
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Unsupervised Post-Processing of Word Vectors via Conceptor Negation
Tianlin Liu∗

Department of Computer Science and
Electrical Engineering

Jacobs University Bremen
28759 Bremen, Germany
t.liu@jacobs-university.de

Lyle Ungar, João Sedoc
Department of Computer and

Information Science
University of Pennsylvania

Philadelphia, PA 19104
{ungar, joao}@cis.upenn.edu

Abstract

Word vectors are at the core of many natural language
processing tasks. Recently, there has been interest in post-
processing word vectors to enrich their semantic informa-
tion. In this paper, we introduce a novel word vector post-
processing technique based on matrix conceptors (Jaeger
2014), a family of regularized identity maps. More con-
cretely, we propose to use conceptors to suppress those la-
tent features of word vectors having high variances. The pro-
posed method is purely unsupervised: it does not rely on
any corpus or external linguistic database. We evaluate the
post-processed word vectors on a battery of intrinsic lexical
evaluation tasks, showing that the proposed method consis-
tently outperforms existing state-of-the-art alternatives. We
also show that post-processed word vectors can be used for
the downstream natural language processing task of dialogue
state tracking, yielding improved results in different dialogue
domains.

Introduction
Distributional representations of words, better known as
word vectors, are a cornerstone of practical natural lan-
guage processing (NLP). Examples of word vectors in-
clude Word2Vec (Mikolov et al. 2013), GloVe (Pennington,
Socher, and Manning 2014), Eigenwords (Dhillon, Foster,
and Ungar 2015), and Fasttext (Bojanowski et al. 2017).
These word vectors are usually referred to as distributional
word vectors, as their training methods rely on the distribu-
tional hypothesis of semantics (Firth 1957).

Recently, there has been interest in post-processing dis-
tributional word vectors to enrich their semantic content.
The post-process procedures are usually performed in a
lightweight fashion, i.e., without re-training word vectors
on a text corpus. In one line of study, researchers used
supervised methods to enforce linguistic constraints (e.g.,
synonym relations) on word vectors (Faruqui et al. 2015;
Mrksic et al. 2016; 2017), where the linguistic constraints
are extracted from an external linguistic knowledge base
such as WordNet (Miller 1995) and PPDB (Pavlick et al.
2015). In another line of study, researchers devised unsu-
pervised methods to post-process word vectors. Spectral-
∗Research done while visiting University of Pennsylvania.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

decomposition methods such as singular value decompo-
sition (SVD) and principal component analysis (PCA) are
usually used in this line of research (Caron 2001; Bullinaria
and Levy 2012; Turney 2012; Levy and Goldberg 2014;
Levy, Goldberg, and Dagan 2015; Mu and Viswanath 2018).
The current paper is in line with the second, unsupervised,
research direction.

Among different unsupervised word vector post-
processing schemes, the all-but-the-top approach (Mu
and Viswanath 2018) is a prominent example. Empiri-
cally studying the latent features encoded by principal
components (PCs) of distributional word vectors, Mu and
Viswanath (2018) found that the variances explained by
the leading PCs “encode the frequency of the word to a
significant degree”. Since word frequencies are arguably un-
related to lexical semantics, they recommend removing such
leading PCs from word vectors using a PCA reconstruction.

The current work advances the findings of Mu and
Viswanath (2018) and improves their post-processing
scheme. Instead of discarding a fixed number of PCs, we
softly filter word vectors using matrix conceptors (Jaeger
2014; 2017), which characterize the linear space of those
word vector features having high variances – the features
most contaminated by word frequencies according to Mu
and Viswanath (2018). The proposed approach is mathemat-
ically simple and computationally efficient, as it is founded
on elementary linear algebra. Besides these traits, it is also
practically effective: using a standard set of lexical-level in-
trinsic evaluation tasks and a deep neural network-based di-
alogue state tracking task, we show that conceptor-based
post-processing considerably enhances linguistic regulari-
ties captured by word vectors. A more detailed list of our
contributions are:

1. We propose an unsupervised algorithm that leverages
Boolean operations of conceptors to post-process word
vectors. The resulting word vectors achieve up to
18.86% and 28.34% improvement on the SimLex-999
and SimVerb-3500 dataset relative to the original word
representations.

2. A closer look at the proposed algorithm reveals common-
alities across several existing post-processing techniques
for neural-based word vectors and pointwise mutual
information (PMI) matrix based word vectors. Unlike

6778

the existing alternatives, the proposed approach is flex-
ible enough to remove lexically-unrelated noise, while
general-purpose enough to handle word vectors induced
by different learning algorithms.

