and language modeling using
convolutional and recurrent neural network models, we show
that explicitly modeling uncertainties is not only necessary to
measure output confidence levels, but also useful at enhanc-
ing model performances in various NLP tasks.

Introduction

With advancement of modern machine learning algorithms
and systems, they are applied in various applications that, in
some scenarios, impact human wellbeing. Many of such al-
gorithms learn black-box mappings between input and out-
put. If the overall performance is satisfactory, these learned
mappings are assumed to be correct and are used in real-life
applications. It is hard to quantify how confident a certain
mapping is with respect to different inputs. These deficien-
cies cause many Al safety and social bias issues with the
most notable example being failures of auto-piloting sys-
tems. We need systems that can not only learn accurate map-
pings, but also quantify confidence levels or uncertainties
of their predictions. With uncertainty information available,
many issues mentioned above can be effectively handled.
There are many situations where uncertainties arise when
applying machine learning models. First, we are uncer-
tain about whether the structure choice and model param-
eters can best describe the data distribution. This is re-
ferred to as model uncertainty, also known as epistemic un-
certainty. Bayesian neural networks (BNN) (Buntine and
Weigend 1991; Denker and Lecun 1991; MacKay 1992;
1995; Neal 2012) is one approach to quantify uncertainty as-
sociated with model parameters. BNNs represent all model
weights as probability distributions over possible values in-
stead of fixed scalars. In this setting, learned mapping of
a BNN model must be robust under different samples of

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7322

weights. We can easily quantify model uncertainties with
BNNSs by, for example, sampling weights and forward in-
puts through the network multiple times. Quantifying model
uncertainty using a BNN learns potentially better representa-
tions and predictions due to the ensemble natural of BNNs.
It is also showed in (Blundell et al. 2015) that it is benefi-
cial for exploration in reinforcement learning (RL) problems
such as contextual bandits.

Another situation where uncertainty arises is when col-
lected data is noisy. This is often the case when we rely
on observations and measurements to obtain the data. Even
when the observations and measurements are precise, noises
might exist within the data generation process. Such uncer-
tainties are referred to as data uncertainties in this paper
and is also called aleatoric uncertainty (Der Kiureghian and
Ditlevsen 2009). Depending on whether the uncertainty is
input independent, data uncertainty is further divided into
homoscedastic uncertainty and heteroscedastic uncertainty.
Homoscedastic uncertainty is the same across the input
space which can be caused by systematic observation noise.
Heteroscedastic uncertainty, on the contrary, is dependent on
the input. For example, when predicting the sentiment of a
Yelp review, single-word review “good” is possible to have
3, 4 or 5-star ratings while a lengthened review with strong
positive emotion phrases is definitely a 5-star rating. In the
rest of the paper, we also refer to heteroscedastic uncertainty
as input-dependent data uncertainty.

Recently, there are increasing number of studies investi-
gating the effects of quantifying uncertainties in different
applications (Kendall, Badrinarayanan, and Cipolla 2015;
Gal and Ghahramani 2016b; Kendall and Gal 2017; Zhu and
Laptev 2017). In this paper, we focus on exploring the ben-
efits of quantifying both model and data uncertainties in the
context of various natural language processing (NLP) tasks.
Specifically, we study the effects of quantifying model un-
certainty and input-dependent data uncertainty in sentiment
analysis, named entity recognition, and language modeling
tasks. We show that there is a potential performance increase
when including both uncertainties in the model. We also an-
alyze the characteristics of the quantified uncertainties.

The main contributions of this work are:

1. We mathematically define model and data uncertainties
via the law of total variance;

2. Our empirical experiments show that by accounting for
model and data uncertainties, we observe significant im-
provements in three important NLP tasks;

We show that our model outputs higher data uncertainties
for more difficult predictions in sentiment analysis and
named entity recognition tasks.

