
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Response Generation by Context-Aware Prototype Editing

Yu Wu,† Furu Wei,‡ Shaohan Huang,‡ Yunli Wang,† Zhoujun Li,†∗ Ming Zhou‡
†State Key Lab of Software Development Environment, Beihang University, Beijing, China

‡Microsoft Research, Beijing, China
{wuyu,wangyunli,lizj}@buaa.edu.cn {fuwei, shaohanh, mingzhou}@microsoft.com

Abstract
Open domain response generation has achieved remarkable
progress in recent years, but sometimes yields short and unin-
formative responses. We propose a new paradigm, prototype-
then-edit for response generation, that first retrieves a pro-
totype response from a pre-defined index and then edits the
prototype response according to the differences between the
prototype context and current context. Our motivation is that
the retrieved prototype provides a good start-point for gen-
eration because it is grammatical and informative, and the
post-editing process further improves the relevance and co-
herence of the prototype. In practice, we design a context-
aware editing model that is built upon an encoder-decoder
framework augmented with an editing vector. We first gener-
ate an edit vector by considering lexical differences between
a prototype context and current context. After that, the edit
vector and the prototype response representation are fed to a
decoder to generate a new response. Experiment results on
a large scale dataset demonstrate that our new paradigm sig-
nificantly increases the relevance, diversity and originality of
generation results, compared to traditional generative models.
Furthermore, our model outperforms retrieval-based methods
in terms of relevance and originality.

Introduction
In recent years, non-task oriented chatbots focused on re-
sponding to humans intelligently on a variety of topics, have
drawn much attention from both academia and industry. Ex-
isting approaches can be categorized into generation-based
methods (Shang, Lu, and Li 2015; Vinyals and Le 2015;
Serban et al. 2016; Sordoni et al. 2015; Serban et al. 2017)
which generate a response from scratch, and retrieval-based
methods (Hu et al. 2014; Lowe et al. 2015; Yan, Song, and
Wu 2016; Zhou et al. 2016; Wu et al. 2017) which select
a response from an existing corpus. Since retrieval-based
approaches are severely constrained by a pre-defined index,
generative approaches become more and more popular in re-
cent years. Traditional generation-based approaches, how-
ever, do not easily generate informative responses, which is
referred to as “safe response” problem (Li et al. 2016a).

To address this issue, we propose a new paradigm,
prototype-then-edit, for response generation. Our motiva-

∗Corresponding Author
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Context (c) My friends and I went to some vegan
place for dessert yesterday.

Prototype
context (c′)

My friends and I had Tofu and
vegetables at a vegan place nearby
yesterday.

Prototype re-
sponse (r′)

Raw green vegetables are very bene-
ficial for your health.

Revised
response (r) Desserts are very bad for your health.

Table 1: An example of context-aware prototypes editing.
Underlined words mean they do not appear in the original
context, while words with strikethrough mean they are not
in the prototype context. Words in bold represent they are
modified in the revised response.

tions include: 1) human-written responses, termed as “pro-
totypes response”, are informative, diverse and grammatical
which do not suffer from short and generic issues. Hence,
generating responses by editing such prototypes is able to
alleviate the “safe response” problem. 2) Some retrieved
prototypes are not relevant to the current context, or suffer
from a privacy issue. The post-editing process can partially
solve these two problems. 3) Lexical differences between
contexts provide an important signal for response editing. If
a word appears in the current context but not in the prototype
context, the word is likely to be inserted into the prototype
response in the editing process.

Inspired by this idea, we formulate the response genera-
tion process as follows. Given a conversational context c, we
first retrieve a similar context c′ and its associated response
r′ from a pre-defined index, which are called prototype con-
text and prototype response respectively. Then, we calculate
an edit vector by concatenating the weighted average results
of insertion word embeddings (words in prototype context
but not in current context) and deletion word embeddings
(words in current context but not in prototype context). Af-
ter that, we revise the prototype response conditioning on the
edit vector. We further illustrate how our idea works with an
example in Table 1. It is obvious that the major difference
between c and c′ is what the speaker eats, so the phrase “raw
green vegetables” in r′ should be replaced by “desserts” in
order to adapt to the current context c. We hope that the

7281

decoder language model could remember the collocation of
“desserts” and “bad for health”, so as to replace “beneficial”
with “bad” in the revised response. The new paradigm does
not only inherits the fluency and informativeness advantages
from retrieval results, but also enjoys the flexibility of gen-
eration results. Hence, our edit-based model is better than
previous retrieval-based and generation-based models. The
edit-based model can solve the “safe response” problem of
generative models by leveraging existing responses, and is
more flexible than retrieval-based models, because it does
not highly depend on the index and is able to edit a response
to fit current context.

