
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling

Ning Miao,1∗ Hao Zhou,2 Lili Mou,3 Rui Yan,1 Lei Li2

1Institute of Computer Science and Technology, Peking University, China
2ByteDance AI Lab, Beijing, China 3AdeptMind Research, Toronto, Canada

miaoning@pku.edu.cn, zhouhao.nlp@bytedance.com
lili@adeptmind.ai, doublepower.mou@gmail.com

ruiyan@pku.edu.cn, lileilab@bytedance.com

Abstract

In real-world applications of natural language generation,
there are often constraints on the target sentences in addi-
tion to fluency and naturalness requirements. Existing lan-
guage generation techniques are usually based on recurrent
neural networks (RNNs). However, it is non-trivial to impose
constraints on RNNs while maintaining generation quality,
since RNNs generate sentences sequentially (or with beam
search) from the first word to the last. In this paper, we pro-
pose CGMH, a novel approach using Metropolis-Hastings
sampling for constrained sentence generation. CGMH allows
complicated constraints such as the occurrence of multiple
keywords in the target sentences, which cannot be handled in
traditional RNN-based approaches. Moreover, CGMH works
in the inference stage, and does not require parallel corpora
for training. We evaluate our method on a variety of tasks, in-
cluding keywords-to-sentence generation, unsupervised sen-
tence paraphrasing, and unsupervised sentence error correc-
tion. CGMH achieves high performance compared with pre-
vious supervised methods for sentence generation. Our code
is released at https://github.com/NingMiao/CGMH

Introduction
Natural language generation oftentimes involves constraints
on the generated sentences. The constraints can be catego-
rized into the following types: (1) Hard constraints, such as
the mandatory inclusion of certain keywords in the output
sentences; and (2) Soft constraints, such as requiring the
generated sentences to be semantically related to a certain
topic. Figure 1 illustrates an example of advertisement gen-
eration, where “BMW” and “sports” should appear in the ad-
vertising slogan. Hence, “BMW, the sports car of the future”
is a valid sentence as an advertisement.

Existing sentence generation methods are mostly based
on recurrent neural networks (RNNs), which generate a sen-
tence sequentially from left to right (Sutskever, Vinyals,
and Le 2014). However, it is non-trivial to impose con-
straints during the left-to-right generation in RNNs. Pre-
vious work proposes a backward-forward generation ap-

∗Work done while Ning Miao was a research intern in
ByteDance AI Lab. Hao Zhou and Rui Yan are corresponding au-
thors.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: CGMH generates a sentence with the constraint of
keyword inclusion. At each step, CGMH proposes a candi-
date modification of the sentence, which is accepted or re-
jected according to a certain acceptance rate.

proach (Mou et al. 2015), which could only generate sen-
tences with one keyword. Additionally, researchers pro-
pose grid beam search to incorporate constraints in ma-
chine translation (Post and Vilar 2018; Hasler et al. 2018;
Hokamp and Liu 2017). It works with the translation task be-
cause the source and target are mostly aligned and the candi-
date set of translations is small. But grid beam search would
not work well with general sentence generation, which has
many more candidate sentences.

In this paper, we propose Constrained Generation by
Metropolis-Hastings sampling (CGMH), a novel approach
that addresses sentence generation with constraints. Differ-
ent from previous sentence samplers working in the varia-
tional latent space (Bowman et al. 2016), CGMH directly
samples from the sentence space using the Metropolis-
Hastings (MH) algorithm (Metropolis et al. 1953). MH is an
instance of the general Markov chain Monte Carlo (MCMC)
sampling. It defines local operations in the sentence space
(e.g., word replacement, deletion, and insertion). During
sampling, we randomly choose a word and an operation to
form a proposal for transition. The proposal is either ac-

6834

cepted or rejected according to an acceptance rate computed
by a pre-specified stationary distribution. Compared with
Gibbs sampling (another MCMC method), MH is more flex-
ible to generate sentences with arbitrary lengths.

It is then straightforward to impose constraints on the gen-
erated sentences by introducing a matching function (which
indicates the degree to which the constraints are satisfied) to
manipulate the stationary distribution of MH. For hard con-
straints, the matching function could be a binary indicator,
ruling out the possibility of an infeasible sentence. For soft
constraints, the matching function could be, for example, a
measure of semantic similarity. In both cases, we are able to
sample sentences with constraints.

Our proposed CGMH can be applied to a variety of
tasks. We first experiment keywords-to-sentence generation,
where keywords are hard constraints. In this task, CGMH
outperforms state-of-the-art constrained generation models
in both negative likelihood (fluency) and human evaluation.
We also conduct experiments on two generation tasks with
soft constraints, namely, paraphrase generation and sentence
error correction. Results show that, without a parallel cor-
pus, CGMH significantly outperforms other unsupervised
models, achieving close results to state-of-the-art supervised
approaches.

In summary, our contributions include
• We propose CGMH, a general framework for sentence

sampling that can cope with both hard and soft con-
straints.

• We design the proposal distribution and stationary distri-
butions for MH sentence sampling in three tasks, includ-
ing keywords-to-sentence generation, paraphrase genera-
tion, and sentence error correction. Experimental results
show that CGMH achieves high performance compared
with previous methods.

• We make it possible to accomplish the above tasks in an
unsupervised fashion, which does not require a parallel
corpus as is needed in previous approaches.