The rest of the paper is organized as follows. We first
briefly review the principal component nulling approach
for unsupervised word vector post-processing introduced in
(Mu and Viswanath 2018), upon which our work is based.
We then introduce our proposed approach, Conceptor Nega-
tion (CN). Analytically, we reveal the links and differences
between the CN approach and the existing alternatives. Fi-
nally, we showcase the effectiveness of the CN method with
numerical experiments1.

Notation
We assume a collection of words w ∈ V , where V is a
vocabulary set. Each word w ∈ V is embedded as a n di-
mensional real valued vector vw ∈ Rn. An identity matrix
will be denoted by I. For a vector v, we denote diag(v)
as the diagonal matrix with v on its diagonal. We write
[n] = {1, 2, · · · , n} for a positive integer n.

Post-processing word vectors by PC removal
This section is an overview of the all-but-the-top (ABTT)
word vector post-processing approach introduced by Mu and
Viswanath (2018). In brief, the ABTT approach is based on
two key observations of distributional word vectors. First,
using a PCA, Mu and Viswanath (2018) revealed that word
vectors are strongly influenced by a few leading principal
components (PCs). Second, they provided an interpretation
of such leading PCs: they empirically demonstrated a corre-
lation between the variances explained by the leading PCs
and word frequencies. Since word frequencies are arguably
unrelated to lexical semantics, they recommend eliminating
top PCs from word vectors via a PCA reconstruction. This
method is described in Algorithm 1.

Algorithm 1: The all-but-the-top (ABTT) algorithm for
word vector post-processing.

Input : (i) {vw ∈ Rn : w ∈ V }: word vectors with a
vocabulary V ; (ii) d: the number of PCs to be
removed.

1 Center the word vectors: Let v̄w := vw − µ for all
w ∈ V , where µ is the mean of the input word vectors.

2 Compute the first d PCs {ui ∈ Rn}i∈[d] of the
column-wisely stacked centered word vectors
[v̄w]w∈V ∈ Rn×|V | via a PCA.

3 Process the word vectors:
ṽABTT
w := v̄w −

∑d
i=1 u

>
i uiv̄w,∀w ∈ V .

Output: {ṽABTT
w , w ∈ V }

In practice, Mu and Viswanath (2018) found that the im-
provements yielded by ABTT are particularly impressive for

1Our codes are available at https://github.com/liutianlin0121/
Conceptor-Negation-WV

word similarity tasks. Here, we provide a straightforward in-
terpretation of the effects. Concretely, consider two arbitrary
words w1 and w2 with word vectors vw1

and vw2
. With-

out loss of generality, we assume vw1
and vw2

are normal-
ized, i.e., ‖vw1

‖2 = ‖vw2
‖2 = 1. Given PCs {u1, · · · , un}

of the word vectors {vw : w ∈ V }, we re-write vw1

and vw2
via linear combinations with respect to the basis

{u1, · · · , un}: vw1
:=
∑n
i=1 βiui and vw2

:=
∑n
i=1 β

′
iui,

for some βi, β′i ∈ R and for all i ∈ [n]. We see

cosine(vw1
, vw2

)
(∗)
= v>w1

vw2
(1)

=

(
n∑
i=1

βiui

)>(n∑
i=1

β′iui

)
(∗∗)
=

n∑
i=1

βiβ
′
i (2)

where (∗) holds because the word vectors were assumed to
be normalized and (∗∗) holds because {u1, · · · , un} is an
orthonormal basis of Rn. Via Equation 2, the similarity be-
tween word w1 and w2 can be seen as the overall “compat-
ibility” of the their measurements βi and β′i with respect to
each latent feature ui. If leading PCs encode the word fre-
quencies, removing the leading PCs, in theory, help the word
vectors capture semantic similarities, and consequently im-
prove the experiment results of word similarity tasks.

Post-processing word vectors via Conceptor
Negation

Removing the leading PCs of word vectors using the
ABTT algorithm described above is effective in practice,
as seen in the elaborate experiments conducted by Mu and
Viswanath (2018). However, the method comes with a po-
tential limitation: for each latent feature taking form as a
PC of the word vectors, ABTT either completely removes
the feature or keeps it intact. For this reason, Khodak et
al. (2018) argued that ABTT is liable either to not remove
enough noise or to cause too much information loss.