Prior work (Guu et al. 2017) has figured out how to edit
prototype in an unconditional setting, but it cannot be ap-
plied to the response generation directly. In this paper, we
propose a prototype editing method in a conditional setting1.
Our idea is that differences between responses strongly cor-
relates with differences in their contexts (i.e. if a word in
prototype context is changed, its related words in the re-
sponse are probably modified in the editing.). We realize this
idea by designing a context-aware editing model that is built
upon a encoder-decoder model augmented with an editing
vector. The edit vector is computed by the weighted aver-
age of insertion word embeddings and deletion word embed-
dings. Larger weights mean that the editing model should
pay more attention on corresponding words in revision. For
instance, in Table 1, we wish words like “dessert”, “Tofu”
and “vegetables” get larger weights than words like “and”
and “ at”. The encoder learns the prototype representation
with a gated recurrent unit (GRU), and feeds the representa-
tion to a decoder together with the edit vector. The decoder
is a GRU language model, that regards the concatenation of
last step word embedding and the edit vector as inputs, and
predicts the next word with an attention mechanism.

Our experiments are conducted on a large scale Chi-
nese conversation corpus comprised of 20 million context-
response pairs. We compare our model with generative mod-
els and retrieval models in terms of fluency, relevance, diver-
sity and originality. The experiments show that our method
outperforms traditional generative models on relevance, di-
versity and originality. We further find that the revised re-
sponse achieves better relevance compared to its prototype
and other retrieval results, demonstrating that the editing
process does not only promote response originality but also
improve the relevance of retrieval results.

Our contributions are listed as follows: 1) this paper pro-
poses a new paradigm, prototype-then-edit, for response
generation; 2) we elaborate a simple but effective context-
aware editing model for response generation; 3) we empiri-
cally verify the effectiveness of our method in terms of rele-
vance, diversity, fluency and originality.

Related Work
Research on chatbots goes back to the 1960s when ELIZA
was designed (Weizenbaum 1966) with a huge amount of

1Conditional setting means the editor should consider the con-
text (dialogue history) except in a response itself in the revision.
Editor only considers a sentence itself in the unconditional setting.

hand-crafted templates and rules. Recently, researchers have
paid more and more attention on data-driven approaches
(Ritter, Cherry, and Dolan 2011; Ji, Lu, and Li 2014) due
to their superior scalability. Most of these methods are
classified as retrieval-based methods (Ji, Lu, and Li 2014;
Yan, Song, and Wu 2016) and generation methods (Li et al.
2016b; 2017; Zhou et al. 2017). The former one aims to se-
lect a relevant response using a matching model, while the
latter one generates a response with natural language gener-
ative models.

Prior works on retrieval-based methods mainly focus on
the matching model architecture for single turn conversa-
tion (Hu et al. 2014) and multi-turn conversation (Lowe et
al. 2015; Zhou et al. 2016; Wu et al. 2017). For the stud-
ies of generative methods, a huge amount of work aims
to mitigate the “safe response” issue from different per-
spectives. Most of work build models under a sequence
to sequence framework (Sutskever, Vinyals, and Le 2014),
and introduce other elements, such as latent variables (Ser-
ban et al. 2017), topic information (Xing et al. 2017),
and dynamic vocabulary (Wu et al. 2018) to increase re-
sponse diversity. Furthermore, the reranking technique (Li
et al. 2016a), reinforcement learning technique (Li et al.
2016b), and adversarial learning technique (Li et al. 2017;
Xu et al. 2017) have also been applied to response gen-
eration. Apart from work on “safe response”, there is a
growing body of literature on style transfer (Fu et al. 2018;
Wang et al. 2017) and emotional response generation (Zhou
et al. 2017). In general, most of previous work generates a
response from scratch either left-to-right or conditioned on
a latent vector, whereas our approach aims to generate a re-
sponse by editing a prototype. Prior works have attempted
to utilize prototype responses to guide the generation pro-
cess (Song et al. 2016; Pandey et al. 2018), in which pro-
totype responses are encoded into vectors and feed to a de-
coder along with a context representation. Our work differs
from previous ones on two aspects. One is they do not con-
sider prototype context in the generation process, while our
model utilizes context differences to guide editing process.
The other is that we regard prototype responses as a source
language, while their works formulate it as a multi-source
seq2seq task, in which the current context and prototype re-
sponses are all source languages in the generation process.

Recently, some researches have explored natural language
generation by editing (Guu et al. 2017; Liao et al. 2018). A
typical approach follows a writing-then-edit paradigm, that
utilizes one decoder to generate a draft from scratch and uses
another decoder to revise the draft (Xia et al. 2017). The
other approach follows a retrieval-then-edit paradigm, that
uses a Seq2Seq model to edit a prototype retrieved from a
corpus (Guu et al. 2017; Li et al. 2018; Cao et al. 2018). As
far as we known, we are the first to leverage context lexical
differences to edit prototypes.

Background
Before introducing our approach, we first briefly describe
state-of-the-art natural language editing method (Guu et al.
2017). Given a sentence pair (x, x′), our goal is to obtain

7282

sentence x by editing the prototype x′. The general frame-
work is built upon a Seq2Seq model with an attention mech-
anism, which takes x′ and x as source sequence and tar-
get sequence respectively. The main difference is that the
generative probability of a vanilla Seq2Seq model is p(x|x′)
whereas the probability of the edit model is p(x|x′, z) where
z is an edit vector sampled from a pre-defined distribution
like variational auto-encoder. In the training phase, the pa-
rameter of the distribution is conditional on the context dif-
ferences. We first define I = {w|w ∈ x ∧ w /∈ x′} as
an insertion word set, where w is a word added to the proto-
type, andD = {w′|w′ ∈ x′∧w′ /∈ x} is a deletion word set,
wherew is a word deleted from the prototype. Subsequently,
we compute an insertion vector~i =

∑
w∈I Ψ(w) and a dele-

tion vector ~d =
∑
w′∈D Ψ(w′) by a summation over word

embeddings in two corresponding sets, where Ψ(·) transfers
a word to its embedding. Then, the edit vector z is sampled
from a distribution whose parameters are governed by the
concatenation of~i and ~d. Finally, the edit vector and output
of the encoder are fed to the decoder to generate x.

