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Abstract

Scripts represent knowledge of event sequences that can help
text understanding. Script event prediction requires to mea-
sure the relation between an existing chain and the subsequent
event. The dominant approaches either focus on the effects
of individual events, or the influence of the chain sequence.
However, only considering individual events will lose much
semantic relations within the event chain, and only consider-
ing the sequence of the chain will introduce much noise. With
our observations, both the individual events and the event seg-
ments within the chain can facilitate the prediction of the sub-
sequent event. This paper develops self attention mechanism
to focus on diverse event segments within the chain and the
event chain is represented as a set of event segments. We uti-
lize the event-level attention to model the relations between
subsequent events and individual events. Then, we propose
the chain-level attention to model the relations between sub-
sequent events and event segments within the chain. Finally,
we integrate event-level and chain-level attentions to interact
with the chain to predict what happens next. Comprehensive
experiment results on the widely used New York Times cor-
pus demonstrate that our model achieves better results than
other state-of-the-art baselines by adopting the evaluation of
Multi-Choice Narrative Cloze task.

Introduction

When people encode information into natural language, they
usually assume that readers are able to seamlessly make
inferences based on commonsense knowledge. For exam-
ple, given an event “Smith entered a restaurant”, people
can make a number of probable inferences: he got seated,
he read the menu, he ordered food, and so on. Such com-
monsense knowledge is called scripts (Schank and Abelson
1977), which is intuitive to human readers and usually omit-
ted in the context. This brings great challenges to automat-
ically understand language texts for machines because ma-
chines have no extra information to infer other events within
the chain (Modi 2016). Figure 1 shows a restaurant visiting
script.

A script system constructs the structure of abstract events
and involves the actions and the entities that participate in

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
*Correspondence to Longtao Huang.

6802

‘ X walk to restaurant ‘ ‘ X walk to restaurant ‘

X wait in line
ffffffffffff F— ||

X order food ‘

Event
Segment

‘ X make payment ‘ Event

Segment

‘ X take food ‘

Individual

X take food
Event

‘ X be seated ‘ ‘

X eat food
X leave restaurant

(@)

X eat food ‘

X leave restaurant

(b)

Figure 1: Script for restaurant visiting. An event segment is
a part of the script and it can have various lengths of events.
The event segment can be continuous or discontinuous.

them. Script systems can support many understanding appli-
cations , such as automated storytelling (Swanson and Gor-
don 2008) or inference of missing events (Chambers and Ju-
rafsky 2008), etc.

Our work follows a recent line of script learning. Early
scripts were manually engineered for specific domains and
time-consuming to construct (Schank and Abelson 1977).
Chambers and Jurafsky (2008) described methods of auto-
matically learning scripts from large text corpus. Following
their works, many researchers focused on statistical methods
to learn scripts, such as PMI (Chambers and Jurafsky 2008)
or skip-grams (Balasubramanian et al. 2013), etc. However,
they relied on count-based methods to model event pair re-
lations and suffered from sparsity issues.

There is another line of works which introduces event em-
bedding to tackle the sparsity problems. Granroth-Wilding
and Clark (2016) adopted word embeddings (Mikolov et al.
2013) to represent the verb and its arguments in an event.
They adopted a Siamese Network instead of PMI to calcu-
late the relation score between subsequent events and indi-
vidual events within the chain. Pichotta and Mooney (2016a)
supported that individual events models were incapable of



expressing interactions between entities and they adopted
Long Short-Term Memory (LSTM) Model (Hochreiter and
Schmidhuber 1997) to model event sequences. (Wang,
Zhang, and Chang 2017) argued that the LSTM model suf-
fered from over-fitting problem and they utilized LSTM to
model narrative event orders and adopted Dynamic Mem-
ory Network (Weston, Chopra, and Bordes 2014) to model
the event pair relations. However, they did not fully uti-
lize the event segments within the chain to predict script
events, which have richer semantic information than indi-
vidual events and introduce less noise than chain sequence
modeling.

