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Abstract

Much effort has been devoted to evaluate whether multi-task
learning can be leveraged to learn rich representations that
can be used in various Natural Language Processing (NLP)
down-stream applications. However, there is still a lack of
understanding of the settings in which multi-task learning
has a significant effect. In this work, we introduce a hierar-
chical model trained in a multi-task learning setup on a set
of carefully selected semantic tasks. The model is trained in
a hierarchical fashion to introduce an inductive bias by su-
pervising a set of low level tasks at the bottom layers of the
model and more complex tasks at the top layers of the model.
This model achieves state-of-the-art results on a number of
tasks, namely Named Entity Recognition, Entity Mention De-
tection and Relation Extraction without hand-engineered fea-
tures or external NLP tools like syntactic parsers. The hierar-
chical training supervision induces a set of shared semantic
representations at lower layers of the model. We show that
as we move from the bottom to the top layers of the model,
the hidden states of the layers tend to represent more complex
semantic information.

Introduction
Recent Natural Language Processing (NLP) models heav-
ily rely on rich distributed representations (typically word
or sentence embeddings) to achieve good performance. One
example are so-called “universal representations” (Conneau
et al. 2017) which are expected to encode a varied set of
linguistic features, transferable to many NLP tasks. This
kind of rich word or sentence embeddings can be learned
by leveraging the training signal from different tasks in a
multi-task setting. It is known that a model trained in a
multi-task framework can take advantage of inductive trans-
fer between the tasks, achieving a better generalization per-
formance (Caruana 1993). Recent works in sentence em-
beddings (Subramanian et al. 2018; Jernite, Bowman, and
Sontag 2017) indicate that complementary aspects of the
sentence (e.g. syntax, sentence length, word order) should
be encoded in order for the model to produce sentence
embeddings that are able to generalize over a wide range
of tasks. Complementary aspects in representations can be
naturally encoded by training a model on a set of diverse
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Table 1: A few examples motivating our selection of tasks.
Abbreviations: CR: Coreference Resolution, RE: Relation
Extraction, EMD: Entity Mention Detection, NER: Named
Entity Recognition, X Y: X is more likely to be Y.

Example Predictions on one
task...

...can help disambiguate
other tasks

X works for Y RE: {work, X, Y} X Person (EMD)
Y  Organization or
Person (NER)

I love Melbourne. I’ve
lived three years in this
city.

CR: (Melbourne,
this city)
RE: {live, I, this
city}

Melbourne Location
(EMD/NER)

Dell announced a $500M
net loss. The company is
near bankruptcy.

CR: (Dell, The
company)

Dell Organization
(EMD/NER)

tasks, such as, machine translation, sentiment classifica-
tion or natural language inference. Although, (i) the selec-
tion of this diverse set of tasks, as well as, (ii) the con-
trol of the interactions between them are of great impor-
tance, a deeper understanding of (i) and (ii) is missing as
highlighted in the literature (Caruana 1997; Mitchell 1980;
Ruder 2017). This work explores this line of research by
combining, in a single model, four fundamental seman-
tic NLP tasks: Named Entity Recognition, Entity Mention
Detection (also sometimes referred as mention detection),
Coreference Resolution and Relation Extraction. This selec-
tion of tasks is motivated by the inter-dependencies these
tasks share. In Table 1, we give three simple examples to
exemplify the reasons why these tasks should benefit from
each other. For instance, in the last example knowing that the
company and Dell are referring to the same real world entity,
Dell is more likely to be an organization than a person.

Several prior works (Yang, Salakhutdinov, and Cohen
2016; Bingel and Søgaard 2017) avoid the question of the
linguistic hierarchies between NLP tasks. We argue that
some tasks (so-called “low level” tasks) are simple and re-
quire a limited amount of modification to the input of the
model while other tasks (so-called “higher level” tasks) re-
quire a deeper processing of the inputs and likely a more
complex architecture. Following (Hashimoto et al. 2017;
Søgaard and Goldberg 2016), we therefore introduce a hier-
archy between the tasks so that low level tasks are supervised
at lower levels of the architecture while keeping more com-
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Figure 1: Diagram of the model architecture

plex interactions at deeper layers. Unlike previous works (Li
and Ji 2014; Miwa and Bansal 2016), our whole model can
be trained end-to-end without any external linguistic tools
or hand-engineered features while giving stronger results on
both Relation Extraction and Entity Mention Detection.