For response generation, which is a conditional setting of
text editing, an interesting question raised, that is how to
generate the edit by considering contexts. We will introduce
our motivation and model in details in the next section.

Approach
Model Overview
Suppose that we have a data set D = {(Ci, Ri)}Ni=1. ∀i,
(Ci, Ri) comprises a context Ci = (ci,1, . . . , ci,l) and its re-
sponse Ri = (ri,1, . . . , ri,l), where ci,j is the j-th word of
the context Ci and ri,j is the j-th word of the response Ri.
It should be noted that Ci can be either a single turn input
or a multiple turn input. As the first step, we assume Ci is
a single turn input in this work, and leave the verification of
the same technology for multi-turn response generation to
future work. Our full model is shown in Figure 1, consisting
of a prototype selector S and a context-aware neural editor
E . Given a new conversational context C, we first use S to
retrieve a context-response pair (Ci, Ri) ∈ D. Then, the
editor E calculates an edit vector zi = f(Ci, C) to encode
the information about the differences between Ci and C. Fi-
nally, we generate a response according to the probability
of p(R|zi, Ri). In the following, we will elaborate how to
design the selector S and the editor E .

Prototype Selector
A good prototype selector S plays an important role in the
prototype-then-edit paradigm. We use different strategies
to select prototypes for training and testing. In testing,
as we described above, we retrieve a context-response pair
(C ′, R′) from a pre-defined index for context C according
to the similarity of C and C ′. Here, we employ Lucene2 to
construct the index and use its inline algorithm to compute
the context similarity.

2https://lucenenet.apache.org/

Now we turn to the training phase. ∀i, (Ci, Ri), our goal
is to maximize the generative probability of Ri by select-
ing a prototype (C ′i, R

′
i) ∈ D. As we already know the

ground-truth response Ri, we first retrieve thirty prototypes
{(C ′i,j , R′i,j)}20j=1 based on the response similarity instead of
context similarity, and then reserve prototypes whose Jac-
card similarity to Ri are in the range of [0.3, 0.7]. Here,
we use Lucene to index all responses, and retrieve the top
20 similar responses along with their corresponding contexts
for Ri. The Jaccard similarity measures text similarity from
a bag-of-word view, that is formulated as

J(A,B) =
|A ∩B|
|A ∪B|

, (1)

where A and B are two bags of words and | · | denotes the
number of elements in a collection. Each context-response
pair is processed with the above procedure, so we obtain
enormous quadruples {(Ci, Ri, C ′i,j , R′i,j)

Mi
j=0}Ni=1 after this

step. The motivation behind filtering out instances with Jac-
card similarity < 0.3 is that a neural editor model performs
well only if a prototype is lexically similar (Guu et al. 2017)
to its ground-truth. Besides, we hope the editor does not
copy the prototype so we discard instances where the proto-
type and groundtruth are nearly identical (i.e. Jaccard simi-
larity > 0.7). We do not use context similarity to construct
parallel data for training, because similar contexts may cor-
respond to totally different responses, so-called one-to-many
phenomenon (Li et al. 2016a) in dialogue generation, that
impedes editor training due to the large lexicon gap. Ac-
cording to our preliminary experiments, the editor always
generates non-sense responses if training data is constructed
by context similarity.

Context-Aware Neural Editor
A context-aware neural editor aims to revise a prototype
to adapt current context. Formally, given a quadruple
(C,R,C ′, R′) (we omit subscripts for simplification), a
context-aware neural editor first forms an edit vector z us-
ing C and C ′, and then updates parameters of the genera-
tive model by maximizing the probability of p(R|z,R′). For
testing, we directly generate a response after getting the edi-
tor vector. In the following, we will introduce how to obtain
the edit vector and learn the generative model in details.

Edit Vector Generation For an unconditional sentence
editing setting (Guu et al. 2017), an edit vector is randomly
sampled from a distribution because how to edit the sentence
is not constrained. In contrast, we should take both of C and
C ′ into consideration when we revise a prototype response
R′. Formally, R′ is firstly transformed to hidden vectors
{hk|hk =

−→
h k ⊕

←−
h k}

nj

k=1 through a biGRU parameterized
as Equation (2).
−→
h j = fGRU(

−→
h j−1, r

′
j);
←−
h j = fGRU(

←−
h j+1, r

′
j) (2)

where r′j is the j-th word of R′.
Then we compute a context diff-vector diffc by an atten-

tion mechanism defined as follows

diffc =
∑
w∈I

βwΨ(w)⊕
∑
w′∈D

γw′Ψ(w′), (3)

7283

1h 2h 3h Lh

Attention

'

1ih 
'

ih



IndexInput

Prototype response: Raw green vegetables are

very beneficial for your health.