Related Work
Bayesian Neural Networks

Modern neural networks are parameterized by a set of
model weights W. In the supervised setting, for a dataset
D = {(x1,v:)},, a point estimate for W is obtained by
maximizing certain objective function. Bayesian neural net-
works (Buntine and Weigend 1991; Denker and Lecun 1991;
MacKay 1992; 1995; Neal 2012) introduce model uncer-
tainties by putting a prior on the network parameters p(W).
Bayesian inference is adopted in training aiming to find the
posterior distribution of the parameters p(W D) instead of
a point estimate. This posterior distribution describes possi-
ble values for the model weights given the dataset. Predic-
tive function fW (x) is used to predict the corresponding y
value. Given the posterior distribution for W, the function
is marginalized over W to obtain the expected prediction.
Exact inference for BNNs is rarely available given the
complex nonlinear structures and high dimension of model
parameters W of modern neural networks. Various ap-
proximate inference methods are proposed (Graves 2011;
Hernandez-Lobato and Adams 2015; Blundell et al. 2015;
Gal and Ghahramani 2016a). In particular, Monte Carlo
dropout (MC dropout) (Gal and Ghahramani 2016a) requires
minimum modification to the original model. Dropouts are
applied between nonlinearity layers in the network and
are activated at test time which is different from a regu-
lar dropout. They showed that this process is equivalent to
variational Bayesian approximation where the approximat-
ing distribution is a mixture of a zero mean Gaussian and
a Gaussian with small variances. When sampling dropout
masks, model outputs can be seen as samples from the pos-

terior predictive function f¥W (x) where W ~ p(W|D). As
a result, model uncertainty can be approximately evaluated
by finding the variance of the model outputs from multiple
forward passes.

Uncertainty Quantification

Model uncertainty can be quantified using BNNs which
captures uncertainty about model parameters. Data uncer-
tainty describes noises within the data distribution. When
such noises are homogeneous across the input space, it
can be modeled as a parameter. In the cases where such
noises are input-dependent, i.e. observation noise varies with
input x, heteroscedastic models (Nix and Weigend 1994;
Le, Smola, and Canu 2005) are more suitable.

Recently, quantifications of model and data uncertainties
are gaining researchers’ attentions. Probabilistic pixel-wise
semantic segmentation has been studied in (Kendall, Badri-
narayanan, and Cipolla 2015); Gal and Ghahramani (2016b)
studied model uncertainty in recurrent neural networks in

7323

the context of language modeling and sentiment analysis;
Kendall and Gal (2017) researched both model and data un-
certainties in various vision tasks and achieved higher per-
formances; Zhu and Laptev (2017) used similar approaches
to perform time series prediction and anomaly detection
with Uber trip data. This study focuses on the benefits of
quantifying model and data uncertainties with popular neu-
ral network structures on various NLP tasks.

Methods

First of all, we start with the law of total variance. Given a
input variable x and its corresponding output variable y, the
variance in y can be decomposed as:

Var(y) = Var (Ely|«]) + E [Var(y|z)] (1

We mathematically define model uncertainty and data un-
certainty as:

U (ylz) = Var (E[y|=])
Ua(y|r) = E [Var(y|z)]

2
3)

where U, and Uy are model and data uncertainties respec-
tively. We can see that both uncertainties partially explain
the variance in the observation. In particular, model un-
certainty explains the part related to the mapping process
E[y|z] and data uncertainty describes the variance inherent
to the conditional distribution Var(y|x). By quantifying both
uncertainties, we essentially are trying to explain different
parts of the observation noise in y.

In the following sections, we introduce the methods em-
ployed in this study to quantify uncertainties.

Model Uncertainty

Recall that Bayesian neural networks aim to find the poste-
rior distribution of W given the dataset D = {(x1,;)} ;.
We also specify the data generating process in the regression
case as:

YW ~ N (fWY(x),0%))

With the posterior distribution p(W|D), given a new in-
put vector x*, the prediction is obtained by marginalizing
over the posterior:

p(y*|x*, D) = /Wp(y*|fW<x*>)p<W|D>dw)

As exact inference is intractable in this case, we can
use variational inference approach to find an approximation
g0 (W) to the true posterior p(W|D) parameterized by a dif-
ferent set of weights § where the Kullback-Leibler (KL) di-
vergence of the two distributions is minimized.