Our main contributions are the following: (1) we propose
a multi-task architecture combining four different tasks that
have not been explored together to the best of our knowl-
edge. This architecture uses neural networks and does not
involve external linguistic tools or hand-engineered features.
We also propose a new sampling strategy for multi-task
learning, proportional sampling. (2) We show that this ar-
chitecture can lead to state-of-the art results on several tasks
e.g. Named Entity Recognition, Relation Extraction and En-
tity Mention Detection while using simple models for each
of these tasks. This suggests that the information encoded
in the embeddings is rich and covers a variety of linguistic
phenomena. (3) We study and give insights on the influence
of multi-task learning on (i) the speed of training and (ii) the
type of biases learned in the hierarchical model.

Model
In this section, we describe our model beginning at the lower
levels of the architecture and ascending to the top layers.
Our model introduces a hierarchical inductive bias between
the tasks by supervising low-level tasks (that are assumed
to require less knowledge and language understanding) at
the bottom layers of the model architecture and supervising
higher-level tasks at higher layers. The architecture of the
model is shown in Figure 1. Following (Hashimoto et al.
2017), we use shortcut connections so that top layers can
have access to bottom layer representations.

Words embeddings
Our model encodes words wt of an input sentence s =
(w1, w2, ..., wn) as a combination of three different types of
embeddings. We denote the concatenation of the these three
embeddings ge.
Pre-trained word embeddings: We use GloVe (Pennington,
Socher, and Manning 2014) pre-trained word level embed-
dings. These embeddings are fine-tuned during training.
Pre-trained contextual word embeddings: We also use con-
textualized ELMo embeddings (Peters et al. 2018). These
word embeddings differ from GloVe word embeddings in
that each token is represented by a vector that is a function
of the whole sentence (a word can thus have different rep-
resentations depending on the sentence it is extracted from).
These representations are given by the hidden states of a bi-
directional language model. ELMo embeddings have been
shown to give state-of-the-art results in multiple NLP tasks
(Peters et al. 2018).
Character-level word embeddings: Following (Chiu and
Nichols 2016; Lample et al. 2016), we use character-level
word embeddings to extract character-level features. Specif-
ically, we use a convolutional neural network (CNN) (fol-
lowed by a max pooling layer) for the ease of training since
Recurrent Neural Network-based encodings do not signifi-
cantly outperform CNNs while being computationally more
expensive to train (Ling et al. 2015).

Named Entity Recognition (NER)
The first layers of our model are supervised by Named En-
tity Recognition labels. NER aims to identify mentions of
named entities in a sequence and classify them into pre-
defined categories. In accordance with previous work (Chiu
and Nichols 2016; Lample et al. 2016) the tagging module
contains an RNN-based encoding layer followed by a se-
quence tagging module based on a conditional random field
(Lafferty, McCallum, and Pereira 2001). We use multi-layer
bi-directional LSTMs (Long Short-Term Memory) as en-
coders. The encoders take as input the concatenated word
embeddings ge and produce (sequence) embeddings gner.
Specifically, gner are the concatentation of the backward and
forward hidden states of the top layer of the biLSTMs, which
are then fed to the sequence tagging layer.

We adopt the BILOU (Beginning, Inside, Last, Outside,
Unit) tagging scheme. The tagging decisions are modeled
using a CRF, which explicitly reasons about interactions be-
tween neighbour tokens tags.

Entity Mention Detection (EMD)
A second group of layers of our model are supervised us-
ing Entity Mention Detection labels. EMD is similar in
spirit to NER but more general as it aims to identify all
the mentions related to a real life entity, whereas NER only
focuses on the named entities. Let us consider an exam-
ple: [The men]PERS held on [the sinking vessel]V EH un-
til [the passenger ship]V EH was able to reach them from
[Corsica]GPE . Here, NER annotations would only tag Cor-
sica, while EMD requires a deeper understanding of the en-
tities in the sentence.
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We formulate Mention Detection as a sequence tagging
task using a BILOU scheme. We use a multi-layer biLSTM
followed by a CRF tagging layer. We adopt shortcut con-
nections so that each layer can build on top of the represen-
tations extracted by the lower layers in a hierarchical fash-
ion. The encoder thus takes as input the concatenation of the
lower layer representations [ge, gner] and outputs sequence
embeddings denoted by gemd.