Prototype context: My friends and I had Tofu and

vegetables at a vegan place nearby yesterday.

Current context: My friends and I went to

some vegan place for dessert yesterday.

Edit Vector

'

1r
'

2r
'

3r
'

Lr

A
ttn

e
tio

n

In
sert w

o
rd

s
D

elete w
ords

A
ttnetio

n

(a) Prototype Selector (b) Neural Editor

Source:

Figure 1: Architecture of our model.

where⊕ is a concatenation operation, I = {w|w ∈ C∧w /∈
C ′} is a insertion word set, andD = {w′|w′ ∈ C ′∧w′ /∈ C}
is a deletion word set. diffc explicitly encodes insertion
words and deletion words from C to C ′. βw is the weight of
a insertion word w, that is computed by

βw =
exp(ew)∑
w∈I exp(ew)

, (4)

ew = vβ
>tanh(Wβ [Ψ(w)⊕ hl]), (5)

where vβ and Wβ are parameters, and hl is the last hidden
state of the encoder. γw′ is obtained with a similar process:

γw′ =
exp(ew′)∑

w′∈D exp(ew′)
, (6)

ew′ = vγ
>tanh(Wγ [Ψ(w′)⊕ hl]), (7)

We assume that different words influence the editing pro-
cess unequally, so we weighted average insertion words and
deletion words to form an edit in Equation 3. Table explains
our motivation as well, that is “desserts” is much more im-
portant than “the” in the editing process. Then we compute
the edit vector z by following transformation

z = tanh(W · diffc + b), (8)
where W and b are two parameters. Equation 8 can be re-
garded as a mapping from context differences to response
differences.

It should be noted that there are several alternative ap-
proaches to compute diffc and z for this task, such as apply-
ing memory networks, latent variables, and other complex
network architectures. Here, we just use a simple method,
but it yields interesting results on this task. We will further
illustrate our experiment findings in the next section.

Prototype Editing We build our prototype editing model
upon a Seq2Seq with an attention mechanism model, which
integrates the edit vector into the decoder.

The decoder takes{hk}
nj

k=1 as an input and generates a
response by a GRU language model with attention. The hid-
den state of the decoder is acquired by

h′j = fGRU(h′j−1, rj−1 ⊕ zi), (9)

where the input of j-th time step is the last step hidden state
and the concatenation of the (j − 1)-th word embedding
and the edit vector obtained in Equation 8. Then we com-
pute a context vector ci, which is a linear combination of
{h1, . . . , ht}:

ci =

t∑
j=1

αi,jhj , (10)

where αi,j is given by

αi,j =
exp(ei,j)∑t
k=1 exp(ei,k)

, (11)

ei,j = v>tanh(Wα[hj ⊕ h′i]), (12)

where v and Wα are parameters. The generative probability
distribution is given by

s(ri) = softmax(Wp[ri−1 ⊕ h′i ⊕ ci] + bp), (13)

where Wp and bp are two parameters. Equation 11 and 13
are the attention mechanism (Bahdanau, Cho, and Bengio
2015), that mitigates the long-term dependency issue of the
original Seq2Seq model. We append the edit vector to every
input embedding of the decoder in Equation 9, so the edit
information can be utilized in the entire generation process.

We learn our response generation model by minimizing
the negative log likelihood of D

L = −
N∑
i=1

l∑
j=1

logp(ri,j |zi, R′i, ri,k<j). (14)

We implement our model by PyTorch 3.We employ the
Adam algorithm (Kingma and Ba 2015) to optimize the ob-
jective function with a batch size of 128. We set the initial
learning rate as 0.001 and reduce it by half if perplexity on
validation begins to increase. We will stop training if the
perplexity on validation keeps increasing in two successive
epochs. .

3https://pytorch.org/

7284

Experiment
Experiment setting
In this paper, we only consider single turn response gener-
ation. We collected over 20 million human-human context-
response pairs (context only contains 1 turn) from Douban
Group 4. After removing duplicated pairs and utterance
longer than 30 words, we split 19,623,374 pairs for train-
ing, 10,000 pairs for validation and 10,000 pairs for testing.
The average length of contexts and responses are 11.64 and
12.33 respectively. The training data mentioned above is
used by retrieval models and generative models.

In terms of ensemble models and our editing model, the
validation set and the test set are the same with datasets
prepared for retrieval and generation models. Besides, for
each context in the validation and test sets, we select its
prototypes with the method described in Section “Proto-
type Selector”. We follow Song et al. (2016) to construct
a training data set for ensemble models, and construct a
training data set with the method described in Section “Pro-
totype Selector” for our editing models. We can obtain
42,690,275 (Ci, Ri, C

′
i, R
′
i) quadruples with the proposed

data preparing method. For a fair comparison, we randomly
sample 19,623,374 instances for the training of our method
and the ensemble method respectively. To facilitate fur-
ther research, related resources of the paper can be found
at https://github.com/MarkWuNLP/ResponseEdit.

Baseline
S2SA: We apply the Seq2Seq with attention (Bahdanau,
Cho, and Bengio 2015) as a baseline model. We use a Py-
torch implementation, OpenNMT (Klein et al. 2017) in the
experiment.