The objective of this paper is to address the limitations
of ABTT. More concretely, we propose to use matrix con-
ceptors (Jaeger 2017) to gate away variances explained by
the leading PCs of word vectors. As will be seen later, the
proposed Conceptor Negation method removes noise in a
“softer” manner when compared to ABTT. We show that
it shares the spirit of an eigenvalue weighting approach for
PMI-based word vector post-processing. We proceed by pro-
viding the technical background of conceptors.

Conceptors
Conceptors are a family of regularized identity maps intro-
duced by Jaeger (2014). We present a sketch of concep-
tors by heavily re-using (Jaeger 2014; He and Jaeger 2018)
sometimes verbatim. In brief, a matrix conceptor C for some
vector-valued random variable x taking values in RN is de-
fined as a linear transformation that minimizes the following
loss function.

E
[
‖x− Cx‖22

]
+ α−2‖C‖2F (3)

6779

where α is a control parameter called aperture, ‖ · ‖2 is the
`2 norm, and ‖ ·‖F is the Frobenius norm. This optimization
problem has a closed-form solution

C = R(R+ α−2 I)−1 (4)

where R = E[xx>] and I are N × N matrices. If R =
ΨTΨ> is the SVD of R, then the SVD of C is given as
ΨSΨ>, where the singular values si of C can be written in
terms of the singular values ti of R: si = ti/(ti + α−2) ∈
(0, 1) for α ∈ (0,∞). In intuitive terms, C is a soft pro-
jection matrix on the linear subspace where the samples of
x lie, such that for a vector y in this subspace, C acts like
the identity: Cy ≈ y, and when some ε orthogonal to the
subspace is added to y, C reconstructs y: C(y + ε) ≈ y.

Moreover, operations that satisfy most laws of Boolean
logic such as NOT ¬, OR ∨, and AND ∧, can be defined on
matrix conceptors. These operations all have interpretation
on the data level, i.e., on the distribution of the random vari-
able x (details in (Jaeger 2014, Section 3.9)). Among these
operations, the negation operation NOT ¬ is relevant for the
current paper:

¬C := I−C. (5)

Intuitively, the negated conceptor, ¬C, softly projects the
data onto a linear subspace that can be roughly understood
as the orthogonal complement of the subspace characterized
by C.

Post-processing word vectors with Conceptor
Negation
This subsection explains how conceptors can be used to
post-process word vectors. The intuition behind our ap-
proach is simple. Consider a random variable x taking values
on word vectors {vw ∈ Rn : w ∈ V }. We can estimate a
conceptor C that describes the distribution of x using Equa-
tion 4. Recall that (Mu and Viswanath 2018) found that the
directions with which x has the highest variances encode
word frequencies, which are unrelated to word semantics.
To suppress such word-frequency related features, we can
simply pass all word vectors through the negated conceptor
¬C, so that ¬C dampens the directions with which x has
the highest variances. This simple method is summarized in
Algorithm 2.

Algorithm 2: The conceptor negation (CN) algorithm
for word vector post-processing.

Input : (i) {vw ∈ Rn : w ∈ V }: word vectors of a
vocabulary V ; (ii) α ∈ R: a hyper-parameter

1 Compute the conceptor C from word vectors:
C = R(R+ α−2 I)−1, where R is estimated by
1
|V |
∑
w vwv

>
w

2 Compute ¬C := I−C
3 Process the word vectors: ṽCN

w := ¬Cvw,∀w ∈ V
Output: {ṽCN

w : w ∈ V }

The hyper-parameter α of Algorithm 2 governs the
“sharpness” of the suppressing effects on word vectors em-

ployed by ¬C. Although in this work we are mostly inter-
ested in α ∈ (0,∞), it is nonetheless illustrative to con-
sider the extreme cases where α = 0 or ∞: for α = 0,
¬C will be an identity matrix, meaning that word vectors
will be kept intact; for α = ∞, ¬C will be a zero matrix,
meaning that all word vectors will be nulled to zero vec-
tors. The computational costs of the Algorithm 2 are domi-
nated by its step 1: one needs to calculate the matrix product
R = 1

|V | [vw]w∈V [vw]>w∈V for [vw]w∈V ∈ Rn×|V | being the
matrix whose columns are word vectors. Since modern word
vectors usually come with a vocabulary of some millions of
words (e.g., Google News Word2Vec contains 3 million to-
kens), performing a matrix product on such large matrices
[vw]w∈V is computationally laborious. But considering that
there are many uninteresting words in the vast vocabulary,
we find it is empirically beneficial to only use a subset of
the vocabulary, whose words are not too peculiar2. Specifi-
cally, borrowing the word list provided by Arora, Liang, and
Ma (2017)3, we use the words that appear at least 200 times
in a Wikipedia dump 2015 to estimateR. This greatly boosts
the computation speed. Somewhat surprisingly, the trick also
improves the performance of Algorithm 2. This might due to
the higher quality of word vectors of common words com-
pared with infrequent ones.