To be able to compare our results with previous works
(Bekoulis et al. 2018; Miwa and Bansal 2016; Katiyar and
Cardie 2017) on EMD, we identify the head of the entity
mention rather than the whole mention.

Coreference Resolution (CR)
Ascending one layer higher in our model, CR is the task
of identifying mentions that are referring to the same real
life entity and cluster them together (typically at the level
of a few sentences). For instance, in the example My mom
tasted the cake. She said it was delicious, there are two clus-
ters: (My mom, She) and (the cake, it). CR is thus a task
which requires a form of semantic representation to cluster
the mentions pointing to the same entity.

We use the model proposed in (Lee et al. 2017). This
model considers all the spans in a document as potential
mentions and learns to distinguish the candidate corefer-
ent mentions from the other spans using a mention scorer
to prune the number of mentions. The output of the mention
scorer is fed to a mention pair scorer, which decides whether
identified candidates mentions are coreferent. The main el-
ements introduced in (Lee et al. 2017) are the use of span
embeddings to combine context-dependent boundary repre-
sentation and an attention mechanism over the span to point
to the mention’s head. This model is trained fully end-to-end
without relying on external parser pre-processing.

The encoder takes as input the concatenation of [ge, gemd]
and outputs representations denoted as gcr, which are then
fed to the mention pair scorer.

Relation Extraction (RE)
The last supervision of our model is given by Relation Ex-
traction (RE). RE aims at identifying semantic relational
structures between entity mentions in unstructured text. Tra-
ditional systems treat this task as two pipelined tasks: (i)
identifying mentions and (ii) classifying the relations be-
tween identified mentions. We use the Joint Resolution
Model proposed by Bekoulis et al. (2018) in which the se-
lection of the mentions and classification of the relation
between these mentions are performed jointly. Following
previous work (Li and Ji 2014; Katiyar and Cardie 2017;
Bekoulis et al. 2018), we only consider relations between
the last token of the head mentions involved in the relation.
Redundant relations are therefore not classified.

The RE encoder is a multi-layer BiLSTM which takes as
input [ge, gemd] and outputs a representation denoted gre.
These contextualized representations are fed to a feedfor-
ward neural network. More specifically, considering two to-
ken’s contextualized representations, gi and gj , both of size

Rl, we compute a vector score:

t(wi, wj) = V φ(Ugj +Wgi + b) (1)

where U ∈ Rd×l, W ∈ Rd×l, b ∈ Rd, and V ∈ Rr×d are
learned transformation weights, l is the size of the embed-
dings output by the encoder, d is the size of the hidden layer
of the feedforward network, r is the number of possible rela-
tions, and φ is a non-linear activation function. The relation
probabilities are then estimated as p = σ(t(wi, wj)) ∈ Rr

where pk (1 ≤ k ≤ r) is the probability that token wi and
token wj are respectively labeled as ARG1 and ARG2 in a
relation of type k. The model predictions are computed by
thresholding estimated probabilities. The parameters of the
model V , U , W , and b are trained by minimizing a cross-
entropy loss.

In this formulation, a mention may be involved in several
relations at the same time (for instance being the ARG1 and
the ARG2 in two respective relations), which can occur in
real life examples. If we replaced the sigmoid function by a
softmax function, this is not possible.

In the model, the CR and RE modules are both on the
same level. We did not find it helpful to introduce a hierar-
chical relation between these two tasks as they both rely on
deeper semantic modeling, i.e. both trying to link mentions.

Experiment setting
Datasets and evaluation metrics
We use labeled data from different sources to train and eval-
uate our model. For NER, we use the English portion of
OntoNotes 5.0 (Pradhan et al. 2013). Following Strubell et
al. (2017), we use the same data split as used for corefer-
ence resolution in the CoNLL-2012 shared task (Pradhan et
al. 2012). We report the performance on NER using span
level F1 score on the test set. The dataset covers a large
set of document types (including telephone conversations,
web text, broadcast news and translated documents), and a
diverse set of 18 entity types (including PERSON, NORP,
FACILITY, ORGANIZATION, GPE). Statistics of the cor-
pus are detailed in Table 2. We also report performance on
more commonly used CoNLL2003 NER dataset.