There are several variational inference methods pro-
posed for Bayesian neural networks (Herndndez-Lobato and
Adams 2015; Blundell et al. 2015; Gal and Ghahramani
2016a). In particular, dropout variational inference method
(Gal and Ghahramani 2016a), when applied to models with
dropout layers, requires no retraining and can be applied
with minimum changes. The only requirement is dropouts
have to be added between nonlinear layers. At test time,

*

X

Figure 1: Ilustration of the evaluation process of predicted output and both model uncertainty and data uncertainty. E(y*|x*)

denotes the expected value of model prediction; U,, (y

*) is the model uncertainty with respect to the output; Uy(y

*) is the

input-dependent data uncertainty. Dotted arrows represent sampling processes.

dropouts are activated to allow sampling from the approx-
imate posterior. We use MC dropout in this study to evaluate
model uncertainty.

At test time, we have the optimized approximated pos-
terior ¢(W). Prediction distribution can be approximated
by switching p(W|D) to ¢(W) in Equation 5 and perform
Monte Carlo integration as follows:

E(y*[x") Z Vi (x ©6)
Predictive variance can also be approximated as:
Var (y*) ~ — wa ~Ey*x)2+o* ()

where W is sampled from ¢(W).

Note here o2 is the inherent noise associated with the in-
puts which is homogeneous across the input space. This is
often considered by adding a weight decay term in the loss
function. We will discuss the modeling of input-dependent
data uncertainty in the next section. The rest part of the vari-
ance arises because of the uncertainty about the model pa-
rameters W. We use this to quantify model uncertainty in
the study, i.e.:

Un(y*|x*) = - E(y*‘x*f ®

Data Uncertainty

Data uncertainty can be either modeled homogeneous across
input space or input-dependent. We take the second option
and make the assumption that data uncertainty is dependent
on the input. To achieve this, we need to have a model that
not only predicts the output values, but also estimates the
output variances given some input. In other words, the model
needs to give an estimation of Var(y|z) mentioned in Equa-
tion 3.

7324

Denote p(x) and o(x) as functions parameterized by W
that calculate output mean and standard deviation for input
x (in practice, logarithm of the variance is calculated for an
improvement on stability). We make the following assump-
tion on the data generating process:

y~ N (u(x),0(x)?) 9)

Given the setting and the assumption, the negative data
log likelihood can be written as follows:

N

Z og p(yilp(xi), o (x:))
1. (1
N 2 (2
1

i=1
log o (x;)? + 3 1og 277)

»Crgs

= \

2
+

o(x;)
(10)

Comparing Equation 10 to a standard mean squared loss
used in regression, we can see that the model encourages
higher variances estimated for inputs where the predicted
mean p(x;) is more deviated from the true observation y;.
On the other hand, a regularization term on the o(x;) pre-
vents the model from estimating meaninglessly high vari-
ances for all inputs. Equation 10 is referred to as learned
loss attenuation in (Kendall and Gal 2017).

While Equation 10 works desirably for regression, it is
based on the assumption that y ~ N (u(x),o(x)?). This
assumption clearly does not hold in the classification con-
text. We can however adapt the same formulation in the logit
space. In detail, define p1(x) and o (x) as functions that maps
input x to the logit space. Logit vector is sampled and there-
after transformed into probabilities using softmax operation.
This process can be described as:

u~ N (p(x), diag(o(x)?)) (11)
p = softmax(u) (12)
y ~ Categorical(p) (13)

Corpus Size Average Tokens \4 Classes Class Distribution
Yelp 2013 335,018 151.6 211,245 5 .09/.09/.14/.33/.36
Yelp 2014 1,125,457 156.9 476,191 5 .10/.09/.15/.30/.36
Yelp 2015 1,569,264 151.9 612,636 5 .10/.09/.14/.30/.37
IMDB 348,415 325.6 115,831 10 .07/.04/.05/.05/.08/.11/.15/.17/.12/.18

Table 1: Summaries of Yelp 2013/2014/2015 and IMDB datasets. | V| represents the vocabulary size.

where diag() function takes a vector and output a diagonal
matrix by putting the elements on the main diagonal. Note
here in Equation 13, y is a single label. This formulation can
be easily extended to multi-way Categorical labels.