S2SA-MMI: We employed the bidirectional-MMI de-
coder as in (Li et al. 2016a). The hyperparameter λ is set
as 0.5 according to the paper’s suggestion. 200 candidates
are sampled from beam search for reranking.

CVAE: The conditional variational auto-encoder is a pop-
ular method of increasing the diversity of response genera-
tion (Zhao, Zhao, and Eskénazi 2017). We use the published
code at https://github.com/snakeztc/NeuralDialog-CVAE,
and conduct small adaptations for our single turn scenario.

Retrieval: We compare our model with two retrieval-
based methods to show the effect of editing. One is
Retrieval-default that directly regards the top-1 result given
by Lucene as the reply. The second one is Retrieval-
Rerank, where we first retrieve 20 response candidates, and
then employ a dual-LSTM model (Lowe et al. 2015) to com-
pute matching degree between current context and the can-
didates. The matching model is implemented with the same
setting in (Lowe et al. 2015), and is trained on the training
data set where negative instances are randomly sampled with
a ratio of pos : neg = 1 : 9.

Ensemble Model: Song et al (2016) propose an ensem-
ble of retrieval and generation methods. It encodes current
context and retrieved responses (Top-k retrieved responses

4https://www.douban.com/group Douban is a popular forum in
China.

are all used in the generation process.) into vectors, and
feeds these representations to a decoder to generate a new
response. As there is no official code, we implement it care-
fully by ourselves. We use the top-1 response returned by
beam search as a baseline, denoted as Ensemble-default.
For a fair comparison, we further rerank top 20 generated
results with the same LSTM based matching model, and de-
note it as Ensemble-Rerank. We further create a candidate
pool by merging the retrieval and generation results, and
rerank them with the same ranker. The method is denoted
as Ensemble-Merge.

Correspondingly, we evaluate three variants of our model.
Specifically, Edit-default and Edit-1-Rerank edit top-1 re-
sponse yielded by Retrieval-default and Retrieval-Rerank re-
spectively. Edit-N-Rerank edits all 20 responses returned
by Lucene and then reranks the revised results with the
dual-LSTM model. We also merge edit results of Edit-N-
Rerank and candidates returned by the search engine, and
then rerank them, which is denoted as Edit-Merge. In prac-
tice, the word embedding size and editor vector size are 512,
and both of the encoder and decoder are a 1-layer GRU
whose hidden vector size is 1024. Message and response
vocabulary size are 30000, and words not covered by the
vocabulary are represented by a placeholder UNK. Word
embedding size, hidden vector size and attention vector size
of baselines and our models are the same. All generative
models use beam search to yield responses, where the beam
size is 20 except S2SA-MMI. For all models, we remove
UNK from the target vocabulary, because it always leads
to a fluency issue in evaluation.

Evaluation Metrics

We evaluate our model on four criteria: fluency, relevance,
diversity and originality. We employ Embedding Average
(Average), Embedding Extrema (Extrema), and Embedding
Greedy (Greedy) (Liu et al. 2016) to evaluate response rel-
evance, which are better correlated with human judgment
than BLEU. Following (Li et al. 2016a), we evaluate the re-
sponse diversity based on the ratios of distinct unigrams and
bigrams in generated responses, denoted as Distinct-1 and
Distinct-2. In this paper, we define a new metric, original-
ity, that is defined as the ratio of generated responses that
do not appear in the training set. Here, “appear” means we
can find exactly the same response in our training data set.
We randomly select 1,000 contexts from the test set, and ask
three native speakers to annotate response fluency. We con-
duct 3-scale rating: +2, +1 and 0. +2: The response is fluent
and grammatically correct. +1: There are a few grammati-
cal errors in the response but readers could understand it. 0:
The response is totally grammatically broken, making it dif-
ficult to understand. As how to evaluate response generation
automatically is still an open problem (Liu et al. 2016), we
further conduct human evaluations to compare our models
with baselines. We ask the same three native speakers to do
a side-by-side comparison (Li et al. 2016b) on the 1,000 con-
texts. Given a context and two responses generated by dif-
ferent models, we ask annotators to decide which response
is better (Ties are permitted).

7285

Table 2: Automatic evaluation results. Numbers in bold mean that improvement from the model on that metric is statisti-
cally significant over the baseline methods (t-test, p-value < 0.01). κ denotes Fleiss Kappa (Fleiss 1971), which reflects the
agreement among human annotators.