For CR, EMD and RE, we use the Automatic Content
Extraction (ACE) program ACE05 corpus (Doddington et
al. 2004). The ACE05 corpus is one of the largest cor-
pus annotated with CR, EMD and RE making it a com-
pelling dataset for multi-task learning. Mention tags in
ACE05 cover 7 types of entities such as Person, Organiza-
tion, or Geographical Entities. For each entity, both the men-
tion boundaries and the head spans are annotated. ACE05
also introduces 6 relation types (including Organization-
Affiliation (ORG-AFF), GEN-Affiliation (GEN-AFF), and
Part-Whole (PART-WHOLE)). We use the same data splits
as previous work (Li and Ji 2014; Miwa and Bansal 2016;
Katiyar and Cardie 2017) for both RE and EMD and report
F1-scores, Precision, and Recall. We consider an entity men-
tion correct if the model correctly predicted both the men-
tion’s head and its type. We consider a relation correct if the
model correctly predicted the heads of the two arguments
and the relation type.
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Table 2: Data statistics
OntoNotes Train Dev Test
Documents 2,483 319 322
Sentences 59,924 8,529 8,262
Named Entities 81,828 11,066 11,257
Tokens 1,088,503 147,724 152,728
ACE05 Train Dev Test
Documents 351 80 80
Sentences 7,273 1,765 1,535
Mentions 26,470 6,421 1,535
Relations 4,779 1,179 1,147

For CR, we use different splits to be able to compare to
previous work (Bansal and Klein 2012; Durrett and Klein
2014). These splits (introduced in (Rahman and Ng 2009))
use the whole ACE05 dataset leaving 117 documents for
test while having 482 documents for training (as in (Bansal
and Klein 2012), we randomly split the training into a 70/30
ratio to form a validation set). We evaluate coreference on
both splits. We compare all coreference systems using the
commonly used metrics: MUC, B3, CEAFe (CEAFφ4) as
well as the average F1 of the three metrics as computed
by the official CoNLL-2012 scorer. Note that Durrett and
Klein make use of external NLP tools including an auto-
matic parser (Durrett and Klein 2013).

We compare our model to several previous systems that
have driven substantial improvements over the past few
years both using graphical models or neural-net-based mod-
els. These are the strongest baselines to the best of our
knowledge.

Training Details
Subramanian et al. (2018) observe that there is no clear con-
sensus on how to correctly train a multi-task model. Specif-
ically, there remain many open questions such as “when
should the training schedule switch from one task to another
task?” or “should each task be weighted equally?” One of
the main issues that arises when training a multi-task model
is catastrophic forgetting (French 1999) where the model
abruptly forgets part of the knowledge related to a previously
learned task as a new task is learned. This phenomenon is es-
pecially present when multiple tasks are trained sequentially.

We selected the simple yet effective training method de-
scribed in (Søgaard and Goldberg 2016; Ruder et al. 2017):
after each parameter update, a task is randomly selected and
a batch of the dataset attached to this task is also sampled
at random to train the model. This process is repeated un-
til convergence (the validation metrics do not improve any-
more). We tested both uniform and proportional sampling
and found that proportional sampling performs better both
in terms of performance and speed of convergence. In pro-
portional sampling, the probability of sampling a task is pro-
portional to the relative size of each dataset compared to the
cumulative size of all the datasets. Note that unlike (Subra-
manian et al. 2018), the updates for a particular task affect
the layers associated with this task and all the layers below
but not the layers above.

Results and Discussion
Overall Performance
In this section, we present our main results on each task
and dataset. The hierarchical model and multi-task learning
framework presented in this work achieved state-of-the-art
results on three tasks, namely NER (+0.52), EMD (+3.8)
and RE (+6.8). Table 3 summarizes the results and intro-
duces each setups’ abbreviation (alphabetical letters). In the
following subsections, we highlight a few useful observa-
tions.

To be able to compare our work on CR with the vari-
ous baselines, we report results using different settings and
splits. More precisely, GM indicates that gold mentions were
used for evaluation and that coreference was trained using
the ACE05 splits introduced in (Rahman and Ng 2009).