During training, we seek to maximize the expected data
likelihood. Here we approximate the expected distribution
for p using Monte Carlo approximation as follows:

k) N (p(x), diag(o(x)?))
1 & (k)
e Z softmax(u'"’)

k=1

(14)
Elp] (15)

The negative log-likelihood for the dataset can be written
as:

; log Z exp (

—log K

logZexp U, p>
(16)

where u; . is the c-th element in u;.
After the model is optimized, we use o(x*)? to estimate
the data uncertainty given input x* in the regression case:

Ua(y*|x*) = o(x*)? (17)

For classification, we use the average variance of the log-
its as a surrogate to quantify the data uncertainty. This does
not directly measures data uncertainty in the output space
but can reflect to a certain extent the variance caused by the
mput.

Combining Both Uncertainties

To simultaneously quantify both uncertainties, we can sim-
ply use Equation 10,16 in the training stage and adopt MC
dropout during evaluation as described in the model uncer-
tainty section.

Take the regression setting as an example, prediction can
be approximated as:

E(y*|x") Z o (18)
Model uncertainty can be measured with:
LMo
Un(y*[x") = 37 2w (") = E(y[x)* (19)
j=1

7325

and data uncertainty is quantified with:
Z o

where again W is sampled from ¢(W). Figure 1 is an il-
lustration of the evaluation process of predictive value and
different uncertainty measures.

a(y*|x*) (20

Experiments and Results

We conduct experiments on three different NLP tasks: sen-
timent analysis, named entity recognition, and language
modeling. In the following sections, we will introduce the
datasets, experiment setups, evaluation metrics for each task,
and experimental results.

Sentiment Analysis

Conventionally, sentiment analysis is done with classifica-
tion. In this study, to explore the effect of quantifying un-
certainties, we consider both regression and classification
settings for sentiment analysis. In the regression setting, we
treat the class labels as numerical values and aim to predict
the real value score given a review document. We introduce
the datasets and setups in both settings in this section.

Datasets We use four large scale datasets containing doc-
ument reviews as in (Tang, Qin, and Liu 2015). Specifically,
we use IMDB movie review data (Diao et al. 2014) and Yelp
restaurant review datasets from Yelp Dataset Challenge in
2013, 2014 and 2015. Summaries of the four datasets are
given in Table 1. Data splits are the same as in (Tang, Qin,
and Liu 2015; Diao et al. 2014).

Experiment Setup We implement convolutional neural
network (CNN) baselines in both regression and classifica-
tion settings. CNN model structure follows (Kim 2014). We
use a maximum vocabulary size of 20,000; embedding size
is set to 300; three different kernel sizes are used in all mod-
els and they are chosen from [(1,2,3), (2,3,4), (3,4,5)]; num-
ber of feature maps for each kernel is 100; dropout (Srivas-
tava et al. 2014) is applied between layers and dropout rate
is 0.5. To evaluate model uncertainty and input uncertainty,
10 samples are drawn from the approximated posterior to
estimate the output mean and variance.