Related Work
In recent years, sentence generation is mostly based on the
recurrent neural network (RNN) because of its capability
of learning highly complicated structures of language. In
most tasks, RNN-based sentence generation is modeled as
max a posteriori (MAP) inference, and people use greedy
search or beam search to approximate the most probable sen-
tences (Sutskever, Vinyals, and Le 2014).

For sentence sampling, the most naı̈ve approach, perhaps,
is to sample words from RNN’s predicted probabilities step-
by-step, known as forward sampling in the Bayesian net-
work regime. The prototype-then-edit model (Guu et al.
2018) first samples prototypes (sentences in the training set),
and then edits the prototypes to obtain new sentences; it
can be thought of as sampling from an RNN-defined ker-
nel density. Bowman et al. (2016) use variational autoen-
coders (VAEs) to sample sentences from a continuous latent
space. However, these approaches allow neither soft con-
straints that require flexible manipulation of sentence prob-
abilities, nor hard constraints that specify one or more given
words.

Berglund et al. (2015) propose a Gibbs sampling model
that uses a bi-directional RNN to alternatively replace a to-
ken from its posterior distribution. Su et al. (2018) further
apply it to control the sentiment of a sentence. However, the
shortcoming of Gibbs sampling is obvious: it cannot change
the length of sentences and hence is not able to solve com-
plicated problems such as sentence generation from key-
words. Our paper extends Gibbs sampling with word inser-
tion and deletion. This results in a Metropolis-Hastings sam-
pler, enabling more flexible sampling. Harrison, Purdy, and
Riedl (2017) utilize MH to sample an event sequence in the
task of story generation, which cannot be directly used for
sentence generation.

Another line of work tackles the problem of con-
strained sentence generation from a searching perspec-
tive. In neural machine translation, for example, grid beam
search (Hokamp and Liu 2017, GBS) makes use of 2-
dimensional beam search to seek sentences that satisfy the
constraints, whereas constrained beam search (Anderson et
al. 2017, CBS) utilizes a finite-state machine to assist search-
ing. Post and Vilar (2018) and Hasler et al. (2018) further
accelerate the search process. In machine translation, the
search space is limited and highly conditioned on the source
sentence. But in other generation tasks, there may be many
more candidate sentences; GBS fails when the greedy prun-
ing is unable to find sentences satisfying the constraints due
to the large search space.

Sentence generation with soft constrains is also related to
controlling latent features of a sentence (Prabhumoye et al.
2018; Li et al. 2018), such as the meaning and sentiment.
Hu et al. (2017) apply a discriminator to VAE to generate
sentences with specified sentiments, and Shen et al. (2017)
achieve style transfer by cross-alignment with only non-
parallel data. Such approaches require an explicit definition
of the latent feature (e.g., sentiment), supported by large la-
beled datasets.

The difference between our model and previous work is
that our MH sampling framework is applicable to both hard
and soft constraints. It immediately enables several non-
trivial applications, including unsupervised paraphrase gen-
eration, unsupervised error correction, and keyword-based
sentence generation.

Approach
In this section, we describe our CGMH model (referring to
Constrained Generation by Metropolis-Hastings) in detail.
We first introduce the general framework of MH sampling,
and then we design MH components—including proposal
design, stationary distributions, and acceptance decision—
in the scenario of constrained sentence generation.

The Metropolis-Hastings Algorithm
The Metropolis-Hastings (MH) algorithm is a classical
Markov chain Monte Carlo (MCMC) sampling approach.
MCMC generates a sequence of correlated samples by it-
eratively jumping from one state to another, according to
the transition matrix of a Markov chain. For sentence gen-
eration, each state of the Markov chain is a particular sen-
tence. Under mild conditions, the distribution of samples

6835

will converge to the stationary distribution of the Markov
chain. Therefore, we need to design a Markov chain whose
stationary distribution is the desired sentence distribution.

However, it is sometimes difficult to directly specify the
transition probability of the Markov chain to obtain an ar-
bitrary stationary distribution. The MH sampler solves this
problem in a two-step fashion. It first proposes a tentative
transition, but then accepts or rejects the proposal according
an acceptance rate. The acceptance/rejection rate is com-
puted by the desired stationary distribution and the proposal
distribution. This ensures the detailed balance condition,
which in turn guarantees that MH converges to the desired
distribution.

More specifically, let π(x) be the distribution from which
we want to sample sentences (x denotes a particular sen-
tence). MH starts from a (possibly) arbitrary state x0 (an ini-
tial sentence or a sequence of keywords). At each step t, a
new sentence x′ is proposed based on a proposal distribution
g(x′|xt−1), where xt−1 denotes the sentence of the last step.
Then the proposal could be either accepted or rejected, given
by the acceptance rate

A(x′|xt−1) = min{1, A∗(x′|xt−1)} (1)

where A∗(x′|xt−1) =
π(x′)g(xt−1|x′)
π(xt−1)g(x′|xt−1)

(2)

In other words, the proposal is accepted with a probability
of A(x′|xt−1), and the next sentence xt = x′. With a prob-
ability of 1−A(x′|xt−1), the proposal is otherwise rejected
and xt = xt−1. Theoretically, the distribution of sample xn
will converge to π(x) as n → ∞ for irreducible and aperi-
odic Markov chains. In practice, initial several samples are
discarded as they are subject to the initial states x0. If the
samples converge to the stationary distribution, we say the
Markov chain mixes or burns in. Readers may refer to Gel-
man et al. (2013) for details of MH sampling.

