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Abstract

Decoding human brain activities based on linguistic represen-
tations has been actively studied in recent years. However,
most previous studies exclusively focus on word-level rep-
resentations, and little is learned about decoding whole sen-
tences from brain activation patterns. This work is our effort
to mend the gap. In this paper, we build decoders to asso-
ciate brain activities with sentence stimulus via distributed
representations, the currently dominant sentence representa-
tion approach in natural language processing (NLP). We carry
out a systematic evaluation, covering both widely-used base-
lines and state-of-the-art sentence representation models. We
demonstrate how well different types of sentence represen-
tations decode the brain activation patterns and give empiri-
cal explanations of the performance difference. Moreover, to
explore how sentences are neurally represented in the brain,
we further compare the sentence representation’s correspon-
dence to different brain areas associated with high-level cog-
nitive functions. We find the supervised structured represen-
tation models most accurately probe the language atlas of hu-
man brain. To the best of our knowledge, this work is the first
comprehensive evaluation of distributed sentence representa-
tions for brain decoding. We hope this work can contribute
to decoding brain activities with NLP representation models,
and understanding how linguistic items are neurally repre-
sented.

Introduction

In the past decade, brain imaging technology has been de-
veloped to reveal what a person is seeing, perceiving or
attending to through analyzing his brain activity patterns
(Tong and Pratte 2012). This approach, namely brain de-
coding, might one day make it possible to read a person’s
thoughts from noninvasive measurements of brain activa-
tions. One important and promising aspect of brain decoding
is in the form of language. Much has recently been learned
about reconstructing simple linguistic items, such as words
and phrases from brain activities measured by functional
magnetic resonance imaging (fMRI) (Thirion et al. 2006;
Wehbe et al. 2014). But only a few developments have been
made in decoding whole sentences (Matsuo et al. 2016).
The key aspect of a sentence decoder is a computational
mapping between the brain activities and the sentence stim-
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ulus. To build the decoder, it’s thus important to find numeri-
cal representations of the sentence. Pioneering work (Wehbe
et al. 2014) in brain imaging generally uses human-elicited
features, which can’t fully express fine-gradient differences
of sentence meanings. Human-elicited features are also lim-
ited in scope to cover the large compositional space of nat-
ural language (Nishida and Nishimoto 2017). We instead
adopt distributed sentence representation (DSR) models, the
currently dominant approach in NLP community. DSR mod-
els roughly fall into two categories: unstructured and struc-
tured models (Wang, Zhang, and Zong 2017). Unstructured
models treat a sentence as a bag of words (Iyyer et al. 2015;
Shen et al. 2018), while structured models explicitly catch
the sentence structure (Kiros et al. 2015; Logeswaran and
Lee 2018), such as word order. We don’t yet know which of
the two is the better option for brain decoding. More specif-
ically, will structured models more accurately decode the
brain activities than unstructured models? If so, under what
condition? Is the conclusion consistent with different decod-
ing methods? We will answer these questions to benefit brain
decoding from DSR models.

Except for sentence representations, low-dimensional
representations of the brain activities are also necessary for
brain decoding. The brain images measured by fMRI usu-
ally contain hundreds of thousands of voxels, which must
be reduced in case of overfitting. Inspired by Pereira et al.
(2018), we train regression models to predict sentence rep-
resentations from the brain images, and keep voxels most in-
formative in the prediction. Other than direct dimensionality
reduction, such selection method provides an extra bonus.
Through the spatial distribution of the informative voxels on
the brain, we can study the relations between the sentence
representations and brain areas associated with high level
cognitive functions. This may offer some insights for how
sentences are represented in the human brain.