Adam (Kingma and Ba 2014) is adopted in all experi-
ments with learning rate chosen from [3e-4, 1e-3, 3e-3] and
weight decay from [3e-5, le-4, 3e-4]. Batch size is set to
32 and training runs for 48 epochs with 2,000 iterations per

Model Yelp 2013 Yelp 2014 Yelp 2015 IMDB
(RGS MSE)

Baseline 0.71 0.72 0.72 3.62
Baseline + MU 0.57 0.55 0.55 3.20
Baseline + DU 0.84 0.75 0.73 3.74
Baseline + both 0.57 0.54 0.53 3.13
Relative Improvement (%) 19.7 25.0 26.4 13.5

Table 2: Test set mean squared error of CNN regressors trained on four sentiment analysis datasets. RGS MSE represents
regression MSE. Baseline is the baseline CNN model (Kim 2014); MU and DU denote model uncertainty and data uncertainty
respectively. Classification results have a similar pattern but the improvements are less obvious.

BB % L
O:O:O:O:OZO:O BI-LSTM
T

t

‘ ‘ EMBEDDING LAYER

t

Ekeus

Figure 2: An illustration of the bidirectional LSTM model
used for named entity recognition. Two dropout layers in-
dependently sample their masks while masks are the same
across time steps.

epoch for Yelp 2013 and IMDB, and 5,000 iterations per
epoch for Yelp 2014 and 2015. Model with best performance
on the validation set is chosen to be evaluated on the test set.

Evaluation We use accuracy in the classification setting
and mean squared error (MSE) in the regression setting to
evaluate model performances. Accuracy is a standard metric
to measure classification performance. MSE measures the
average deviation of the predicted scores from the true rat-
ings and is defined as:

S°i, (gold, — predicted;)

MSE =
N

2n

Results Experiment results are shown in Table 2. We can
see that BNN models (i.e. model w/ MU and w/ both) out-
perform non-Bayesian models. Quantifying both model and
data uncertainties boosts performances by 13.5%-26.4% in
the regression setting. Most of the performance gain is from
quantifying model uncertainty. Modeling input-dependent
uncertainty alone marginally hurts prediction performances.
The performances for classification increase marginally with
added uncertainty measures. We conjecture that this might
be due to the limited output space in the classification set-
ting.

7326

Model CoNLL 2003
(F1 SCORE)

Baseline 717.5
Baseline + MU 76.5
Baseline + DU 79.6
Baseline + both 78.5
Relative Improvement (%) 2.7

Table 3: Test set F1 scores (%) of bidirectional LSTM tag-
gers trained on CoNLL 2003 dataset. Baseline is the base-
line bidirectional LSTM model; MU and DU denote model
uncertainty and data uncertainty respectively. Modeling data
uncertainty boosts performances

Named Entity Recognition

We conduct experiments on named entity recognition (NER)
task which essentially is a sequence tagging problem. We
adopt a bidirectional long-short term memory (LSTM)
(Hochreiter and Schmidhuber 1997) neural network as the
baseline model and measure the effects of quantifying model
and input-dependent uncertainties on the test performances.

Datasets For the NER experiments, we use the CoNLL
2003 dataset (Tjong Kim Sang and De Meulder 2003). This
corpus consists of news articles from the Reuters RCV1
corpus annotated with four types of named entities: loca-
tion, organization, person, and miscellaneous. The annota-
tion scheme is IOB (which stands for inside, outside, begin,
indicating the position of the token in an entity). The orig-
inal dataset includes annotations for part of speech (POS)
tags and chunking results, we do not include these features
in the training and use only the text information to train the
NER model.

Experiment Setup Our baseline model is a bidirectional
LSTM with dropout applied after the embedding layer and
before the output layer. We apply dropout with the same
mask for all time steps following (Gal and Ghahramani
2016b). An illustration of the model is shown in Figure 2.
Note that the dropout mask is the same across time steps.
Different examples in the same mini-batch have different
dropout masks.

Word embedding size is 200 and hidden size in each direc-
tion is 200; dropout probability is fixed at 0.5; other hyper-

Model PTB
(PPL)

Baseline 82.7
Baseline + MU 81.3
Baseline + DU 80.5
Baseline + both 79.2
Relative Improvement (%) 4.2

Table 4: Test set perplexities of LSTM language models
trained on PTB dataset. PPL represents perplexity. Baseline
is the baseline medium two-layer LSTM model in (Zaremba,
Sutskever, and Vinyals 2014); MU and DU denote model un-
certainty and data uncertainty respectively.

parameters related to quantifying uncertainties are the same
with previous experiment setups.