In Figure 1(a), we assume the event to predict is “X eat
food”. We can see that the individual event “X take food”
has a strong relation with “X eat food”. We also observe
that there are many continuous event segments within the
chain, such as <“X read menu”, “X order food”, “X make
payment”>, <“X walk to restaurant”, “X wait in line”> etc.
The event segment <*“X read menu”, “X order food”, “X
make payment”> can also strongly predict the event “X eat
food”. The event segments contain a set of individual events
which are related to each other and segments can be contin-
uous or discontinuous. A discontinuous event segment <“X
order food”, “X take food”, “X eat food”> is shown in Fig-
ure 1(b).

We can see that the subsequent event can have strong re-
lation with some individual events or event segments within
the chain. Only considering individual events will lose much
semantic information within the chain. Only considering the
full sequence in the chain to predict the subsequent event
may introduce much noise. The event “X wait in line” has
minor relation with the predicted event but sequence models
also take it into consideration. This paper selects individual
events and diverse event segments within the chain to inter-
act with the subsequent events.

Ultimately, this paper aims to provide solutions for open-
domain script learning. We focus on the task of predicting
the subsequent events with the existing event chain. This is
close to the narrative cloze task in (Chambers and Jurafsky
2008) and (Granroth-Wilding and Clark 2016). In particular,
we address two challenges in this task: (1) An event chain is
a sequence of events and events can be more sparse than
words in sentences. The challenge is how to represent event
chains accurately. (2) Individual events within the chain have
semantic relations with the subsequent events. The segments
in the chain also have an effect on predicting the subsequent
events. The challenge is how to integrate them together to
represent the relations between the existing event chain and
subsequent events.

For the first challenge, we develop self attention mech-
anism (Lin et al. 2017) to capture diverse event segments
from the event chain. Then we adopt DenseNet (Huang et
al. 2017) to perform feature extraction to reduce redundancy
and get a vector representation for the event chain. For the
second challenge, we first adopt attentions (Luong, Pham,
and Manning 2015) to capture the relation between sub-
sequent events and individual events to get an event-level
attentional representation. Then we perform attentions be-
tween subsequent events and the event segments to obtain a
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chain-level attentional representation. Finally, we integrate
event-level and chain-level attentional representations to in-
teract deeply with the chain representation to predict what
happen next.

Our contributions can be summarized as follows:

e We develop self attention mechanism to capture diverse
event segments within the chain and adopt DensetNet to
extract features for the event chain.

e We integrate event-level and chain-level attentions to in-
teract with the chain representation to model the relations
between the existing event chain and subsequent events.

e We achieve the best results compared with other state-of-
the-art baselines on the evaluation of Multi-Choice Nar-
rative Cloze task.

Problem Definition

A script in this paper is a sequence of events. An event e
is a structure v(es, e,, €,), where v is the verb describing
the event, e is the subject, e, is the object and ¢, is a
prepositional object. e, ¢,, ¢, are called event arguments.
For example, we can extract an event structure bring ( Tom,
book, to Mary ) from the sentence “Tom brought the book
to Mary”.

As shown in Figure 2, given a sequence of events
<ei,eq,e3,...,e,> and a set of choice events
{€c;s€cys -y €c,, }, our work is to predict the event e,
which is most likely to happen next. We call the given
event sequences as event chain and the next event e,
as choice event. Following (Granroth-Wilding and Clark
2016), (Wang, Zhang, and Chang 2017) and (Li, Ding, and
Liu 2018), we choose the Multi-Choice Narrative Cloze
(MCNC) as our evaluation method. We select e., from a
set of given events with the same protagonist, where only
one event is the right answer. The event which gets the
highest probability is considered to be the output. We adopt
accuracy metric to compare the results of different models.

Entities

X=Customer, Y=Waiter ‘

Event Chain

walk(X, restaurant), seat(X), order(X, food), make(X, payment),
serve(Y, X, food), eat(X, food),
)

Choices
C1: wear(X, T-shirt)
C2: drive(X, car)
C3: leave(X, restaurant)
C4: climb(X, mountain)
C5: play(X, computer)

Figure 2: Multiple choice narrative cloze. The likely event
to happen next is marked in bold.



Model

In this section, we describe our script event prediction model
which is composed of the following three components:
(1) event representation layer, (2) attentional representation
layer and (3) prediction layer. The overall architecture of the
proposed model is shown in Figure 3.