In this paper, we explore 9 DSRs, covering both unstruc-
tured and structured models, classical baselines and state-
of-the-art methods, to represent the sentence stimulus I We
then select informative voxels from fMRI images to repre-
sent the brain activities. With these representations at hand,

'The sentence stimulus are organized in the hierarchy of
topic—passage—sentence, allowing for decoding task in different
granularities. Fig. 1(b) gives an example of the sentence stimulus



Trainin .
al | Training | Topic ~ Passage Sentence [b]
Voxel (9 DSRs) 1. The piano is a popular musical instrument...
selection Piano Pressing a piano key causes a felt-tipped
Brain image Reduced Sentence hammer...
for sentence STi image representation 3. The piano has an enormous note range.
. . 1. A clarinet is a woodwind musical instrument...
| Evaluation | | SE Musical Accordion | 2 \Lis @ long black tube with a flare at the bottom
¥yt 7 " | Instruments| ACCOTAION | 5 = e plaver chooses notes by pressing keys and
Decoded '\a 1. Anaccordion is a portable musical instrument.
Reduced image semantic vector - ee | s Clarinet 2. One keyboard is used for individual notes
for sentence SEI. n 3. Accordions produce sound with bellow that blow
Sentence air
representations W

Figure 1: [a] Training and evaluation of sentence-level brain decoders. The brain images are reduced by voxel selection. The
decoders are trained to map the brain imaging data to match the distributed sentence representations. During evaluation, the
decoders produce semantic vectors from unseen images to refer the corresponding sentence stimulus. [b] Example of sentence
stimulus organized in topic—passage—sentence, taking the musical instrument topic as an instance

we can start the sentence-level brain decoding as shown in
Fig.1(a). We use two decoding methods: similarity-based
decoding and regression-based decoding. The decoder re-
spectively learns to map the brain images to different sen-
tence representations. The mapping is then evaluated on un-
seen brain images to reveal corresponding sentence stimu-
lus.
In the evaluation, we find:

(i) Simple unstructured representation models are capable
of decoding coarser-grained difference of brain activa-
tions. But they lose to the structured models in tasks of
finer granularity.

(i1) Performance of representation models may fluctuate
in a narrow range across different decoding methods.
But one of the supervised structured models, InferSent,
consistently outperforms other baselines in nearly all
experiments.

(iii) The distributed sentence representations actively probe
some of the functional networks of human brain. Sen-
tence representations which better decode the brain ac-
tivities are shown to have a higher correspondence with
the voxels of the language cortex.

Findings of this paper not only demonstrate the weakness
and advantages of different sentence representation mod-
els in the brain decoding task. They offer a deeper insight
of the connection between the two manifestations of men-
tal meanings: the neural activation patterns and the extrinsic
linguistic representations. We hope this could boost further
research on using NLP representation models in analyzing
brain activities.

Related Work
Brain Decoding

The past decade has witnessed considerable progress in
the field of brain decoding. Early studies managed to re-
cover simple verbal stimulus, including words (Mitchell et
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al. 2008; Palatucci et al. 2009; Just et al. 2010; Pereira,
Detre, and Botvinick 2011; Handjaras et al. 2016) and
phrases (Wehbe et al. 2014; Fyshe 2015; Huth et al. 2016),
from brain activation patterns measured by functional mag-
netic resonance imaging (fMRI). Recent work has shown
that sentences may also be decoded (Matsuo et al. 2016;
Pereira et al. 2018). These results potentially support a
brain-computer interface that could perform “brain reading”
(Nishimoto et al. 2011).

In brain decoding, we need to build mapping between
stimulus and corresponding brain activities. We call such
mapping function a decoder. Two types of decoders are
most widely used in brain imaging research: the similarity-
based decoder (Anderson, Zinszer, and Raizada 2016) and
regression-based decoder (Nishida and Nishimoto 2017;
Bulat, Clark, and Shutova 2017). Similarity-based decoders
re-represent a stimuli by its similarity with other stimu-
lus. The brain activities are re-represented in the same way.
The decoding is based on matching the similarity space.
Regression-based decoder learns a parametric mapping from
the brain activation patterns to the stimulus. The learned
mapping then produces quantitative representations of un-
seen brain activities for further decoding. In this paper, we
adopt both the two types of decoders for a comprehensive
evaluation. We give a detailed introduction of them in the
Brain Decoding Methods section.