Using gold mentions is impossible in real settings so we
also relax this condition leading to a more challenging task
in which we make no use of external tools or metadata
(such as speaker ID used by some systems (Clark and Man-
ning 2015)). Comparing setups A and A-GM shows how
the supervision from one module (e.g. CR) can flow through
the entire architecture and impact other tasks’ performance:
RE’s F1 score drops by ∼1 point on A. Note that the GM
setup impacts the training exit condition (the validation met-
rics stop improving) and the evaluation metrics (it is well
known that using gold mentions at evaluation time improves
CR’s performance). Similarly, the A-GM setup leads to the
state-of-the-art on EMD and RE. It increases the F1 by∼1.5
points for EMD and ∼1 point for RE (A vs. A-GM). This
suggests that having different type of information on differ-
ent sentences brings richer information than having multi-
ple types of information on the same sentences (setup A-
CoNLL2012 -see Table 4- supports this claim as CR trained
on another dataset leads to comparable performance on the
three other tasks).

To analyze which components of the model are driving
the improvements and understand the interactions between
the different tasks and modules, we performed an ablation
study summarized in the following paragraphs and on Ta-
bles 3 and 5.

Single Task vs. Full Models The largest difference be-
tween a single-task and a multi-task setup is observed on
the RE task (A vs. D on Table 3), while the results on NER
are similar in multi-task and single-task setups (B vs. A &
A-GM). This further highlights how the RE module can be
sensitive to information learned from other tasks. Results on
EMD are in the middle, with the single task setup giving
higher score than a multi-task-setup except for A-GM and I.
More surprisingly, CR can give slightly better results when
being single-task-trained (A vs. E).

Progressively adding tasks To better understand the con-
tribution of each module, we vary the number of tasks in our
training setup. The experiments show that training using RE
helps both for NER and for EMD. Adding RE supervision
leads to an increase of∼1 point on NER while boosting both
precision and recall on EMD (F vs. I). CR and RE can help
NER as shown by comparing setups A and F: recall and F1
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Table 3: Results: Baselines and ablation study on the tasks. GM means that the same coreference module uses gold mentions at
evaluation time and that we used the splits introduced in (Rahman and Ng 2009). Otherwise, we use for coreference the same
splits as for EMD and RE (351/80/80). For coreference, figures that are comparable with (Durrett and Klein 2014) are tagged
with an *.

NER EMD RE CR
Setup Model P R F1 P R F1 P R F1 MUC B3 Ceafe Avg. F1

(Strubell et al. 2017) - - 86.99 - - - - - - - - - -
(Katiyar and Cardie 2017) - - - 84.0 81.3 82.6 57.9 54.0 55.9 - - - -
(Miwa and Bansal 2016) - - - 82.9 83.9 83.4 57.2 54.0 55.6 - - - -
(Li and Ji 2014) - - - 85.2 76.9 80.8 68.9 41.9 52.1 - - - -
(Durrett and Klein 2014) - - - - - - - - - 81.03* 74.89* 72.56* 76.16*
(Bansal and Klein 2012) - - - - - - - - - 70.2* 72.5* - -

(A) Full Model 87.52 87.21 87.36 85.68 85.69 85.69 68.53 54.48 61.30 73.89 61.34 59.11 64.78
(A-GM) Full Model - GM 87.12 87.09 87.10 87.15 87.33 87.24 70.40 56.40 62.69 82.49* 67.64* 60.75* 70.29*
(B) NER 87.24 87.00 87.12 - - - - - - - - - -
(C) EMD - - - 87.03 85.27 86.14 - - - - - - -
(D) RE - - - - - - 60.47 52.14 55.99 - - - -
(E) CR - - - - - - - - - 74.80 62.63 59.59 65.67
(E-GM) CR - GM - - - - - - - - - 81.78* 66.42* 59.93* 69.38*
(F) NER + EMD 87.50 86.32 86.91 86.54 85.49 86.02 - - - - - - -
(G) EMD + RE - - - 85.58 85.38 85.50 68.66 54.05 60.49 - - - -
(H) EMD + CR - - - 85.84 85.46 85.65 - - - 72.67 59.05 57.33 63.02
(I) NER + EMD + RE 87.37 87.65 87.51 86.63 85.90 86.26 65.57 55.62 60.18 - - - -
(J) NER + EMD + CR 87.67 87.34 87.50 85.89 85.86 85.87 - - - 75.73 62.92 61.24 66.64
(K) EMD + NER 85.67 87.19 86.43 85.62 84.76 85.19 - - - - - - -
(L) EMD + NER + RE + CR 85.78 86.66 86.21 85.24 85.05 85.14 63.32 55.54 59.17 73.29 60.37 58.86 64.17

for NER are ∼1 point stronger, while the impact on EMD is
negative. Finally, training using CR supervision boosts NER
(F vs. J) by increasing NER’s recall while lowering EMD’s
precision and F1. In other words the information flowing
along the hierarchical model (e.g. stacking of encoders and
shortcut connections) enables higher levels’ supervision to
train lower levels to learn better representations. More gen-
erally, whenever the task RE is combined with another task,
it always increases the F1 score (most of the improvement
coming from the precision) by 2–6 F1 points.