The MH framework is a flexible sampling algorithm be-
cause: (1) The proposal distribution could be arbitrary, as
long as the Markov chain is irreducible and aperiodic; (2)
The stationary distribution could also be arbitrarily speci-
fied, which will be reflected in Equation 2 to correct the pro-
posal distribution; and (3) We can safely ignore a normaliza-
tion factor of the stationary distribution and only specify an
unnormalized measure, because π(·) appears in both numer-
ator and denominator of Equation 2. All these allow flexible
manipulation of the stationary distribution.

The design of proposal distributions and stationary dis-
tributions relies heavily on applications, which will be de-
scribed in the rest of this section.

Proposals
We design a set of simple yet effective proposals, including
word replacement, insertion, and deletion. That is, we ran-
domly select a word at each step, and for the selected word,
we randomly perform one of the three operations with prob-
ability [pinsert, pdelete, preplace], which is set to [1/3, 1/3, 1/3]
in our experiments. We further describe the operations as
follows.

Replacement. Assume that the sentence at the current step
is x = [w1, · · · , wm−1, wm, wm+1, · · · , wn], where n is
sentence length, and that we decide to propose a replace-
ment action for the mth word wm.

Given all other words in the current sentence, we need to
choose a new word for the m-th position by the conditional
probability:

greplace(x
′|x) = π(w∗m = wc|x−m) =

π(w1, · · · , wm−1, w
c, wm+1, · · · , wn)∑

w∈V π(w1, · · · , wm−1, w, wm+1, · · · , wn)

(3)

where w∗m is the new word for position m, wc is a candidate
word for w∗m, x′ = [w1, · · · , wm−1, w

c, wm+1, · · · , wn]
is the candidate sentence, V is the set of all words, and
greplace(x

′|x) is the probability of choosing x′ as the target
of replacement action from x. However, it is difficult to
compute π(w∗m = wc|x−m) for all wc ∈ V , because we
have to compute π(w1, · · · , wm−1, w

c, wm+1, · · · , wn) for
each candidate sentence separately. This results from differ-
ent words in the middle of a sentence and thereafter different
RNN hidden states.

We propose to pre-select a subset of plausible candidate
words. It is easy to compute π(w1, ..., wm−1, w

∗
m = wc)

as well as π(w∗m = wc, wm+1, ..., wn) by a forward and a
backward language model, and π(w1, ..., w

∗
m = wc, xn) is

no greater than either of them. We thus build a pre-selector
Q to discard wc with low forward or backward probability:

Q(wc) = min(π(w1, ..., wm−1, w
∗
m = wc),

π(w∗m = wc, wm+1, ..., wn)) (4)

After pre-selection, we compute the conditional probabil-
ity of selected words by Equation (3), from which we sample
a word for replacement.

Insertion and deletion. Inserting a word is done in a two-
step fashion: we first insert a special token, placeholder
<PHD>, at the position that we are currently working on,
and then use (3) to sample a real word to replace the place-
holder. As a result, ginsert takes a similar form to (3).

Deleting is, perhaps, the simplest operation, and
we directly remove the current word. Suppose x =
[w1, · · · , wm−1, wm, wm+1 · · ·wn] and we are about to
delete the word wm. Then gdelete(x

′|xt−1) equals 1 if x′ =
[w1, · · · , wm−1, wm+1 · · ·wn], or 0 for other sentences.

Insertion and deletion ensure the ergodicity of the
Markov chain, as in the worst case, any two sentences, x
and x′, are still reachable by first deleting all words in x,
and then inserting all words in x′ in order. In addition, word
replacement is an intuitive operation that helps reach “se-
mantically neighboring” states more easily. Therefore we
include it as one of our proposals. It should be noticed that,
although the replacement action is restricted to top-ranked
candidate words for efficiency purposes, this does not affect
the ergodicity of the Markov chain.

Stationary Distribution
In the proposed CGMH framework, we would like to ob-
tain sentences from a desired distribution π(x), known as the

6836

stationary distribution of the Markov chain. For constrained
sentence generation, CGMH allows flexible design of the
stationary distribution.

Generally, the stationary distribution π(x) can be defined
as

π(x) ∝ p(x) · X 0
c (x) · · · Xn

c (x)︸ ︷︷ ︸
constraints

(5)

where p(x) is the probability of a sentence in general, and
X 0

c (x), · · · ,Xn
c (x) are scoring functions indicating the de-

gree to which a constraint is satisfied. Technically, CGMH
works with both hard and soft constraints. For a hard con-
straint, X i

c is an indicator function, which equals 1 if the
ith constraint is satisfied, or 0 otherwise. For a soft con-
straint, X i

c is a “smoothed” indicator function showing how
the sentence satisfies the (soft) constraint. By multiplying
these scoring functions together, we could impose more than
one constraints.

The design of the scoring functions is flexible but task re-
lated. In our paper, we apply the CGMH framework to three
different tasks.