Distributed Sentence Representations

Sentence representation is an extensively studied field in the
NLP community, currently dominated by distributed sen-
tence representation (DSR) models (Wang, Zhang, and Zong
2018). DSR models roughly fall into two classes: unstruc-
tured and structured models. Unstructured models generally
enjoy minimal parameters and fast training, but may not
explicitly account for structural information of a sentence
(Iyyer et al. 2015; Shen et al. 2018). In contrast, structured
models can catch the sentence structure at the cost of higher
computation expense.



Structured models can be further classified into unsu-
pervised and supervised methods. Unsupervised methods
(Kiros et al. 2015; Logeswaran and Lee 2018) generally
encode a sentence to predict its contexts. So the produced
representations catch the lexical co-occurrence patterns of
the training corpora. While for supervised models, sentence
representations are trained on various supervised tasks, such
as natural language inference (NLI) and machine transla-
tion (MT). The trained encoders integrate additional task-
related semantic information. InferSent (Conneau et al.
2017) and GenSen (Subramanian et al. 2018), state-of-the-
art distributed sentence representations, are both supervised
structured methods.

Brain Imaging Data

We experiment with the fMRI neural activation data pub-
lished by Pereira et al. (2018), acquired on a whole-body
3-Tesla Siemens Trio scanner with a 32-channel head coil.
We use the brain images corresponding to sentence stimu-
lus. These images are scanned from 5 participants (mean age
27.7, range 21-50), all of them are native English speakers.
The details of experimental setup, materials and presentation
scripts are available online?.

Sentence Stimulus

The sentences stimulus are organized in the hierarchy of
topic—passage—sentence, as shown in Fig 1(b). In experi-
ments, participants are presented a set of 168 passages, each
consisting of 3-4 sentences about a particular concept. The
passages cover 48 broad topics (e.g., professions, opera, nat-
ural disasters, bone fractures, dreams, etc.) and provide basic
information of the corresponding concept in a Wikipedia-
style. All passages are presented sentence by sentence. Each
sentence is presented for 4s followed by a 4s fixation gap.
The entire set of 637 sentences in 168 passages is seen 3
times. The participants are asked to attentively read the sen-
tences they are presented for scanning.

All subjects are scanned three times for every sentence
stimulus. The scan is running consistently during the pres-
ence of sentence stimulus. Then the acquired data series is
corrected by slicing time and motion and concatenated to
align the sentence. The fixation gap is used to separate the
sentences and distinguish brain activities of language pro-
cessing with other (noisy) brain activities.

Voxel Selection

The voxel selection method is inspired by Pereira et al.
(2018). Formally, regression models are trained on each
voxel and its 26 neighbors in 3D to predict each dimension
of the sentence representations. The correlation between
predicted values and the ground truth sentence representa-
tions is then calculated. We take the mean correlation across
all dimensions as a voxel’s informativeness score. The 5,000
voxels with highest scores are selected. With such method,
we select voxels according to how they correspond with the
sentence representation. Therefore, through the spatial dis-
tribution of the selected voxels on the brain, we can gain

*https://osf.io/crwz7/wiki/home/
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some deeper insights of the relation between sentence repre-
sentations and brain areas associated with different cognitive
functions.

Sentence Representation Models

In this paper we evaluate 9 sentence representation models.
Both simple and advanced unstructured models, supervised
and unsupervised structured models are all included.

Unstructured Models

These models ignore the structure of a sentence, thus are
generally easier to train than structured models.

Simple Polling Methods Averaging is almost the sim-
plest way to generate a sentence representation. It returns
the element-wise average over word embeddings in a sen-
tence, which can be seen as an average pooling over the se-
quence. Averaging takes semantic information from every
single word, but it also dilutes the most salient features of
the sentence. Considering that only a small number of words
in a sentence contribute most to its meaning, we also adopt
max-pooling as a representation model. It extracts the max-
imum value along each dimension of the word embeddings,
aggregating the most salient features of all dimensions in the
sentence representation. Intuitively, features extracted by av-
eraging and max-pooling catch complementary semantic in-
formation of a sentence. So we concatenate the two extracted
features as the third representation method, motivated by
Shen et al (2018).