For training, we use Adam optimizer (Kingma and Ba
2014). Learn rate is selected from [3e-4, 1e-3, 3e-4] and
weight decay is chosen from [0, le-5, le-4]. Training runs
for 100 epochs with each epoch consisting of 2,000 ran-
domly sampled mini-batches. Batch size is 32.

Evaluation The performances of the taggers are measured
with F1 score:

Fl — 2 - precision - recall

22
precision + recall 22)

where precision is the percentage of entities tagged by the
model that are correct; recall is the percentage of entities in
the gold annotation that are tagged by the model. A named
entity is correct only if it is an exact match of the corre-
sponding entity in the data.

Results Test set performances of the models trained with
and without uncertainties are listed in Table 3. We observe
that much different from the sentiment analysis case, mod-
els that quantify data uncertainty improves performances by
2.7% in F1 score. Quantifying model uncertainty, on the
other hand, under-performs by approximately 1% absolute
F1 score. One possible explanation for worse results with
model uncertainty is due to the use of MC dropout and chunk
based evaluation. More specifically, predicted tag at each
time step is taken to be the argmax of the average tag prob-
ability across multiple passes with the same inputs. This op-
eration might break some temporal dynamics captured with
a single pass of the inputs.

Language Modeling

We introduce the experiments conducted on the language
modeling task.

Datasets We use the standard Penn Treebank (PTB),
a standard benchmark in the field. The dataset contains
887,521 tokens (words) in total.

7327

High pU

should game automatic doors !

1 ’ve bought tires from discount tire for years at differ-
ent locations and have had a good experience , but this
location was different . i went in to get some new tires
with my fiancé . john the sales guy pushed a certain
brand , specifically because they were running a rebate
special . tires are tires , especially on a prius (the rest
134 tokens not shown here due to space)

Low DU

great sports bar ! brian always goes out of his way to
make sure we are good to go ! great people , great
food , great music ! great bartenders and even great
bouncers ! always accommodating ! all the best _unk !
great _unk burger ! amazing service ! brilliant interior
! the burger was delicious but it was a little big . it ’s a
great restaurant good for any occasion .

Table 5: Examples of inputs in Yelp 2013 dataset with high
and low data uncertainties. They are taken from the top and
bottom 10 examples with respect to measured data uncer-
tainty. High DU is around 0.80 and low is around 0.52. Italic
tokens are highly indicative tokens for higher ratings.

Experiment Setting We follow the medium model setting
in (Zaremba, Sutskever, and Vinyals 2014). The model is
a two-layer LSTM with hidden size 650. Dropout rate is
fixed at 0.5. Dropout is applied after the embedding layer,
before the output layer, and between two LSTM layers. Sim-
ilar to the NER setting, dropout mask is the same across time
steps. Unlike (Gal and Ghahramani 2016b), we do not apply
dropout between time steps. Weight tying is also not applied
in our experiments. Number of samples for MC dropout is
set to 50.

Evaluation We use the standard perplexity to evaluate the
trained language models.

Results The results are shown in Table 4. We can ob-
serve performance improvements when quantifying either
model uncertainty or data uncertainty. We observe less per-
formance improvements compared to (Gal and Ghahramani
2016b) possibly due to the fact that we use simpler dropout
formulation that only applies dropout between layers.

Summary of Results

We can observe from the results that accounting for un-
certainties improves model performances in all three NLP
tasks. In detail, for the sentiment analysis setting with CNN
models, quantifying both uncertainties gives the best per-
formance and improves upon baseline by up to 26.4%. For
named entity recognition, input-dependent data uncertainty
improves F1 scores by 2.7% in CoNLL 2003. For language
modeling, perplexity improves 4.2% when both uncertain-
ties are quantified.

w
o

N
wn
)

X

g
o
!