Sentence generation with keywords. In this task, we
would like to generate a sentence given one or more key-
words as constraints. It has been previously explored in var-
ious applications including question answering (Yin et al.
2016) and dialog systems (Mou et al. 2016). Most previous
work makes use of attention or copying mechanisms to im-
pose the keyword constraints in a soft manner, which means
that the constraint may not be satisfied (Yin et al. 2016;
Gu et al. 2016).

In our CGMH framework, it is natural to impose hard con-
straints by restricting the support of the stationary distribu-
tion to feasible solutions. In particular, we have

π(x) ∝ pLM(x) · Xkeyword(x)

where pLM is a general sentence probability computed by a
language model and Xkeyword is the indicator function show-
ing if the keywords are included in the generated sentence.
In other words, the stationary distribution is proportional to
the language model probability if all constraints are satis-
fied (keywords appearing in the sentence), or 0 otherwise.
During generation, the initial sentence x0 is simply a se-
quence of keywords, and then we perform sampling to gen-
erate valid sentences.

Unsupervised paraphrase generation. Paraphrase gen-
eration aims to synthesize literally different sentences that
convey the same meaning as the input sentence. It is an im-
portant task in NLP, and can be a key component in down-
stream applications such as data augmentation for NLP. Pre-
vious state-of-the-art paraphrase generation methods require
parallel data for training, which is not always available.

In our paper, we view paraphrase generation as sampling
from a distribution, where the sentences are (1) fluent by
themselves and (2) close in meaning to the input sentence
x∗. The former property can be captured by a traditional

language model, whereas the latter can be modeled as a con-
straint. Concretely, we have

π(x) ∝ pLM(x) · Xmatch(x|x∗) (6)

Here, pLM(x) is also the probability given by a language
model, indicating the fluency of x. Xmatch(x|x∗) is a match-
ing score. In our experiments, we have several choices for
Xmatch(·|·):
• Keyword matching (KW) as hard constraints. We observe

that paraphrases typically share some keywords with the
original sentence. In this variant, we use Rake (Rose et
al. 2010) to extract keywords and keep them fixed during
sampling. That is Xmatch(x|x∗) = 1 if x and x∗ share the
same keywords, and 0 otherwise.

• Word embedding similarity as a soft constraint. Embed-
dings map discrete words to real-valued vectors, provid-
ing a softer way of measuring similarity. In this matching
function, we enhance keyword matching with embedding
similarity. For any word w in a sentence x, we first find
the closest word in the input sentence x∗ by computing
their cosine similarity (Pennington, Socher, and Manning
2014). Then either the minimum or the average of these
cosine measures is taken as the matching score, resulting
in two variants (WVM and WVA).

• Skip-thoughts similarity (ST) as a soft constraint. The kip-
thoughts approach trains sentence embeddings by predict-
ing surrounding sentences (Kiros et al. 2015). We com-
pute the cosine similarity between the skip-thought em-
beddings of x and x∗, and use it as the matching score.

Theoretically speaking, we may start sampling from any
sentence, once the stationary distribution is defined. How-
ever, it would take too long for the Markov chain to
mix/burn-in (i.e., samples are from the desired distribution).
We thus use the original sentence as the initial state, i.e.,
x0 = x∗. This is similar to the warm start in Gibbs sampling
for contrastive divergence estimation (Hinton, Osindero, and
Teh 2006).

Unsupervised sentence error correction. Previous work
of sentence error correction also depends on parallel
data (Felice et al. 2014; Junczys-Dowmunt and Grund-
kiewicz 2016; Sakaguchi, Post, and Van Durme 2017; Chol-
lampatt, Hoang, and Ng 2016). Our CGMH framework al-
lows us to generate samples from a distribution of correct
sentences, starting from an erroneous one as the input x∗.
In this application, we use the same stationary distribu-
tion (Equation 6) as in the unsupervised paraphrase setting,
where pLM is trained on a general corpus ensuring the flu-
ency (correctness), and Xmatch(·|·)—assumed insensitive to
grammatical errors—imposes a soft constraint of semantic
relevance.

Acceptance Rate
In MH, both proposals and stationary distributions can be
specified. The way to ensure that the samples are indeed
from the desired distribution is to correct the proposal distri-
bution by a probability of acceptance or rejection, given by
an acceptance rate in Equations (1) and (2).

6837

In our approach, we have three types of proposals,
namely, deletion, insertion, and replacement. We thus break-
down our acceptance rate (before taking min{1, ·}) as

A∗replace(x
′|x) =

preplace · greplace(x|x′) · π(x′)
preplace · greplace(x′|x) · π(x)

≈ π(wm|x−m) · π(x′)
π(w′m|x−m) · π(x)

= 1 (7)

A∗insert(x
′|x) = pdelete · gdelete(x|x′) · π(x′)

pinsert · ginsert(x′|x) · π(x)

=
pdelete · π(x′)

pinsert · ginsert(x′|x) · π(x)
(8)

A∗delete(x
′|x) = pinsert · ginsert(x|x′) · π(x′)

pdelete · gdelete(x′|x) · π(x)

=
pinsert · ginsert(x|x′) · π(x′)

pdelete · π(x)
(9)

In particular, (7) is trivially true because word replace-
ment could be thought of as a step of Gibbs sampling, which
is in turn a step of MH sampling whose acceptance rate is
guaranteed to be 1. (8) and (9) are reciprocal because dele-
tion and insertion are the inverse operation to each other.