Relevance Diversity Originality Fluency
Average Extrema Greedy Distinct-1 Distinct-2 Not appear +2 +1 0 Avg κ

S2SA 0.346 0.180 0.350 0.032 0.087 0.208 94.0% 5.2% 0.8% 1.932 0.89
S2SA-MMI 0.379 0.189 0.385 0.039 0.127 0.297 91.6% 7.6% 0.8% 1.908 0.83
CVAE 0.360 0.183 0.363 0.062 0.178 0.745 83.8% 12.7% 3.5% 1.803 0.84
Retrieval-default 0.288 0.130 0.309 0.098 0.589 0.000 92.8% 6.8% 0.4% 1.924 0.88
Retrieval-Rerank 0.380 0.191 0.381 0.106 0.560 0.000 91.7% 7.8% 0.5% 1.912 0.88
Ensemble-default 0.352 0.183 0.362 0.035 0.097 0.223 91.3% 7.2% 1.5% 1.898 0.84
Ensemble-Rerank 0.372 0.187 0.379 0.040 0.135 0.275 90.4% 7.8% 1.8% 1.898 0.84
Edit-default 0.297 0.150 0.327 0.071 0.300 0.796 89.6% 9.2% 1.2% 1.884 0.87
Edit-1-Rerank 0.367 0.185 0.371 0.077 0.296 0.794 93.2% 5.6% 1.2% 1.920 0.79
Edit-N-Rerank 0.386 0.203 0.389 0.068 0.280 0.860 87.2% 10.8% 2.0% 1.852 0.85
Ensemble-Merge 0.385 0.193 0.387 0.058 0.247 0.134 91.2% 7.3% 1.5% 1.897 0.89
Edit-Merge 0.391 0.197 0.392 0.103 0.443 0.734 88.6% 9.7% 1.7% 1.869 0.85

Table 3: Human side-by-side evaluation results. If a row is
labeled as “a v.s.b”, the second column, “loss”, means the
ratio of responses given by “a” are worse than those given
by“b”.

Loss Tie Win κ
Ed-Default v.s. R-Default 23.6 41.2 35.2 0.54
Ed-Default v.s. Ens-Default 29.4 47.8 22.8 0.59
Ed-1-Rerank v.s. R-Rerank 29.2 45.3 25.5 0.60
Ed-N-Rerank v.s. Ens-Rerank 24.9 42.1 33.0 0.55
Ed-N-Rerank v.s. R-Rerank 25.2 44.8 30.0 0.62

Evaluation Results
Table 2 shows the evaluation results on the Chinese dataset.
Our methods are better than retrieval-based methods on em-
bedding based metrics, that means revised responses are
more relevant to ground-truth in the semantic space. Our
model just slightly revises prototype response, so improve-
ments on automatic metrics are not that large but significant
on statistical tests (t-test, p-value < 0.01). Two factors are
known to cause Edit-1-Rerank worse than Retrieval-Rerank.
1) Rerank algorithm is biased to long responses, that poses a
challenge for the editing model. 2) Despite of better proto-
type responses, a context of top-1 response is always greatly
different from current context, leading to a large insertion
word set and a large deletion set, that also obstructs the
revision process. In terms of diversity, our methods drop
on distinct-1 and distinct-2 in a comparison with retrieval-
based methods, because the editing model often deletes spe-
cial words pursuing for better relevance. Retrieval-Rerank is
better than retrieval-default, indicating that it is necessary to
rerank responses by measuring context-response similarity
with a matching model.

Our methods significantly outperform generative base-
lines in terms of diversity since prototype responses are good
start-points that are diverse and informative. It demonstrates
that the prototype-then-editing paradigm is capable of ad-
dressing the safe response problem. Edit-Rerank is better
than generative baselines on relevance but Edit-default is
not, indicating a good prototype selector is quite important
to our editing model. In terms of originality, about 86% re-

vised response do not appear in the training set, that sur-
passes S2SA, S2SA-MMI and CVAE. This is mainly be-
cause baseline methods are more likely to generate safe re-
sponses that are frequently appeared in the training data,
while our model tends to modify an existing response that
avoids duplication issue. In terms of fluency, S2SA achieves
the best results, and retrieval based approaches come to the
second place. Safe response enjoys high score on fluency,
that is why S2SA and S2SA-MMI perform well on this met-
ric. Although editing based methods are not the best on the
fluency metric, they also achieve a high absolute number.
That is an acceptable fluency score for a dialogue engine,
indicating that most of generation responses are grammat-
ically correct. In addition, in terms of the fluency metric,
Fleiss’ Kappa (Fleiss 1971) on all models are around 0.8,
showing a high agreement among labelers.

Compared to ensemble models, our model performs much
better on diversity and originality, that is because we regard
prototype response instead of the current context as source
sentence in the Seq2Seq, which keeps most of content in
prototype but slightly revises it based on the context differ-
ence. Both of the ensemble and edit model are improved
when the original retrieval candidates are considered in the
rerank process.

Regarding human side-by-side evaluation, we can find
that Edit-Default and Edit-N-rerank are slightly better than
Retrieval-default and Retrieval-rerank (The winning exam-
ples are more than the losing examples), indicating that the
post-editing is able to improve the response quality. Ed-
Default is worse than Ens-Default, but Ed-N-Rerank is bet-
ter than Ens-Rerank. This is mainly because the editing
model regards the prototype response as the source lan-
guage, so it is highly depends on the quality of prototype
response.

Discussions
Model ablation We train variants of our model by remov-
ing the insertion word vector, the deletion word vector, and
both of them respectively. The results are shown in Table
4. We can find that embedding based metrics drop dramati-
cally when the editing vector is partially or totally removed,

7286

Table 4: Model ablation tests. Full model denotes Edit-N-
Rerank. “-del” means we only consider insertion words. “-
ins” means we only consider deletion words. “-both” means
we train a standard seq2seq model from prototype response
to revised response.