=
5
L

X

data uncertainty

Iy
o
!

xx
XX
X
X

x %X X
Xy o
0.5 - X o %X xx‘»(>\x x
0.0 + T T
0 0.2 0.4

T T
0 0.6 0.8

1.0
entropy

Figure 3: Scatter plot of evaluated data uncertainty against
entropy of annotated NER tag distribution for all tokens in
CoNLL 2003 dataset. Higher input-dependent data uncer-
tainties are estimated for input tokens that have higher tag
entropies.

1.0
I-MISC
[]

2z

Zos

©

£

Q

206 otoc

=)

e JORG

3 %-misc

T 0.4 [-PER

g B-ORG Bper @

2 e o B-LOC o

o °

> 02

©

0.0

0.85 0.90 0.95

F1

0.75 0.80 1.00

Figure 4: Scatter plot of average evaluated data uncertainty
against test set F1 score for different tags. Higher data un-
certainties are observed when predicting tags with lower F1
score.

Analysis

In the previous section, we empirically show that by model-
ing uncertainties we could get better performances for vari-
ous NLP tasks. In this section, we turn to analyze the uncer-
tainties quantified by our approach. We mainly focus on the
analysis of data uncertainty. For model uncertainty, we have
similar observations to (Kendall and Gal 2017).

What Does Data Uncertainty Measure

In Equation 3, we define data uncertainty as the proportion
of observation noise or variance that is caused by the inputs.
Conceptually, input-dependent data uncertainty is high if it
is hard to predict its corresponding output given an input. We
explore in both sentiment analysis and named entity recogni-
tion tasks and analyze the characteristics of inputs with high
and low data uncertainties measured by our model.

7328

Table 5 shows examples with high and low data uncertain-
ties taken from the Yelp 2013 test set. Due to space limit,
we only show four typical examples. Examples with high
data uncertainties are either short or very long with exten-
sive descriptions of actions instead of opinions. On the other
hand, examples with low data uncertainties are of relatively
medium length and contain large amount of strong opinion
tokens. These observations are consistent with our intuition.

For the CoNLL 2003 dataset, we take all tokens and mea-
sure their average quantified data uncertainty. We use the
following strategy to measure how difficult the prediction
for each token is: 1. calculate the distribution of NER tags
the token is annotated in the training data; 2. use entropy to
measure the difficulty level of the prediction defined as:

Z pilogpi
i=1

where p1,ps2,--- ,Dm is the distribution of NER tags as-
signed to a particular token in the training set. The higher
the entropy, the more tags a token can be assigned and the
more even these possibilities are. For example, in the train-
ing data, the token Hong has been annotated with tag B-
LOC (first token in Hong Kong), B-ORG, B-PER, B-MISC.
Therefore Hong has a high entropy with respect to its tag
distribution. In contrast, the token defended has only been
assigned tag O representing outside of any named entities.
Therefore defended has a low entropy of 0.

We plot the relationship between the average quantified
data uncertainty and NER tag distribution entropy for the
tokens in Figure 3. It is clear that for tokens with higher
entropy values, data uncertainties measured by our model
are indeed higher.

H(plap27"' 7pm) (23)

We also analyze the data uncertainty differences among
NER tags. For each NER tag, we evaluate its test set F1
score and average data uncertainty quantified by our model.
The relationship is shown in Figure 4. We observe that when
predicting more difficult tags, higher average data uncertain-
ties are estimated by the model. These observations indicate
that data uncertainty quantified by our model is highly cor-
related with prediction confidence.

Conclusion

In this work, we evaluate the benefits of quantifying un-
certainties in modern neural network models applied in the
context of three different natural language processing tasks.
We conduct experiments on sentiment analysis, named en-
tity recognition, and language modeling tasks with convolu-
tional and recurrent neural network models. We show that
by quantifying both uncertainties, model performances are
improved across the three tasks. We further investigate the
characteristics of inputs with high and low data uncertainty
measures in Yelp 2013 and CoNLL 2003 datasets. For both
datasets, our model estimates higher data uncertainties for
more difficult predictions. Future research directions include
possible ways to fully utilize the estimated uncertainties.