Experimenting with the hierarchy order Comparing se-
tups F vs. K and A vs. L in which we switched NER and
EMD, provides evidence for the hierarchical relation be-
tween NER and EMD: supervising EMD at a lower level
than NER is detrimental to the overall performance. This
supports our intuition that the hierarchy should follow the
intrinsic difficulty of the tasks.

Comparison to other canonical datasets We also com-
pare our model on two other canonical datasets for NER
(CoNLL-2003) and CR (CoNLL-2012). Details are reported
in Table 4. We did not tune hyperparameters, keeping the
same hyperparameters as used in the previous experiments.
We reach performance comparable to previous work and the
other tasks, demonstrating that our improvements are not
dataset-dependent.

Effect of the embeddings We perform an ablation study
on the words and character embeddings ge. Results are re-
ported in Table 5. As expected, contextualized ELMo em-
beddings have a noticeable effect on each metrics. Remov-
ing ELMo leads to a ∼4 F1 points drop on each task. Fur-
thermore, character-level embeddings, which are sensitive
to morphological features such as prefixes and suffixes and
capitalization, also have a strong impact, in particular on
NER, RE and CR. Removing character-level embeddings

Table 4: Comparison to other canonical datasets on NER
(CoNLL-2003) and coreference (CoNLL-2012). A-CoNLL:
train A-GM using CoNLL-2003 for NER; A-CoNLL-2012:
train A using CoNLL-2012 for coreference.

Model NER (F1) CR (F1)
Lample et al. (2016) 90.94 -
Strubell et al. (2017) 90.54 -
Peters et al. (2018) 92.22 -
(A-CoNLL-2003) 91.63 70.14
Durrett and Klein (2014) - 61.71
Lee et al. (2017) (single) - 67.2
Lee et al. (2017) (ensemble) - 68.8
(A-CoNLL-2012) 86.90 62.48

Table 5: Ablation study on the embeddings. We remove one
by one the embeddings on the first layer of the best perform-
ing model (A-GM).

Model NER (F1) EMD (F1) RE (F1) CR (F1)
Glove + Char. embds + ELMo 87.10 87.24 62.69 70.29
Glove + Char. embds 84.33 83.13 57.47 66.44
Glove 79.81 83.00 53.77 64.26

does not affect EMD suggesting that the EMD module can
compensate for this information. The main improvements on
the CR task stem from the increase in B3 and Ceafe metrics.
Note that the strong effect of removing a type of embedding
is also a consequence of using shortcut connections: remov-
ing an embedding has a direct impact on the input to each
task’s module.

What did the embeddings and encoders learn?
High scores on a specific task suggest that the representa-
tions learned by the encoders (and the embeddings) have
somehow managed to capture relevant linguistic or statis-
tical features for the task. However, using complex archi-
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tectures makes it difficult to understand what is actually en-
coded in the embeddings and hidden states and what type
of linguistic information, if any, is being used by the model
to make a particular prediction. To further understand our
architecture, we analyze the inductive biases encoded in
the embeddings and hidden states of the various layers. We
follow Conneau et al. (2018) who introduced 10 different
probing tasks1 to analyze the quality of sentence embed-
dings. These tasks aim at evaluating a wide set of linguistic
properties from surface information, to syntactic informa-
tion through semantic information.

We use a simple logistic regression classifier, which takes
the sentence embeddings as inputs and predicts the linguis-
tic property. We study both the word embeddings (ge) and
the hidden state representations (biLSTM encoders) specific
to each module in our model. The sentence embedding of an
input sequence of length L is computed from the L hidden
states of an encoder by taking the maximum value over each
dimension of the last layer activations as done in (Conneau
et al. 2017). Sentence embeddings are obtained from word
and character-level embeddings by max-pooling over a sen-
tence’s words. Averaging word embeddings is known to be a
strong baseline for sentence embeddings (Arora, Liang, and
Ma 2017) and we also report the results of this simpler pro-
cedure in Table 6.