Event Representation Layer

In the event representation layer, we represent an event as a
composition function of its components. An event has four
component v, €5, €, and e,. Each component is represented
as a d—dimensional vector by using a pre-trained word
embedding from GloVe (Pennington, Socher, and Manning
2014) and will be updated during the training process. For
those words out of vocabulary (OOV), we represent them
with zero vectors. For those events with less than 4 compo-
nents, we will set NULL to the corresponding components.
For the event “Tom loves Mary”, we set v=love, e;=Tom,
e,=Mary, e,=NULL and the NULL component will be rep-
resented by zero vectors.

We denote the word embeddings of v,es,e,,e, as
v(v),v(es), v(eo), v(ep), respectively. In this paper, we fol-
low (Wang, Zhang, and Chang 2017) and represent the event
using a tanh composition layer:

v(e) =tanh(W, - v(v) + W - v(es) + W2 - v(e,)
+ W2 .v(e,) +b.),

where W, W2, W2 WP ¢ R4*4 b, € R? are model pa-
rameters and v(e) € R

ey

Attention Representation Layer

In the attention representation layer, we model the relation
between choice event and individual events in the chain to
get the event-level attention. Then we develop self attention
mechanism (Lin et al. 2017) to extract diverse event seg-
ments within the event chain. Next we model the relations
between choice event and the chain to get an chain-level at-
tention representation.

Event-Level Attention

The individual events in the chain have different semantic
relations with the choice event and contribute differently to
the choice event. We adopt an attention mechanism (Luong,
Pham, and Manning 2015) to specify different summation
weights to events in the chainas follows:

vy = ReLU(Va,),
a, = softmax(VI Wiv(e,,)),

where vy € R" is the event-level context representation and
V=(v(ey), v(es), ..., v(ey)), a € R™ is the normalized atten-
tion weight vector, W; € R*** is the model parameter.

Narrative Event Orders

Given the event chain <ej,eo,...,e,>, we model the
narrative event orders of the chain by utilizing a standard
LSTM. We feed v(eq),v(es), ... , V(ey) to LSTM recurrently
and calculate the hidden state vectors h; of LSTM:

h; = LSTM(v(e;),h;_1).

@)

3
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Each hidden state vector h; € R" contains the narrative
event order information from e; to e;. The initial hidden
state vectors hg is initialized randomly and we can obtain
a sequence of hidden state vectors <h;,hs, ..., h,, > for the
event chain.

There are m choice events {e,,€c,,...,e. } for each
chain. For each choice event, we append it to the event chain
respectively and get the hidden state vectors using the same
way from h; to h,,. Then we obtain the hidden state vector
h,, for the choice event e, by feeding v(e.,) as follows:

h., = LSTM(v(ee, ), hy) . &)

We perform this operation m times and obtain h.,, h.,, ...,
h.  .Eachh,, contains the narrative event orders of the event
chain <ey, e, ..., e,> and the choice event e, .

For simplicity, we denote all the n hidden state of the
event chain as H, which has size n-by-u and w is the size
of the hidden state vector in LSTM:

H = (h17h27 )h’ﬂ) °

Event Segments within Event Chain

In this part, we develop self attention mechanism (Lin et
al. 2017) to extract diverse event segments within the event
chain.

H contains all the hidden state vectors for events in the
event chain. We can follow (Lin et al. 2017) and introduce
a single attention vector a which contains the summation
weight of H to extract common components within the event
chains. However, it does not interact e; and e; directly and
cannot extract event segments directly from the chain. In-
spired by their ideas, we develop the self attention mecha-
nism and interact e; with ey, s, ..., €;_1, €41, ..., €y, TESPEC-
tively to capture the relation between e; and the other events
in the chain. The events which have strong relations with
e; will be extracted and form an event segment with e;. We
perform self attention mechanism as follow:

M =HA,,
A, = softmax(ReLUH" WyH)),

(&)

(6)

where Me R“*™ contains diverse event segments within the
chain. The column 7 is the event segment which contains e;
and other related events. A, € R™ ™ is the self attention
matrix, Wy € R**% is the model parameter.