Advanced Pooling Methods Simple pooling methods en-
joy minimal parameters but may only catch limited features
of a sentence. Advanced pooling methods are still unstruc-
tured but they integrate additional information. FastSent
(Hill, Cho, and Korhonen 2016) sums word embeddings in a
sentence as its representation to predict the surrounding sen-
tences. SIF? (Arora, Liang, and Ma 2016) adapts the naive
averaging of word embeddings to weighted averaging. Both
methods show improvements over simple pooling methods
in downstream tasks. We also test FastSent and SIF in this

paper.

Structured Models

Structured representation models are aware of the order and
structure of a sentence. How words or phrases affect each
other is modeled in the training process but somewhat sacri-
ficing computational efficiency.

Unsupervised Methods Unsupervised structured models
generally encode a target sentence to predict its contexts.
One typical method is Skip-thought* (Kiros et al. 2015).
It trains an RNN based encoder-decoder model that re-
constructs the contexts of an encoded sentence. Sentences
with similar semantic and structure properties can thus be
mapped to closer vectors in the representation space. Quick-
Thought® (Logeswaran and Lee 2018) is an advanced ver-
sion of skip-thought. It formulates the sentence predicting

*https://github.com/PrincetonML/SIF
“https://github.com/ryankiros/skip-thoughts
Shttps://github.com/lajanugen/S2V



as a classification task and achieves impressive accelera-
tion of training speed over skip-thought. Quick-thought is
also the state-of-art unsupervised structured model, deliver-
ing impressive performance on downstream tasks.

Supervised Methods These methods learn sentence en-
coders with supervised data of certain NLP tasks. InferSent®
(Conneau et al. 2017) is a state-of-the-art supervised model
trained on the Stanford Natural Language Inference datasets.
It is shown to consistently surpass unsupervised models,
such as Skip-thought, in a series of downstream tasks. In-
ferSent is trained on one type of supervised task, while an-
other well-performing supervised model, GenSen’ (Subra-
manian et al. 2018), is learned in a multi-task manner. The
variant of GenSen we test is trained on machine translation
and semantic parsing.

Brain Decoding Methods

After the sentence representations are built, the brain de-
coder establishes an associative mapping between the rep-
resentation and the imaging data. In this paper we use
two brain decoding methods: similarity-based decoding and
regression-based decoding.

Similarity-based Decoding

Similarity-based decoding is proposed by Anderson et al.
(2016). The first step is to build the similarity-based repre-
sentation of each sentence embedding and each brain image
respectively. Formally, given a set of n sentence representa-
tions {S, ..., Si, ..., Sn }, we calculate similarity-based rep-
resentation of S; as

Rs, = [corr(S;, So), corr(S;, S1), ..., corr(Si, Sp)], (1)

where corr denotes Pearson’s correlation. The similarity-
based representation of brain images { By, ..., B;, ... B, } can
be acquired by analogy. At test time, two of the n similarity-
based representations of sentences and their corresponding
brain images are chosen for decoding at one time. They
are represented by the similarity vectors, Rg,, Rs, for the
two sentences and R, , R, for the corresponding brain im-
ages. The decoding is scored a success if corr(Rg,, Rp,) +
corr(Rs;, Rp;) > corr(Rs,, Rp,)+corr(Rs;, Rp,). This
is actually a pairwise matching task, reflecting if the sen-
tence representations match the brain activities in similarity
relation.

Regression-based Decoding

Regression-based decoding operates by estimating a seman-
tic vector directly from the voxels, with each dimension pre-
dicted by a separate regression model. Let’s take Ridge Re-
gression as an example to give a detailed explanation. For-
mally, we are given the voxel matrix X € RV#*Nv and
sentence representation matrix Z € RVEXND in the train-
ing set, where Ng denotes the number of examples, Ny de-
notes the number of voxels, and Np denotes the number of

Shttps://github.com/facebookresearch/InferSent
https://github.com/Maluuba/gensen
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dimensions for sentence representation. The regression co-
efficients W and b are estimated to minimize

IWX +b— zll3 + Allbll3 2)
for each column z; in Z, i.e., each dimension of the sentence
vectors. A is the regularization parameter separately set for
each dimension with cross-validation. Except for ridge re-
gression, we also test with Lasso-regression and Multilayer
Perceptron (MLP) to cover the most widely used regression
models in brain decoding. How to evaluate the decoded se-
mantic vectors will be detailed in the following section.