Results We compare our results with two baselines from
(Conneau et al. 2018): bag-of-words computed from Fast-
Text embeddings and SkipThought sentence embeddings
(Kiros et al. 2015). We compare the base word embeddings
ge of our model with the first baseline and the output of the
task-specific encoders to the second baseline. A first obser-
vation is that the word embeddings already encode rich rep-
resentations, having an accuracy higher than 70% on seven
of the ten probing tasks. We suspect that shortcut connec-
tions are key to this good performances by allowing high
level tasks to encode rich representations. The good perfor-
mance on Bigram Shift (compared to BoV-FastText: +38.8)
likely comes from the use of ELMo embeddings which are
sensitive to word order. The same argument may also explain
the strong performance on Sentence Length.

There are significant discrepancies between the results of
the word embeddings ge and the encoder representations,
indicating that the learned linguistic features are different
between these two types of embeddings. Averaging the base
embeddings surpasses encoder embeddings on almost all the
probing tasks (except Coordination Inversion). The differ-
ence is particularly high on the Word Content task in which
the results of the encoders embeddings barely rise above
11.0, indicating that the ability to recover a specific word
is not a useful feature for our four semantic tasks.

The performance of the encoder representation is stronger
on semantic probing tasks, compared to the low signal for
surface and syntatic tasks. The only exception is the Sen-
tence Length which suggest that this linguistic aspect is nat-
urally encoded. The performances of the NER and EMD en-
coders are generally in the same range supporting the fact

1A probing task is a classification task that focuses on a well
identified linguistic property.

that these two tasks are similar in nature. Finally, we ob-
serve that the highest scores for encoder representations al-
ways stem from the coreference encoder suggesting that CR
is both the highest level task and that the CR module requires
rich and diverse representations to make a decision.

Multi-task learning accelerating training
It is also interesting to understand the influence of a multi-
task learning framework on the training time of the model.
In the following section, we compare the speed of training
in terms of number of parameter updates (a parameter up-
date being equal to a back-propagation pass) for each of
the tasks in the multi-task framework against a single-task
framework. The speed of training is defined as the number
of updates necessary to reach convergence based on the val-
idation metric.

Results are presented in Table 7 for the best performing
multi-task model (A-GM). The multi-task framework needs
less updates to reach comparable (or higher) F1 score in
most cases except on the RE task. This supports the intu-
ition that knowledge gathered from one task is beneficial to
the other tasks in the hierarchical architecture of our model.

Related work
Our work is most related to Hashimoto et al. (2017) who de-
velop a joint hierarchical model trained on syntactic and se-
mantic tasks. The top layers of this model are supervised by
semantic relatedness and textual entailment between two in-
put sentences, implying that the lower layers need to be run
two times on different input sentences. Our choice of tasks
avoids such a setup. Our work also adopts a different ap-
proach to multi-task training (proportional sampling) there-
fore avoiding the use of complex regularization schemes to
prevent catastrophic forgetting. Our results show that strong
performances can be reached without these ingredients. In
addition, the tasks examined in this work are more focused
on learning semantic representations, thereby reducing the
need to learn surface and syntactic information, as evidenced
by the linguistic probing tasks.

Unlike (Hashimoto et al. 2017) and other previous work
(Katiyar and Cardie 2017; Bekoulis et al. 2018; Augenstein,
Ruder, and Søgaard 2018), we do not learn label embed-
dings, meaning that the (supervised) output/prediction of a
layer is not directly fed to the following layer through an em-
bedding learned during training. Nonetheless, sharing em-
beddings and stacking hierarchical encoders allows us to
share the supervision from each task along the full structure
of our model and achieve state-of-the-art performance.

Unlike some studies on multi-task learning such as (Sub-
ramanian et al. 2018), each task has its own contextual-
ized encoder (multi-layer BiLSTM) rather than a shared one,
which we found to improve the performance.

Our work is also related to Søgaard and Goldberg (2016)
who propose to cast a cascade architecture into a multi-task
learning framework. However, this work was focused on
syntactic tasks and concluded that adding a semantic task
like NER to a set of syntactic tasks does not bring any im-
provement. This confirms the intuition that multi-task learn-
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Table 6: SentEval Probing task accuracies. Classification is performed using a simple logistic regression enabling fair evaluation
of the richness of a sentence embedding. We report two baselines from Conneau et al..