Chain-Level Attention

M contains diverse event segments within the chain and
each event segment can contribute to predicting the subse-
quent event differently. In order to reflect the relations be-
tween subsequent events between event segments, we per-
form an attention (Luong, Pham, and Manning 2015) mech-
anism to match h., to the corresponding event segments,
such as matching the choice event “X eat food” to the event
segment <“X read menu”,“X order food”>. Then we can
get an chain-level context representation which represents
the relation between subsequent events and the event seg-
ments. We perform chain-level attention as follows:

vr = ReLU(May)

7
a, = softmax(H' W3V (e,,)), @
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Figure 3: Overall Model Structure

where vip € R" is the chain-level context representation,
a; € R™ is the normalized attention summation weight,
Wj3 € R¥** is the model parameter.

Chain Feature Extraction

The extracted event segments may extract similar event
segments and cause redundancy problem, so we adopt
DenseNet (Huang et al. 2017) to perform feature extraction
to filter out redundancy. DenseNet allows to create direct
connections from one layer to all subsequent layers and the
inputs of the /" layer are the feature maps of all preceding
layers:

x¢ = Fo([Xo0, X1, ..., Xp—1]), ()

where F is the non-linear transformation of the ¢**layer and
[X0,X1, ... » X¢—1] is the concatenation of the feature-maps
produced in layers 0,1, ..., ¢ — 1.

Following (Huang et al. 2017), we define F(e) as a com-
posite function of three consecutive operations: a batch nor-
malization (BN) (Ioffe and Szegedy 2015), a rectified lin-
ear unit (ReLLU) (Glorot, Bordes, and Bengio 2011) and a
1x3 convolution (Conv). A dense block contains an op-
eration chain (BN-Relu-Conv)x3. The transformation be-
tween two dense blocks is the transition layer and it con-
tains an operation chain (Conv-Pooling). The overall struc-
ture of DenseNet in this paper is as follows: Input-Conv-
Dense Block 1-Transition Layer 1-Dense Block 2-Transition
Layer 2-DenseBlock 3-Pooling-Linear.

The input of DenseNet is M. The output of the DenseNet
is a feature vector representation for event chain vo € R™.

We have obtained the event chain feature vector vo and
the choice event feature vector h,,, h.,, ..., h. . In the next
part, we will interact vg, vg with v to select the choice
event which has the maximum probability.

Prediction Layer

In the prediction layer, we integrate the obtained event-level
and chain-level attentional representations to interact with
the chain representation. We can get the relation scores with
all the event choices, then we select the event choice with
the highest score as the event to happen next. We calculate
relation score s as follow:

r; = ReLU(Wy1ve + Wiave + b)),
ro = ReLU(W21ve + Waovg + ba) 9
s = similarity(rq, ra) .

wherery,ro € R, Wi, Wig, Woi, Wy € R“X% by, by €
R,

When calculating the similarity between r; and ro, there
are multiple choices and we select the following methods to
compare:

e Cosine Similarity is the cosine similarity of two vectors:
cosine(ry, r2) = -

e Dot Similarity is the dot product of two vectors:
dOt(I‘l, 1'2) =TI - Io.

e Fusion Similarity o is the fusion of two vectors:
Ot(l'l,rg) =Wy Iy + W -TIo+ b.
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e Fusion Similarity 3 is the fusion of two vectors:

04(1‘171'2) =Wy I +Wy- Ty + W3- (1'1 @I‘Q) +b.

In Fusion Similarity « and 3, @ is the element-wise mul-
tiplication, w1, wo, ws € R*, b € R.

There are five choice events for each event chain, and we
will perform softmax to get the final score for each choice
as follows:

exp(s;)
Ej exp(s;)

We select the choice event which get the maximum prob-
ability as the predicted event:

(10)

P(ec,ler, ez, ... en) =

predicted event = arg max P (e,
i

e1,€a,...,en) (11)

Training
Given an event chain and a set of event choice, our goal is to
minimize the cross-entropy loss between the right answers
and the predicted answers. The loss function of event chain
prediction is defined as follows:

N

1 A
L(G) = _N ZlogP(ec’i|el7627 ---7€n)+§||@‘|§7 (12)
k=1

where P(e.,|e1,ea,...,e,) is the predicted relation score
corresponding to the right answer e., for the event chain £,
A is the parameter for L2 regularization and © is the set of
model parameters.