Experiments
We evaluated our approach on a variety of tasks includ-
ing sentence generation from keywords, unsupervised para-
phrase generation, and unsupervised sentence error correc-
tion. We also conducted in-depth analysis of the proposed
CGMH method.

Keywords-to-Sentence Generation
For keywords-to-sentence generation, we trained our lan-
guage model on randomly chosen 5M sentences from the
One-Billion-Word Corpus (Chelba et al. 2013).1 We held out
a 3k-sentence set to provide keywords for testing. For each
sentence, we randomly sampled one or more words as the
constraint(s). Our language models are simply a two-layer
LSTM with a hidden size of 300. We chose 50k most fre-
quent words as the dictionary.

For MH sampling, we used the sequence of keywords as
the initial state, and chose the sentence with the lowest per-
plexity after 100 steps as the output. We set the maximum
sampling step to 200.

We tested the negative likelihood (NLL) of sentences to
evaluate their fluency. NLL is given by a third-party n-gram
language model trained on the English monolingual corpus
of WMT18.2 We also invited 3 volunteers to score the flu-
ency of generated sentences. Volunteers were asked to score
100 samples from each method according to their quality.
Scores range from 0 to 1, where 1 indicates the best quality.

Table 1 compares our method with current state-of-the-
art approaches of constrained generation, namely, the grid
beam search approach (GBS) (Hokamp and Liu 2017) and

1http://www.statmt.org/lm-benchmark/
2http://www.statmt.org/wmt18/translation-task.html

#keyword(s) CGMH GBS sep-B/F asyn-B/F

1 NLL 7.04 7.42 7.80 8.30
Human 0.45 0.32 0.11 0.09

2 NLL 7.57 8.72 - -
Human 0.61 0.55 - -

3 NLL 8.26 8.59 - -
Human 0.56 0.49 - -

4 NLL 7.92 9.63 - -
Human 0.65 0.55 - -

Table 1: Results of NLL and human evaluation on sentences
with 1 to 4 keywords. Sentences with lower NLL and higher
human evaluation scores are better.

Keyword(s) Generated Sentences
friends My good friends were in danger .
project The first project of the scheme .

have, trip But many people have never
made the trip .

lottery, scholarships But the lottery has provided
scholarships .

decision, build, The decision is to build a new
home home .
attempt, copy, The first attempt to copy the
painting, denounced painting was denounced .

Table 2: Sentences generated from keywords by CGMH.

Statistic Value
Mean intra-annotator std 0.098
Mean intra-model std 0.280
p-value (1 keyword) < 0.01
p-value (2 keywords) < 0.05
p-value (3 keywords) < 0.05
p-value (4 keywords) < 0.01

Table 3: Statistics of human evaluation for keywords-to-
sentence generation.

two variants of the backward forward model (sep-B/F and
asyn-B/F) (Mou et al. 2015).

CGMH outperforms previous work in both NLL and hu-
man evaluations. The two variants of B/F cannot gener-
ate more than one keywords. GBS is designed for machine
translation; it works well when the candidate sentence space
is small. But for general sentence generation, pruning in grid
makes the keywords sometimes unable to find appropriate
prefixes. Table 2 provides several examples of keywords-to-
sentence generation by CGMH.

We present statistics of human evaluation in Table 3.
“Mean intra-annotator std” is the mean standard deviation
of scores from different volunteers, whereas “Mean intra-
model std” is the mean standard deviation of each model.
This implies that the volunteers achieve high consistency
with each other, and that the gap between different models
is large. p-values in this table are between CGMH and GBS;
for CGMH and B/F models, p-values are lower than 0.001.
This shows that the results given by human annotation are
statistically significant.

6838

Model BLEU-ref BLEU-ori NLL
Origin Sentence 30.49 100.00 7.73
VAE-SVG (100k) 22.50 - -
VAE-SVG-eq (100k) 22.90 - -
VAE-SVG (50k) 17.10 - -
VAE-SVG-eq (50k) 17.40 - -
Seq2seq (100k) 22.79 33.83 6.37
Seq2seq (50k) 20.18 27.59 6.71
Seq2seq (20k) 16.77 22.44 6.67
VAE (unsupervised) 9.25 27.23 7.74
CGMH w/o matching 18.85 50.28 7.52

w/ KW 20.17 53.15 7.57
w/ KW + WVA 20.41 53.64 7.57
w/ KW + WVM 20.89 54.96 7.46
w/ KW + ST 20.70 54.50 7.78

Table 4: Performances of different paraphrase models.
Ideal paraphrase generator should achieve higher BLEU-ref,
lower BLEU-ori, and lower NLL scores.

Type Examples
Ori what ’s the best plan to lose weight
Ref what is a good diet to lose weight
Gen what ’s the best way to slim down quickly
Ori how should i control my emotion
Ref how do i control anger and impulsive emotions
Gen how do i control my anger
Ori why do my dogs love to eat tuna fish
Ref why do my dogs love eating tuna fish
Gen why do some dogs like to eat raw tuna and raw fish

Table 5: Paraphrase generation given by CGMH w/
KW+WVM. For each sample, we show the original sentence
(Ori), the reference paraphrase (Ref), and the generated sen-
tence (Gen).