Tasks Surface Information Syntatic Information Semantic Information
SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv

Word Embeddings
Bov-fastText ((Conneau et al. 2018)) 54.8 91.6 32.3 63.1 50.8 87.8 81.9 79.3 50.3 52.7
Our model (gemb) - Max 62.4 43.0 32.5 76.3 74.5 88.1 85.7 82.7 54.7 56.9
Our model (gemb) - Average 72.1 70.0 38.5 79.9 81.4 89.7 88.5 86.5 57.4 63.0
BiLSTM-max encoders
SkipThought (Conneau et al.) 59.6 35.7 42.7 70.5 73.4 90.1 83.3 79.0 70.3 70.1
Our model (Encoder NER gner) 50.7 3.24 19.5 34.2 57.2 66.6 63.5 61.6 50.7 52.0
Our model (Encoder EMD gemd) 43.3 1.8 19.3 30.0 56.3 64.0 60.1 57.9 51.3 50.4
Our model (Encoder RE gre) 56.8 1.2 19.3 24.5 53.9 62.3 60.8 57.1 50.4 52.2
Our model (Encoder CR gcr) 61.9 11.0 29.5 55.9 70.0 82.8 83.0 76.5 53.3 58.7

Table 7: Speed of training: Difference in number of updates
necessary before convergence: Multi-task (Full Model: A-
GM) compared to single task. We report the differences in
F1 performance. Lower time is better, higher performance is
better.

Setup Model Time ∆ Performance ∆
(B) NER -16% -0.02
(C) EMD -44% +1.14
(D) RE +78% +6.76
(E-GM) Coref-GM -28% +0.91

ing is mostly effective when tasks are related and that syn-
tactic and semantic tasks may be too distant to take advan-
tage of shared representations. The authors used a linear
classifier with a softmax activation, relying on the richness
on the embeddings. As a consequence the sequence tagging
decisions are made independently for each token, in contrast
to our work.

One central question in multi-task learning is the training
procedure. Several schemes have been proposed in the liter-
ature. Hashimoto et al. (2017) train their hierarchical model
following the model’s architecture from bottom to top: the
trainer successively goes through the whole dataset for each
task before moving to the task of the following level. The
underlying hypothesis is that the model should perform well
on low-level tasks before being trained in more complicated
tasks. Hashimoto et al. avoid catastrophic forgetting by in-
troducing successive regularization using slack constraints
on the parameters. Subramanian et al. (2018) adopt a sim-
pler strategy for each parameter update: a task is randomly
selected and a batch of the associated dataset is sampled for
the current update. More recently, McCann et al. (2018) ex-
plored various batch-level sampling strategies and showed
that an anti-curriculum learning strategy (Bengio et al. 2009)
is most effective. In contrast, we propose a novel propor-
tional sampling strategy, which we find to be more effective.

Regarding the selection of the set of tasks, our work is
closest to (Durrett and Klein 2014; Singh et al. 2013). Dur-
rett and Klein (2014) combine coreference resolution, entity
linking (sometimes referred to as Wikification) and mention
detection. Singh et al. (2013) combine entity tagging, coref-
erence resolution and relation extraction. These two works
are based on graphical models with hand-engineered factors.

We are using a neural-net-based approach fully trainable in
an end-to-end fashion, with no need for external NLP tools
(such as in (Durrett and Klein 2014)) or hand-engineered
features. Coreference resolution is rarely used in combina-
tion with other tasks. The main work we are aware of is
(Dhingra et al. 2018), which uses coreference clusters to
improve reading comprehension and the works on language
modeling by Ji et al. (2017) and Yang et al. (2017).

Regarding the combination of entity mention detection
and relation, we refer to our baselines detailed above. Here
again, our predictors do not require additional features
like dependency trees (Miwa and Bansal 2016) or hand-
engineered heuristics (Li and Ji 2014).

Conclusion
We proposed a hierarchically supervised multi-task learn-
ing model focused on a set of semantic task. This model
achieved state-of-the-art results on the tasks of Named En-
tity Recognition, Entity Mention Detection and Relation Ex-
traction and competitive results on Coreference Resolution
while using simpler training and regularization procedures
than previous works. The tasks share common embeddings
and encoders allowing an easy information flow from the
lowest level to the top of the architecture. We analyzed sev-
eral aspects of the representations learned by this model as
well as the effect of each tasks on the overall performances
of the model.
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