Experiments

In this section, we evaluate the effectiveness of our proposed
model with several baseline methods. Accuracy is adopted
as the evaluation metric.

Dataset

Following (Granroth-Wilding and Clark 2016) and (Wang,
Zhang, and Chang 2017), we extract events from the NYT
portion of the Gigaword corpus (Graff et al. 2003). The C&C
tools (Curran, Clark, and Bos 2007) are used for POS tag-
ging and dependency parsing, and OpenNLP' is used for
coreference resolution. The training set consists of 1.01M
event chains. We adopt 10,000 event chains as development
set and 10,000 event chains as the test set. There are 5 choice
events for every event chain and only one of them is correct.

Baselines
We compare our model with the following baseline models:

o PMI (Chambers and Jurafsky 2008) is the co-occurrence
based model which adopts Pointwise Mutual Information
(PMI) to score each candidate event e., by the sum of the
PMI scores with given events ey, 3, ..., €.

e Bigram (Jans et al. 2012) is the counting-based skip-gram
models which calculates event pair relations based on bi-
gram probabilities and is trained using maximum likeli-
hood estimation.

"https://opennlp.apache.org/

Method Accuracy(%)
Random 0.2
PMI 31.25
Bigram 28.76
Word2vec 42.10
LSTM 46.75
Event-Comp 49.66
PairLSTM 50.34
SGNN 52.32
SAM-Net 54.48

Table 1: Results of script event prediction on the test set.

e Word2vec (Mikolov et al. 2013) learns word embeddings
from large text corpora and the learned word embeddings
for verbs and arguments are used to calculate pairwise
event relation scores.

e LSTM (Pichotta and Mooney 2016a) adopts the hidden
state h., of the choice event and h; to predict the output.

e Event-Comp (Granroth-Wilding and Clark 2016) is the
neural network model which learns event representation
by calculating pair-wise event scores using a Siamese net-
work.

e PairLSTM (Wang, Zhang, and Chang 2017) is the model
which integrates event order information and pairwise
event relations to predict output event.

e SGNN (Li, Ding, and Liu 2018) constructs a narrative
event evolutionary graph (NEEG) to describe event evo-
lutionary patterns. It adopts scaled graph neural network
(SGNN) to model event interactions and learn event rep-
resentations.

Experiment Configuration

We tune the hyper-parameters in our proposed SAM-Net
model using the development set. We set batch size to 128
and regularization weight to A = 1075, We adopt Adam Op-
timizer (Kingma and Ba 2014) to optimize our model and
the initial learning rate is set to 10~%. We adopt the Glove
(Pennington, Socher, and Manning 2014) pre-trained word
embeddings and the dimension is set to 100. The size of
LSTM hidden state is set to 128. The parameters are ini-
tialized with Xavier Initialization (Glorot and Bengio 2010).

Experiment Results and Analyses

Experiment results are shown in Table 1. From the results,
we can have the following observations:

(1) Word2vec, Event-Comp and other neural models
achieve significantly better results than count-based models
PMI and Bigram. The main reason is that count-based mod-
els have sparsity issues and low-dimensional embeddings for
events are more effective to represent the semantic relation-
ships among events.

(2) Comparisons between Event-Comp, PairLSTM and
LSTM demonstrate that only considering the strong order
relation in the event chains is not adequate enough to repre-
sent the relations between existing chains and choice events.



This is because only adopting LSTM model to represent the
event chains may cause over-fitting problems.

(3) Comparisons between Event-Comp, LSTM and our
proposed model SAM-Net demonstrate that SAM-Net can
better represent the relations between choice events and the
event chain. SAM-Net can extract diverse event segments
within the chain and capture the relations from event-level
and chain-level attention representations to provide more ac-
curate semantic relations. The result confirms our intuition
in the introduction.

(4) SGNN constructs event graphs to represent the rela-
tions among events and it achieves better results than other
baselines. In this paper, by integrating event-level and chain-
level attention representations we can obtain better results
than the single SGNN model.

(5) Our proposed SAM-Net model achieves the best per-
formance on the script event prediction task, which is an ab-
solute 2.16% improvement over the best baselines.