Results
Similarity Based Decoding

As depicted in the Brain Decoding Methods section, simi-
larity based decoding is tested on a pairwise matching task.
The matching task includes three subtasks in progressively
finer granularity, with training and testing sentences coming
from:

(i) different topics (e.g., a sentence about a piano vs. a
butterfly),

(ii) different passages from the same topic (e.g., a sentence
about a dragonfly vs. a butterfly),

(iii) different sentences within the same passage (e.g., two
sentences about a piano), for all possible pairs in every
subtask.

Fig.2 shows the matching accuracy of different sentence
representations under the similarity based decoding. All the
tested representations perform significantly above chance
level in decoding the sentence stimulus from different top-
ics. The performance is consistent across subjects. Averag-
ing achieves satisfactory performance but doesn’t rank the
top, even in the pooling based methods. Concatenating max-
imum and average embeddings achieves minor but consis-
tent improvements over simply averaging and max-pooling.
SIF, though taking the form of weighted averaging, performs
even worse than naive averaging in some cases.

The pooling-based methods perform almost on a par with
the structured model in the first two sub-tasks. From Fig.2[b]
we can see that averaging, concatenation and FastSent, the
three unstructured models, perform even better than the two
unsupervised structured models. However, the advantages of
structured models become clear as the tasks getting tough.
Especially in the third task of decoding sentences from the
same passage, InferSent and GenSen exceed all other base-
lines by an impressively large margin.

Regression Based Decoding

The regression model is trained and tested on different sub-
sets of the 176 passages (627 sentences) in a 5-fold cross-
validation for each participant. We use 141 passages for
training and 35 passages for testing in each fold. During each
testing round, the mapping function learned in the train-
ing round is applied to decode semantic vectors from cor-
responding brain activations. This then yields decoded vec-
tor for every sentence after all folds are done. We evaluate
the decoded vectors with the pairwise matching task and a
ranking task.
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Figure 2: Pairwise matching results for similarity based decoding. We report the results of three subtasks: matching sentences
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individual subject. And dots with the same color refer to a same subject across the subtasks, as depicted by the legend
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Figure 3: Decoding performance under three regression models: Ridge regression, Lasso regression, and MLP. Table[a]: Av-
erage matching accuracy of each tested sentence representation among all subjects. Figure[b]: Ranking accuracy of different
sentence representations. Each colored dot in the figure denotes the performance on a certain subject

Pairwise Matching Task In Fig.3(a), we show the match-
ing accuracy of different sentence representations with three
regression models. We test with imaging data from every
single subject and report the mean accuracy. Generally, rep-
resentation models deliver consistent performance from the
similarity based decoding to the current regression based de-
coding.

Still, most unstructured models perform nearly as well
as structured models in the first two subtasks. Avg and
Cat prove strong baselines, fully comparable to the two
advanced pooling models. However, the structured models
work better in the third subtask, i.e. discriminating sentences
from a same passage. Even skip-thought which doesn’t per-
form very well in the first subtask overtakes Avg and Cat
here. InferSent surpasses other baselines in nearly all sub-
tasks with the three regression models.
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To further understand what kind of of sentence performs
better or worse on different methods, we do a case study.
Sentence length and word order are of interest. We first an-
alyze the influence of sentence length on decoding perfor-
mance and show it in Fig.4 , taking several typical repre-
sentation models. We record the decoding performance (av-
erage decoding accuracy among all the subjects) of every
single sentence stimuli on different methods. We find the ef-
fect of sentence length change on the decoding performance
is pretty consistent among the representation models. Gen-
erally the accuracy improves when the sentences become
longer, especially for the unstructured models. This is within
expectation. As sentence become longer, it tends to express
more rich and specific meanings. Both qualities of brain im-
ages and sentence representations could benefit from that.
We then evaluate how much the sentence order matters in
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the decoding performance for structured models. We don’t
expect much of that since unsupervised structured models
which encode word orders didn’t outperform unstructured
ones significantly in the previous experiments. We do a se-
mantically identical while syntactic plausible rearrangement
of the word order and test the structured models. No signifi-
cant difference is observed so we won’t display it.