Average Extrema Greedy Dis-1 Dis-2 Originality
Full 38.6 20.3 38.9 0.068 0.280 86.0
- ins 34.2 17.9 34.8 0.067 0.286 85.1
- del 34.0 17.6 34.6 0.065 0.278 86.3
-both 32.8 16.9 33.7 0.067 0.282 85.4

indicating that the edit vector is crucial for response rele-
vance. Diversity and originality do not decrease after the
edit vector is removed, implying that the retrieved prototype
is the key factor for these two metrics. According to above
observations, we conclude that the prototype selector and
the context-aware editor play different roles in generating
responses.

Editing Type Analysis It is interesting to explore the se-
mantic gap between prototype and revised response. We
ask annotators to conduct 4-scale rating on 500 randomly
sampled prototype-response pairs given by Edit-default and
Edit-N-Rerank respectively. The 4-scale is defined as: iden-
tical, paraphrase, on the same topic and unrelated.

Figure 2: Distribution across different editing types.

Figure 2 provides the ratio of four editing types defined
above. For both methods, Only 2% of edits are exactly the
same with the prototype, that means our model does not
downgrade to a copy model. Surprisingly, there are 30%
revised responses are unrelated to prototypes. The key fac-
tor for this phenomenon is that the neural editor will rewrite
the prototype when it is hard to insert insertion words to the
prototype. The ratio of “on the same topic” response given
by Edit-N-rerank is larger than Edit-default, revealing that
“on the same topic” responses might be more relevant from
the view of a LSTM based reranker.

Case Study We give two examples to show how our model
works in Table 5. The first one is that our model edits a
prototype response with word substitutions. Current context
is talking about “clean tatoo”, but the prototype discusses
“clean hair”, leading to an irrelevant prototype response. Af-

Table 5: Case Study. Examples are given by Edit-default and
Edit-Rerank. Chinese utterances are translated to English
here.

Context Is there any way to get all tattoos clean?

Prototype
context

Is it possible to clean your hair by applying
the medicine?

Prototype
response After wiping it, hair is much cleaner.

Revised
response

After wiping it, most of tattoos will be
cleaned.

Context I often eat spice noodles.

Prototype
context

When I lived in Taiwan, I often eat spicy
Noodles and braised pork rice.

Prototype
response I also love braised pork rice.

Revised
response I also love it.

ter the word substitutions, the revised response becomes ap-
propriated for the current context. The second case gives
an example of word deletion, where a phrase “braised pork
rice” is removed from the response. The phrase “braised
pork rice” does not appear in the current context, so it be-
longs to the deletion word set D. According to our ob-
servation, function words and nouns are more likely to be
added/deleted. This is mainly because function words, such
as pronoun, auxiliary, and interjection may be substituted
in the paraphrasing. In addition, a large proportion of con-
text differences is caused by nouns substitutions, thus we ob-
serve that nouns are added/deleted in the revision frequently.

Conclusion
We present a new paradigm, prototype-then-edit, for open
domain response generation, that enables a generation-based
chatbot to leverage retrieved results. We propose a simple
but effective model to edit context-aware responses by tak-
ing context differences into consideration. Experiment re-
sults on a large-scale dataset show that our model outper-
forms traditional methods on some metrics. In the future,
we will investigate how to jointly learn the prototype selec-
tor and neural editor.

Acknowledgments
Yu is supported by AdeptMind Scholarship and Microsoft
Scholarship. This work was supported in part by the Nat-
ural Science Foundation of China (Grand Nos. U1636211,
61672081, 61370126), Beijing Advanced Innovation Cen-
ter for Imaging Technology (No.BAICIT-2016001) and Na-
tional Key R&D Program of China (No.2016QY04W0802).

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate.
ICLR.