Comparative Experiments

We conduct experiments to compare the four relation score
functions in the prediction layer to investigate further into
their influence on the final results. The results are shown in
Table 2. We can conclude that different relation score func-
tions can have influence on the final results. The Fusion Sim-
ilarity 8 can get the best results because the fusion similar-
ity can fuse the vectors to interact more adequately. We se-
lect Fusion Similarity 3 in our model to compare with other
baselines.

Method Accuracy(%)
Cosine 53.23
Dot 53.45
Fusion « 54.22
Fusion 54.48

Table 2: Effects of different relation score functions.

Quanlitative Study

We provide a qualitative analysis with the following exam-
ple. Given an existing event chain shown in Table 3. The
right choice event is "act(X, shop teacher,-)”.

(1) The event-level attention aims to calculate the
relation between the choice event and individual
events. The normalized attention vector is as follows:
[0.04,0.06,0.03,0.08,0.02,0.07,0.23,0.47]. We can see that
events 7 and 8 have important influence on the choice event.
The event-level attention tends to capture the semantic
relation between events. The higher attention weight means
the event has more similar event components with the
choice event, e.g., "play’ and ’act’.

(2) Self attention aims to discover event segments within
the existing event chain. The event segments extracted from
the event chain are as follows (according to the self atten-
tion matrix): <1,2,6>, <1,2,3>, <3,8>, <4,5>, <5,6>,
<4,5,6>, <5,6,7,8>, <4,7,8>. With our observations, 6 out
of 8 event segments are meaningful. The event segments
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Event Order Event

marry(X, Roseanne, -)
dismiss(X, -, -)

split(X, Roseanne, -)
rebound(X, -, in the films)
use(X, goodwill, against sexist)
win(X, Golden Globe Awards, -)
display(X, nasty side, -)

play(X, Roscoe Bigger, -)

0NN B W=

>

Table 3: An event chain example. X=Arnold and ’-> means
NULL components.

<1,2,6> and <3,8> does not bring much benefit and they
might introduce noise in the model. We will propose new
methods to generate more meaningful event segments in fu-
ture works.

(3) The chain-level attention aims to capture the
relation between choice event and the event seg-
ments. The normalized attention vector is as follows:
[0.06,0.02,0.03,0.11,0.09,0.12,0.27,0.30]. We can see that
the choice event has a significant relation with the event
segments <5,6,7,8> and <4,7,8>. The results confirm our
intuition that the event segments have significant influence
on the script event prediction.

Ablation Study

In this part, we perform ablation study to get a better in-
sight into each component of the model, as shown in Table
4. SAM-Net is our proposed model. The notation ‘-* means
removing this part or replacing this part with simpler opera-
tions.

Influence of Event Representation: We first study the
event representation part. -Event Representation means that
we do not adopt the event representation in our model and
replace it with simpler <verb, dependency> representation
from (Chambers and Jurafsky 2008). The result from Table 4
demonstrates that the richer event representation which con-
tains e, and e, is more effective in modeling the semantic
relations between events.

Influence of Event-level Attention: We remove the
event-level attention and only utilize the chain-level atten-
tional representation to predict the next event. From the
result, we can conclude that the relations between choice
events and events in the chain does have effect on the final
results.

Influence of Self Attention: -Self Attention means that
we drop Self Attention Mechanism. Since DenseNet needs
to perform on a 2-D or 3-D representation, we stack all
the hidden states of LSTM to form a matrix and feed it to
DenseNet. When we drop self attention part, we cannot per-
form chain-level attention and we also drop the chain-level
attention. -Self Attention causes a 4.94 drop, which means
that the event segments within the event chain does have sig-
nificant influence on the final results. And the result confirms
our intuition in the introduction part.

Influence of Chain-Level Attention: We remove the
chain-level attention and adopt the event-level attentional



representation to predict the next event. The result demon-
strates that the relations between choice events and event
segments within the chain is essential to the final results,
which confirms our intuition in introduction.

Influence of DenseNet: Finally, we study the effect of
DenseNet. -DenseNet means that we get event chain rep-
resentation by averaging the matrix representation from Self
Attention. The result demonstrates that DenseNet has an im-
portant effect on the final results because DenseNet can ex-
tract important features for the event chain and get a better
representation.