References

Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight uncertainty in neural networks. arXiv
preprint arXiv:1505.05424.

Buntine, W. L., and Weigend, A. S. 1991. Bayesian back-
propagation. Complex systems 5(6):603—643.

Denker, J. S., and Lecun, Y. 1991. Transforming neural-
net output levels to probability distributions. In Advances in
neural information processing systems, 853—859.

Der Kiureghian, A., and Ditlevsen, O. 2009. Aleatory or
epistemic? does it matter? Structural Safety 31(2):105-112.

Diao, Q.; Qiu, M.; Wu, C.-Y.; Smola, A. J; Jiang, J.; and
Wang, C. 2014. Jointly modeling aspects, ratings and senti-
ments for movie recommendation (jmars). In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 193-202. ACM.

Gal, Y., and Ghahramani, Z. 2016a. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learning,

1050-1059.

Gal, Y., and Ghahramani, Z. 2016b. A theoretically
grounded application of dropout in recurrent neural net-
works. In Advances in neural information processing sys-
tems, 1019-1027.

Graves, A. 2011. Practical variational inference for neu-
ral networks. In Advances in neural information processing
systems, 2348-2356.

Hernandez-Lobato, J. M., and Adams, R. 2015. Probabilis-
tic backpropagation for scalable learning of bayesian neural
networks. In International Conference on Machine Learn-
ing, 1861-1869.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735-1780.

Kendall, A., and Gal, Y. 2017. What uncertainties do we
need in bayesian deep learning for computer vision? In
Advances in neural information processing systems, 5574—
5584.

Kendall, A.; Badrinarayanan, V.; and Cipolla, R. 2015.
Bayesian segnet: Model uncertainty in deep convolu-
tional encoder-decoder architectures for scene understand-
ing. arXiv preprint arXiv:1511.02680.

Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.

Kingma, D. P, and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Le, Q. V.; Smola, A. J.; and Canu, S. 2005. Heteroscedas-
tic gaussian process regression. In Proceedings of the 22nd

international conference on Machine learning, 489—496.
ACM.

MacKay, D. J. 1992. A practical bayesian framework for
backpropagation networks. Neural computation 4(3):448—
472.

MacKay, D. J. 1995. Probable networks and plausible
predictions—a review of practical bayesian methods for su-

7329

pervised neural networks. Network: Computation in Neural
Systems 6(3):469-505.

Neal, R. M. 2012. Bayesian learning for neural networks,
volume 118. Springer Science & Business Media.

Nix, D. A., and Weigend, A. S. 1994. Estimating the mean
and variance of the target probability distribution. In Neural
Networks, 1994. IEEE World Congress on Computational
Intelligence., 1994 IEEE International Conference On, vol-
ume 1, 55-60. IEEE.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929-1958.

Tang, D.; Qin, B.; and Liu, T. 2015. Document modeling
with gated recurrent neural network for sentiment classifi-
cation. In Proceedings of the 2015 conference on empirical
methods in natural language processing, 1422—-1432.

Tjong Kim Sang, E. F., and De Meulder, F. 2003. Introduc-
tion to the conll-2003 shared task: Language-independent
named entity recognition. In Proceedings of the seventh con-
ference on Natural language learning at HLT-NAACL 2003-
Volume 4, 142—-1477. Association for Computational Linguis-
tics.

Zaremba, W.; Sutskever, I.; and Vinyals, O. 2014. Re-

current neural network regularization. arXiv preprint
arXiv:1409.2329.

Zhu, L., and Laptev, N. 2017. Deep and confident pre-
diction for time series at uber. In Data Mining Workshops
(ICDMW), 2017 IEEE International Conference on, 103—
110. IEEE.