Rank Evaluation In the rank evaluation, every decoded
vector is correlated with all 637 sentence embeddings and
then ranked by the correlation. The score is 1 if the correct
sentence embedding ranks top, O if it ranks the bottom and
in-between otherwise (Pereira et al. 2018). We use the mean
ranking score across all decoded vectors as the final score.

Fig.3(b) shows the ranking accuracy. All the tested repre-
sentation models consistently score above the chance level
across the subjects. The three simple pooling embeddings
give pretty similar results. Concatenated embedding ranks
top in the three and max embedding outperforms the aver-
age, but just with small margins. GenSen and InferSent sur-
pass all the simple pooling methods with InferSent ranking
the top. Skip-thought’s performance ranks the lowest among
the structured models, virtually the same as the simple pool-
ing models.

Analysis and Summary

We carry out extensive experiments. All representation
models are compared under two decoding frameworks. In
regression-based decoding particularly, we test with three
different regression models. Throughout all the decoding
tasks, we have some common findings to summarize.

In simple pooling based methods, the concatenation of av-
eraging and max-pooling achieves improvements over the
single methods. We owe the improvements to the additional
information caught by maximum pooling, since averaging
dilutes the most salient features of each word in a sen-
tence. Concatenation fares well in both the two brain de-
coding frameworks, and shows comparable performance to
unsupervised structured models in coarse-grained decoding
tasks. Given its low computational complexity, it might be
considered as a competent alternative in brain semantic de-
coding. As for the advanced pooling methods, FastSent per-
forms similar with concatenation and slightly better than the
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naive averaging. This may indicate the benefit of catching
co-occurrence patterns of sentences in the representations.
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The structured models tend to perform better than un-
structured models in fine-grained decoding tasks. InferSent,
especially, delivers significant improvements over all other
baselines in nearly every single experiment. Why? In our
experiments, sentences from a same passage tend to use se-
mantically related words to describe one single concept, as
shown in Fig. 1(b). This means merely pooling on the the
word embeddings is largely possible to produce similar sen-
tence representations. That’s where the structured and other
auxiliary semantic information come to rescue. But for sen-
tences from different topics or different passages, words are
less overlapping. Simply the word embeddings may provide
enough semantic features for a distinguishable sentence rep-
resentation.

Cognitive Insights

How sentences are neurally represented in human brain re-
mains a unsolved problem. We gain some insights through
studying the correspondence between sentence representa-
tions and functional brain areas. Following Pereira et al.
(2018), we pick four brain areas: language atlas (Power
et al. 2011), visual atlas (Fedorenko, Behr, and Kanwisher
2011), default mode network (DMN)(Buckner, Andrews-
Hanna, and Schacter 2008) and and multi-demand (MD) at-
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topic. | passa. | sente. | topic. passa. | sente. | topic. | passa. | sente. topic passa. | sente.