Method Accuracy(%) A
SAM-Net 54.48 -
-Event Representation 52.35 -1.23
-Event-level Attention 53.25 -2.13
-Self Attention 49.54 -4.94
-Chain-Level Attention 51.38 -3.04
-DenseNet 52.96 -1.52

Table 4: Ablation study of network structure.

Related Work

Script Event Representation: Chambers and Juraf-
sky (2008) represented events as <event, dependency>
pairs, where the event was typically a verb and the depen-
dency was the typed dependency relations between the event
and the protagonist such as ‘subject’ and ‘object’. In (Bala-
subramanian et al. 2013), the researchers observed that the
protagonist representation suffered from weakness such as
the lack of coherence and they proposed a new representa-
tion <Argl, Relation, Arg2>, where Argl and Arg2 were
the subject and objectq in the event. Similar to this idea, Pi-
chotta and Mooney (2014) proposed a richer multi-argument
event representation v(es, ,, €,,), where v was the verb, e,
was the subject, e, was the object and e, was the entity
with prepositional relation with v. Subsequent works like
(Pichotta and Mooney 2016a) and (Granroth-Wilding and
Clark 2016) adopted the representation. Following (Wang,
Zhang, and Chang 2017), we also adopt the multi-argument
event representation in this paper.

Script Modeling: Chambers and Jurafsky (2008) adopted
PMI to calculate the event relations and Jans et al. (2012)
used skip-gram probability to improve the performance. In
(Pichotta and Mooney 2014) and (Rudinger et al. 2015),
the researchers modeled event co-occurrence and estimated
a joint probability distribution over pairs of events. How-
ever, the count-based models suffered from sparsity issues.
Granroth-Wilding and Clark (2016) employed event embed-
dings to solve this problem. They represented components
in an event as word embeddings and obtained the event em-
beddings by a composition neural network. In (Pichotta and
Mooney 2016a) and (Pichotta and Mooney 2016b), the re-
searchers adopted LSTM (Long Shor-Term Memory) neural
networks to model event representation and event relations.
Following their works, Wang, Zhang, and Chang (2017)
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adopted the dynamic memory network model to model event
orders and event pair coherence relations.

We observe that there are rich event segments relations
within the event chain that can bring benefit to predict the
next event, so we develop Self Attention Mechanism (Lin et
al. 2017) to extract diverse event segments and represent the
event chain as a combination of event segments.

Furthermore, Hu et al. (2017) proposed a hierarchical
LSTM model which incorporated the word sequence and
event sequence to predict what happens next. Mostafazadeh
et al. (2016) proposed the story close task to predict the end-
ing of a story sequence. There are also many researchers
constructing script graphs to reflect the relation among
events. Regneri, Koller, and Pinkal (2010) collected natu-
ral language descriptions of script-specific event sequences
from volunteers and built a temporal script graph. Orr et
al. (2014) employed Hidden Markov Models to construct a
transition graph and performed script inference according to
the state transition probability. In (Li, Ding, and Liu 2018),
the researchers constructed a narrative event evolutionary
graph (NEEG) to represent rich relations among events and
presented a scaled graph neural network (SGNN) to model
event interactions and learn event representations.

Script Evaluation: Chambers and Jurafsky (2008) pro-
posed the Narrative Cloze Test where they removed some
events and adopted the model to predict the missing event.
Modi (2016) proposed Adversarial Narrative Cloze (ANC),
which aimed to distinguish right and wrong event chains.
Following their works, Granroth-Wilding and Clark (2016)
proposed Multi-Choice Narrative Cloze (MCNC) task which
was designed to select the most likely next event from a set
of candidate events. In this paper, we choose MCNC for our
evaluation metric and compare the effect of different models
to predict script event.

Conclusion and Future Work

We utilize the event-level attention to represent the rela-
tions between subsequent events and individual events in
the chain. Then, we develop the self attention mechanism
to extract diverse event segments within an event chain. We
also propose the chain-level attention to capture the rela-
tions between subsequent event and event segments. Finally,
we integrate event-level and chain-level attentions to pre-
dict what happens next. Standard evaluation shows that our
model achieves the best results compared to other baselines.
In future works, we will propose methods to extract event
segments more accurately and will focus on the event gen-
eration problem.
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