Step State (Sentence) Proposal
Origin what movie do you like most . replace what with which

1 which movie do you like most . delete most
2 which movie do you like . insert best
3 which movie do you like best . replace like with think
4 which movie do you think best . insert the
5 which movie do you think the best . insert is

Output which movie do you think is the best . -

Table 6: An example of the sampling process given by
CGMH w/ KW+WVM.

Unsupervised Paraphrase Generation
We followed previous work of supervised paraphrase gen-
eration (Gupta et al. 2017; Prakash et al. 2016; Gupta et
al. 2017; Li et al. 2017) and used a standard benchmark,
the Quora dataset,3 to evaluate each model. The dataset con-
tains 140k pairs of paraphrase sentences, and 260k pairs of
non-paraphrase sentences. We followed the standard dataset
split, which holds out 3k and 30k for validation and testing,
respectively.

For supervised baselines, we varied the training samples
to be 100k, 50k, and 20k pairs, so that we could evaluate
the effect of different parallel data sizes in supervised train-
ing. For unsupervised paraphrase generation, we only need

3https://www.kaggle.com/c/quora-question-pairs/data

a non-parallel corpus to train the language model. The sen-
tences in the test set, however, are questions, so it is im-
proper to use generic language models (e.g., trained on One-
Billion Corpus) to judge the likelihood of a question. In-
stead, we trained language models on all the training sam-
ples that do not appear in the validation and test sets. The
language models are of the same structure as the ones for
keywords-to-sentence generation, except that we reduce the
dictionary size to 30k because of fewer training samples.

Previous work uses the BLEU score (Papineni et al. 2002)
against a ground truth reference (denoted as BLEU-ref) to
evaluate the quality of the generated paraphrase (Gupta et
al. 2017). We observe that it is insufficient because simply
copying the input sentence itself yields the highest BLEU-
ref score (Table 4). We thus propose to use the BLEU score
against the original input sentence (denoted as BLEU-orig)
as an auxiliary measure. Ideally, BLEU-ref should be high,
whereas BLEU-ori should be low. We tried different ini-
tialization states, including using exact or corrupted origi-
nal sentences. We also attempted to start from a totally ran-
dom state. As a lot of samples are generated, we chose the
first sentence with BLEU-ori score lower than 55 to com-
pare with other models. (The number is chosen empirically
in order to get paraphrases with obvious literal difference.)

We compare our approach with supervised methods, in-
cluding sequence-to-sequence models, VAE-SVG and VAE-
SVG-eq (Gupta et al. 2017). VAE-SVG is a VAE condi-
tioned on the original sentence, and VAE-SVG-eq is a vari-
ant of VAE-SVG which shares parameters between encoder
and decoder.

We would also like to compare paraphrase generator in
the unsupervised setting as our CGMH. However, we can-
not find an existing dedicated model. We find it possible
to train a variational autoencoder (VAE) with non-parallel
corpus and sample sentences from the variational latent
space (Bowman et al. 2016).

Table 4 shows, compared with VAE, that our method
achieves a fairly close BLEU-ref score to the best super-
vised approaches. Moreover, CGMH even outperforms the
supervised methods when the training set is not large enough
(≤50k).

Admittedly, CGMH has higher BLEU-ori scores than su-
pervised methods, indicating that the generated samples are
closer to the input. This, however, makes sense because
CGMH samples sentences from a distribution specified in
an unsupervised fashion, as opposed to rewriting words and
phrases in an ad hoc fashion to make the expressions differ-
ent, as is learned in the supervised setting. However, we only
consider paraphrases with BLEU-ori less than 55, which
has assured a significant literal difference. Future research
could address this problem by designing proper heuristics to
manipulate the stationary distribution, which is beyond the
scope of our paper (but shows the flexibility of our model).

Table 5 shows examples of generated paraphrases. We see
qualitatively that CGMH yields fairly good samples in terms
of both closeness in meaning and difference in expressions.
Table 6 gives a real example of the paraphrase generation
process with CGMH.

6839

Model #parallel data GLEU
AMU 2.3M 44.85
CAMB-14 155k 46.04
MLE 720k 52.75
NRL 720k 53.98
CGMH 0 45.5

Table 7: Results of different models on sentence correction.

Ori Even if we are failed , We have to try to get a new things .
Ref Even if we all failed , we have to try to get new things .
Gen Even if we are failing , We have to try to get some new things .
Ori In the world oil price very high right now .
Ref In today ’s world , oil prices are very high right now .
Gen In the world , oil prices are very high right now .

Table 8: Examples of sentence correction by CGMH.

Unsupervised Error Correction
We evaluated our method on JFLEG (Napoles, Sakaguchi,
and Tetreault 2017),4 a newly released dataset for sentence
correction. It contains 1501 sentences (754 for validation
and 747 for test), each with 4 revised references. We adopted
the GLEU metric (Napoles et al. 2015), which measures sen-
tence fluency and grammaticality.

This benchmark dataset does not contain training sam-
ples. Various studies have not only proposed new models,
but also collected parallel data for themselves, each contain-
ing millions of samples, shown in Table 7. However, we used
none of them.

We adopted the same language models (trained on One-
Billion-Word) as in keywords-to-sentence generation to ap-
proximate sentence probabilities. To better handle typos and
tense errors, we employ en package5 to provide an additional
candidate word set containing possible words with similar
spellings or the same root. For MH sampling, we start from
the original sentence, and simply output the 100th sample.
As the original erroneous sentence has low probability from
a language model perspective, the goal of sentence correc-
tion can be formulated as jumping to a nearby sentence with
high probability. We would like to encourage MH to explore
more probable states by further rejecting proposals if the
likelihood is becoming too small.