7287

Cao, S. Z.; Li, W.; Wei, F.; and Li, S. 2018. Retrieve, rerank
and rewrite: Soft template based neural summarization. In
ACL, volume 2, 3.
Fleiss, J. L. 1971. Measuring nominal scale agreement
among many raters. Psychological bulletin 76(5):378.
Fu, Z.; Tan, X.; Peng, N.; Zhao, D.; and Yan, R. 2018. Style
transfer in text: Exploration and evaluation. In AAAI 2018.
Guu, K.; Hashimoto, T. B.; Oren, Y.; and Liang, P.
2017. Generating sentences by editing prototypes. CoRR
abs/1709.08878.
Hu, B.; Lu, Z.; Li, H.; and Chen, Q. 2014. Convolutional
neural network architectures for matching natural language
sentences. In NIPS, 2042–2050.
Ji, Z.; Lu, Z.; and Li, H. 2014. An information re-
trieval approach to short text conversation. arXiv preprint
arXiv:1408.6988.
Kingma, D., and Ba, J. 2015. Adam: A method for stochas-
tic optimization. ICLR.
Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; and Rush, A. M.
2017. Opennmt: Open-source toolkit for neural machine
translation. In Proc. ACL.
Li, J.; Galley, M.; Brockett, C.; Gao, J.; and Dolan, B.
2016a. A diversity-promoting objective function for neural
conversation models. In NAACL, 2016, 110–119.
Li, J.; Monroe, W.; Ritter, A.; Jurafsky, D.; Galley, M.; and
Gao, J. 2016b. Deep reinforcement learning for dialogue
generation. In EMNLP 2016, 1192–1202.
Li, J.; Monroe, W.; Shi, T.; Ritter, A.; and Jurafsky, D.
2017. Adversarial learning for neural dialogue generation.
EMNLP.
Li, J.; Jia, R.; He, H.; and Liang, P. 2018. Delete, retrieve,
generate: A simple approach to sentiment and style transfer.
NAACL.
Liao, Y.; Bing, L.; Li, P.; Shi, S.; Lam, W.; and Zhang,
T. 2018. Incorporating pseudo-parallel data for quantifiable
sequence editing. arXiv preprint arXiv:1804.07007.
Liu, C.-W.; Lowe, R.; Serban, I. V.; Noseworthy, M.; Char-
lin, L.; and Pineau, J. 2016. How not to evaluate your di-
alogue system: An empirical study of unsupervised evalua-
tion metrics for dialogue response generation. EMNLP.
Lowe, R.; Pow, N.; Serban, I.; and Pineau, J. 2015. The
ubuntu dialogue corpus: A large dataset for research in un-
structured multi-turn dialogue systems. SIGDIAL.
Pandey, G.; Contractor, D.; Kumar, V.; and Joshi, S. 2018.
Exemplar encoder-decoder for neural conversation genera-
tion. In ACL, volume 1, 1329–1338.
Ritter, A.; Cherry, C.; and Dolan, W. B. 2011. Data-driven
response generation in social media. In EMNLP, 583–593.
Serban, I. V.; Sordoni, A.; Bengio, Y.; Courville, A. C.; and
Pineau, J. 2016. End-to-end dialogue systems using gen-
erative hierarchical neural network models. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., 3776–3784.
Serban, I. V.; Sordoni, A.; Lowe, R.; Charlin, L.; Pineau, J.;
Courville, A. C.; and Bengio, Y. 2017. A hierarchical latent

variable encoder-decoder model for generating dialogues. In
AAAI, 3295–3301.
Shang, L.; Lu, Z.; and Li, H. 2015. Neural responding
machine for short-text conversation. In ACL 2015.
Song, Y.; Yan, R.; Li, X.; Zhao, D.; and Zhang, M.
2016. Two are better than one: An ensemble of retrieval-
and generation-based dialog systems. arXiv preprint
arXiv:1610.07149.
Sordoni, A.; Galley, M.; Auli, M.; Brockett, C.; Ji, Y.;
Mitchell, M.; Nie, J.; Gao, J.; and Dolan, B. 2015. A
neural network approach to context-sensitive generation of
conversational responses. In NAACL 2015, 196–205.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Vinyals, O., and Le, Q. 2015. A neural conversational
model. arXiv preprint arXiv:1506.05869.
Wang, D.; Jojic, N.; Brockett, C.; and Nyberg, E. 2017.
Steering output style and topic in neural response genera-
tion. In EMNLP 2017, 2140–2150.
Weizenbaum, J. 1966. Eliza: a computer program for the
study of natural language communication between man and
machine. Communications of the ACM 9(1):36–45.
Wu, Y.; Wu, W.; Xing, C.; Zhou, M.; and Li, Z. 2017.
Sequential matching network: A new architecture for multi-
turn response selection in retrieval-based chatbots. In ACL
2017, 496–505.
Wu, Y.; Wu, W.; Yang, D.; Xu, C.; and Li, Z. 2018. Neural
response generation with dynamic vocabularies. In AAAI
2018.
Xia, Y.; Tian, F.; Wu, L.; Lin, J.; Qin, T.; Yu, N.; and Liu, T.
2017. Deliberation networks: Sequence generation beyond
one-pass decoding. In NIPS 2017, 1782–1792.
Xing, C.; Wu, W.; Wu, Y.; Liu, J.; Huang, Y.; Zhou, M.; and
Ma, W.-Y. 2017. Topic aware neural response generation.
In AAAI, volume 17, 3351–3357.
Xu, Z.; Liu, B.; Wang, B.; Sun, C.; Wang, X.; Wang, Z.; and
Qi, C. 2017. Neural response generation via GAN with an
approximate embedding layer. In EMNLP 2017, 617–626.
Yan, R.; Song, Y.; and Wu, H. 2016. Learning to re-
spond with deep neural networks for retrieval-based human-
computer conversation system. In SIGIR 2016, 55–64.
Zhao, T.; Zhao, R.; and Eskénazi, M. 2017. Learning
discourse-level diversity for neural dialog models using con-
ditional variational autoencoders. In ACL 2017, 654–664.
Zhou, X.; Dong, D.; Wu, H.; Zhao, S.; Yu, D.; Tian, H.; Liu,
X.; and Yan, R. 2016. Multi-view response selection for
human-computer conversation. In EMNLP 2016, 372–381.
Zhou, H.; Huang, M.; Zhang, T.; Zhu, X.; and Liu, B. 2017.
Emotional chatting machine: Emotional conversation gen-
eration with internal and external memory. arXiv preprint
arXiv:1704.01074.

7288