Max | 0.849 0.678 0.554 0.799 0.636 0.497 0.784 0.610 0.568 0.818 0.664 0.516
Avg | 0.877 0.712 0.564 0.816 0.656 0.485 0.799 0.616 0.517 0.834 0.676 0.545
Cat 0.882 0.724 0.549 0.825 0.673 0.445 0.809 0.639 0.537 0.842 0.689 0.545

Sif 0.850 0.668 0.534 0.778 0.613 0.465 0.750 0.560 0.466 0.795 0.608 0.540

Fast | 0.880 0.718 0.557 0.821 0.664 0.465 0.804 0.627 0.527 0.838 0.682 0.545
Skip | 0.847 0.673 0.572 0.790 0.632 0.522 0.760 0.620 0.540 0.790 0.631 0.534
Quik | 0.847 0.673 0.534 0.810 0.625 0.555 0.780 0.649 0.519 0.810 0.614 0.537
Gen | 0.860 | 0.696 | 0.580 | 0.819 | 0.653 | 0.561 | 0.793 | 0.611 | 0.537 | 0.813 | 0.643 | 0.546
Inf | 0.906 | 0.744 | 0.583 | 0.846 | 0.676 | 0580 | 0.822 | 0.638 | 0.575 | 0.856 | 0.674 | 0.572

Figure 6: (Table 1) Matching accuracy of sentence representations with voxels constrained on specific brain areas

las (Duncan 2010)® . We are particularly interested in the
language atlas, since it stores the mappings between linguis-
tic forms and meanings (Power et al. 2011).

In previous experiments, we select informative voxels
based on how well they predict the sentence representations,
without any spatial constraints over the brain. Nevertheless,
voxels themselves belong to different brain areas with high-
level cognitive functions. We show how the informative vox-
els are distributed among these areas, which is actually prob-
ing the functional brain areas with sentence representations.
As depicted in Fig.5, the informative voxels are not evenly
distributed among the atlases. Of all the voxels selected by
different sentence representations, about 40% (in average)
fall into the language atlas. InferSent, the supervised struc-
tured model which consistently leads in previous decoding
tasks, selects significantly more language atlas voxels than
other methods. Further, most of informative voxels fall out-
side of the visual atlas, indicating that the information de-
coded is not primarily visual in nature.

To demonstrate how well different sentence representa-
tions decode specific brain area, we further constrain the
voxels to that area and re-train the decoders. We show the
results in Table 1. The performances are generally consistent
with previous experiments. InferSent and GenSen still rank
the top. Using voxels in the language atlas leads to better
decoding results than other areas. The results may provide
some insights of the deeper relationship between the dis-
tributed lexical representation and the mental representation
of a sentence. InferSent and GenSen capture not only the
sentence structure in the representations. The supervised set-
tings allow them to further integrate task-oriented semantic
information. For example, sentence representations trained
in machine translation may catch the cross-lingual corre-
spondence, trained in NLI better reflect the logic relations
among words and phrases. That means these representations
are not just statistical mappings of linguistic pattens, but an
aggregation of the sentence properties from different points
of view. Such supervised representations accurately decode
the brain activities and actively probe the language cortices.
We thus guess that brain representation of sentence may also

80n average, there are respectively 16193, 12335, 16657 and
32351 voxels in the language atlas, visual atlas, DMN and MD.
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be a bindings of multi-source semantic information, but not
just a simple reflection of linguistic features.

Conclusion

In this paper, we fully explore different types of distributed
representations for sentence-level brain decoding. We con-
duct the evaluation with the two most widely used decod-
ing methods and multiple tasks to qualify the findings. Em-
pirically, we show the cases where unstructured models can
handle and where they fail to structured models, which pro-
vides lessons for applying sentence representation models in
future decoding work. We also find that the supervised struc-
tured models, largely overlooked in previous work, are sur-
prisingly effective in decoding. InferSent, specifically, con-
sistently outperforms the other models in nearly all the tasks.
This leads us to recommend supervised structured models to
be considered in sentence level brain decoding.

To gain deeper insights of how sentences are neurally rep-
resented, we further study the correlation between sentence
representations and different brain functional areas. We first
show that the informative voxels selected by different sen-
tence representations have roughly consistent distribution
patterns, even though the representations themselves might
be acquired in very different ways. We are also surprised
to find that, without any apriori location constraints, nearly
half of the voxels selected by the supervised structured mod-
els fall into the language atlas. This means that brain re-
gions active in language processing also highly correspond
to these representations. We thus suggest that the way su-
pervised structured models encode a sentence may provide
some insights on how human brains represent a sentence.
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