The performance of CGMH on error correction is surpris-
ingly promising, as shown in Table 7. CGMH achieves com-
parable results to CAMB14, a rule-based system for error
correction (Felice et al. 2014). CGMH even outperforms the
AMU system (Junczys-Dowmunt and Grundkiewicz 2016),
which is built on phrase-based machine translation with
2.3M parallel training pairs and intensively engineered lin-
guistic features. We observe some performance gap be-
tween CGMH and other supervised approaches, namely,
MLE (Maximal Likelihood Estimation) and NRL (Neural
Reinforcement Learning) (Sakaguchi, Post, and Van Durme
2017). Nevertheless, our initial success of CGMH shows a
promising direction of unsupervised error correction.

4https://github.com/keisks/jfleg
5https://www.clips.uantwerpen.be/pages/pattern-en

Figure 2: Generation quality with corrupted initial states. At
each situation, 0/5%/10%/100% of the words in initial sen-
tences are randomly replaced with other words.

Model Analysis
Despite successful applications in the above experiments,
we now analyze CGMH in more detail. k Acceptance rate
and ergodicity. Table 9 shows the acceptance rate in the
paraphrase generation task. We see that the word replace-
ment has 100% acceptance rate as it is essentially a Gibbs
step, guaranteed by Equation 7. For word deletion and ad-
dition, the acceptance rate is lower, but still in a reasonable
range; it allows the sampler to generate sentences with dif-
ferent lengths, as opposed to Gibbs sampling. In our exper-
iment, it takes about 150 steps to obtain a fluent sentence
from a sequence of keywords. For paraphrase generation, it
takes less than 50 steps for more than 20% of words being
changed, showing that CGMH is efficient for practical use.

Initial state of the Markov chain. Theoretically, the ini-
tial state of the Markov chain does not affect the stationary
distribution, given that the chain is irreducible and aperiodic.
Figure 2 shows that, in the experiment of paraphrase, cor-
rupting the initial state x0 by a small fraction does not sig-
nificantly affect model performance. But if we corrupt 100%
(i.e., start with random initial states), the performance is very
low at the beginning but improves gradually. However, it is
difficult to obtain satisfactory performance after 100 epochs.
This shows that warm start is useful for CGMH sentence
sampling.

It should be emphasized that CGMH sampling does not
solely reply on the initial state being a valid sentence. In
keywords-to-sentence generation, we start from a sequence
of keywords, but CGMH eventually yields samples which
are generally fluent sentences.

Comparison with VAE. We would like to compare
CGMH (sampling from the sentence space) with VAE (sam-
pling from the latent space). VAE is a probabilistic model
that imposes a prior distribution on the latent space and then
decodes a sentence in a deterministic manner by a RNN. In
practice, we observe the variance of VAE samples will in-
crease as the generation proceeds. This is shown by the blue
curve in Figure 3, as the word overlap rate (the ratio of the
reference sentences containing words at a specific position
of the generated ones) goes down for words far from the be-
ginning of a sentence. This is possibly because RNN can be
thought of as an autoregressive Bayesian network generat-
ing words conditioned on previous ones. Hence error will
accumulate during generation. However, CGMH does not

6840

Model Rep Add Del Mean
CGMH w/o matching 100 9.2 5.1 32.9

w/ KW 100 8.0 4.4 32.5
w/ KW + WVM 100 10.8 2.9 32.7

Table 9: Acceptance rate (%) in the paraphrase generation
task. Word replacement has 100% acceptance rate as shown
in Equation (8).

Figure 3: Overlap rates of CGMH and VAE for each word
position of sentences.

severely suffer from this problem, because there is not an
explicit generation direction (order) for CGMH. At the same
time, CGMH has the ability to self-correct, which is shown
in the experiment of error correction.

If we would like to sample diversified sentences, CGMH
is also better than VAE, because the diversity is distributed
across the entire sentence in CGMH.

Conclusion
In this paper, we present CGMH for constrained sentence
generation by Metropolis-Hastings (MH) sampling, where
we propose word-level operations including replacement,
insertion, and deletion as proposals, and design several sta-
tionary distributions for different tasks. We evaluated our re-
sults on keywords-to-sentence generation, paraphrase gener-
ation, and error correction. Our CGMH framework not only
makes unsupervised learning feasible in these applications,
but also achieves high performance close to state-of-the-art
supervised approaches.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments. This work is supported by the Na-
tional Key Research and Development Program of China
(No. 2017YFC0804001) and the National Science Founda-
tion of China (Nos. 61876196 and 61672058).

References
Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S.
2017. Guided open vocabulary image captioning with con-
strained beam search. In EMNLP.
Berglund, M.; Raiko, T.; Honkala, M.; Kärkkäinen, L.;
Vetek, A.; and Karhunen, J. T. 2015. Bidirectional recur-
rent neural networks as generative models. In NIPS.

Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A.; Jozefow-
icz, R.; and Bengio, S. 2016. Generating sentences from a
continuous space. In CoNLL.
Chelba, C.; Mikolov, T.; Schuster, M.; Ge, Q.; Brants, T.;
Koehn, P.; and Robinson, T. 2013. One billion word bench-
mark for measuring progress in statistical language model-
ing. arXiv preprint arXiv:1312.3005.
Chollampatt, S.; Hoang, D. T.; and Ng, H. T. 2016. Adapting
grammatical error correction based on the native language of
writers with neural network joint models. In EMNLP.
Felice, M.; Yuan, Z.; Andersen, Ø. E.; Yannakoudakis, H.;
and Kochmar, E. 2014. Grammatical error correction using
hybrid systems and type filtering. In CoNLL.
Gelman, A.; Carlin, J. B.; Stern, H. S.; Dunson, D. B.; Ve-
htari, A.; and Rubin, D. B. 2013. Bayesian Data Analysis.
CRC Press.
Gu, J.; Lu, Z.; Li, H.; and Li, V. O. 2016. Incorporating
copying mechanism in sequence-to-sequence learning. In
ACL.
Gupta, A.; Agarwal, A.; Singh, P.; and Rai, P. 2017. A
deep generative framework for paraphrase generation. arXiv
preprint arXiv:1709.05074.
Guu, K.; Hashimoto, T. B.; Oren, Y.; and Liang, P. 2018.
Generating sentences by editing prototypes. TACL.
Harrison, B.; Purdy, C.; and Riedl, M. 2017. Toward au-
tomated story generation with markov chain monte carlo
methods and deep neural networks. In AAAI.
Hasler, E.; De Gispert, A.; Iglesias, G.; and Byrne, B. 2018.
Neural machine translation decoding with terminology con-
straints. arXiv preprint arXiv:1805.03750.
Hinton, G. E.; Osindero, S.; and Teh, Y.-W. 2006. A fast
learning algorithm for deep belief nets. Neural Computa-
tion.
Hokamp, C., and Liu, Q. 2017. Lexically constrained de-
coding for sequence generation using grid beam search. In
ACL.
Hu, Z.; Yang, Z.; Liang, X.; Salakhutdinov, R.; and Xing,
E. P. 2017. Toward controlled generation of text. In ICML.
Junczys-Dowmunt, M., and Grundkiewicz, R. 2016.
Phrase-based machine translation is state-of-the-art for au-
tomatic grammatical error correction. arXiv preprint
arXiv:1605.06353.
Kiros, R.; Zhu, Y.; Salakhutdinov, R. R.; Zemel, R.; Urtasun,
R.; Torralba, A.; and Fidler, S. 2015. Skip-thought vectors.
In NIPS.
Li, Z.; Jiang, X.; Shang, L.; and Li, H. 2017. Paraphrase
generation with deep reinforcement learning. arXiv preprint
arXiv:1711.00279.
Li, J.; Jia, R.; He, H.; and Liang, P. 2018. Delete, retrieve,
generate: a simple approach to sentiment and style transfer.
In NAACL.
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.;
Teller, A. H.; and Teller, E. 1953. Equation of state cal-
culations by fast computing machines. J. Chem. Phys.

6841

Mou, L.; Yan, R.; Li, G.; Zhang, L.; and Jin, Z. 2015. Back-
ward and forward language modeling for constrained sen-
tence generation. arXiv preprint arXiv:1512.06612.
Mou, L.; Song, Y.; Yan, R.; Li, G.; Zhang, L.; and Jin, Z.
2016. Sequence to backward and forward sequences: A
content-introducing approach to generative short-text con-
versation. In COLING.
Napoles, C.; Sakaguchi, K.; Post, M.; and Tetreault, J. 2015.
Ground truth for grammatical error correction metrics. In
ACL.
Napoles, C.; Sakaguchi, K.; and Tetreault, J. 2017. Jfleg: A
fluency corpus and benchmark for grammatical error correc-
tion. arXiv preprint arXiv:1702.04066.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine transla-
tion. In ACL.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In EMNLP.
Post, M., and Vilar, D. 2018. Fast lexically constrained
decoding with dynamic beam allocation for neural machine
translation. arXiv preprint arXiv:1804.06609.
Prabhumoye, S.; Tsvetkov, Y.; Salakhutdinov, R.; and Black,
A. W. 2018. Style transfer through back-translation. In ACL.
Prakash, A.; Hasan, S. A.; Lee, K.; Datla, V.; Qadir, A.;
Liu, J.; and Farri, O. 2016. Neural paraphrase genera-
tion with stacked residual lstm networks. arXiv preprint
arXiv:1610.03098.
Rose, S.; Engel, D.; Cramer, N.; and Cowley, W. 2010. Au-
tomatic keyword extraction from individual documents. Text
Mining: Applications and Theory.
Sakaguchi, K.; Post, M.; and Van Durme, B. 2017. Gram-
matical error correction with neural reinforcement learning.
arXiv preprint arXiv:1707.00299.
Shen, T.; Lei, T.; Barzilay, R.; and Jaakkola, T. 2017. Style
transfer from non-parallel text by cross-alignment. In NIPS.
Su, J.; Xu, J.; Qiu, X.; and Huang, X. 2018. Incorporat-
ing discriminator in sentence generation: a gibbs sampling
method. In AAAI.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In NIPS.
Yin, J.; Jiang, X.; Lu, Z.; Shang, L.; Li, H.; and Li, X. 2016.
Neural generative question answering. In IJCAI.

6842