Analytic comparison with other methods
Since most of the existing unsupervised word vector post-
processing methods are ultimately based on linear data
transformations, we hypothesize that there should be com-
monalities between the methods. In this section, we show
CN resembles ABTT in that both methods can be inter-
preted as “spectral encode-decode processes”; when applied
to word vectors induced by a pointwise mutual informa-
tion (PMI) matrix, CN shares the spirit with the eigenvalue
weighting (EW) post-processing (Caron 2001; Levy, Gold-
berg, and Dagan 2015): they both assign weights on singu-
lar vectors of a PMI matrix. A key distinction of CN is that
it does soft noise removal (unlike ABTT) and that it is not
restricted to post-processing PMI-matrix induced word vec-
tors (unlike EW).

Relation to ABTT
In this subsection, we reveal the connection between CN and
ABTT. To do this, we will re-write the last step of both algo-
rithms into different formats. For the convenience of com-
parison, throughout this section, we will assume that the
word vectors {vw}v∈V in Algorithm 1 and Algorithm 2 pos-
sess a zero mean, although this is not a necessary require-
ment in general.

We first re-write the equation in step 3 of Algorithm 1.
We letU be the matrix whose columns are the PCs estimated
from the word vectors. Let U:,1:d be the first d columns of U .
It is clear that step 2 of Algorithm 1, under the assumption
that word vectors possess zero mean, can be re-written as

2This trick has also been used for ABTT by Mu and
Viswanath (2018) (personal communications).

3https://github.com/PrincetonML/SIF/tree/master/
auxiliary data

6780

ṽABTT
w :=

(
I − U:,1:dU

>
:,1:d

)
vw

= Udiag([0, · · · , 0︸ ︷︷ ︸
d copies of 0

, 1, · · · , 1])U>vw. (6)

Next, we re-write step 3 of the Conceptor Negation (CN)
method of algorithm 2. Note that for word vectors with zero
mean, the estimation for R is a (sample) covariance ma-
trix of a random variable taking values as word vectors, and
therefore the singular vectors of R are PCs of word vectors.
Letting R = UΣU> be the SVD of R, the equation in step
3 of Algorithm 2 can be re-written via elementary linear al-
gebraic operations:

ṽCN
w := ¬Cv̄w

= (I−C) vw

=
(
I−R(R+ α−2I)−1

)
vw

=
(
I−UΣU>(UΣU> + α−2UU>)−1

)
vw

=

(
I−Udiag([

σ1
σ1 + α−2

, · · · , σn
σn + α−2

])U>
)
vw

= Udiag([
α−2

σ1 + α−2
, · · · , α−2

σn + α−2
])U>vw, (7)

where σ1, · · · , σn are diagonal entries of Σ.
Examining Equations 6 and 7, we see ABTT and CN

share some similarities. In particular, they both can be uni-
fied into “spectral encode-decode processes,” which contain
the following three steps:

1. PC encoding. Load word vectors on PCs by multiplying
U> with vw.

2. Variance gating. Pass the PC-encoded data through the
variance gating matrices diag([0, · · · , 0, 1, · · · , 1]) and
diag([α−2

σ1+α−2 , · · · , α−2

σn+α−2]) respectively for ABTT and
CN.

3. PC decoding. Transform the data back to the usual coor-
dinates using the matrix U .

With the above encode-decode interpretation, we see CN
differ from ABTT is its variance gating step. In particular,
ABTT does a hard gating, in the sense that the diagonal en-
tries of the variance gating matrix (call them variance gating
coefficients) take values in the set {0, 1}. The CN approach,
on the other hand, does a softer gating as the entries take
values in (0, 1):

0 <
α−2

σi + α−2
≤ α−2

σj + α−2
< 1,

for all 1 ≤ i < j ≤ n and α ∈ (0,∞). To illustrate the
gating effects, we plot the variance gating coefficients for
ABTT and CN for Word2Vec in Figure 1.

Relation with eigenvalue weighting
We relate the conceptor approach to the eigenvalue weight-
ing approach for post-processing PMI-based word vectors.
This effort is in line with the ongoing research in the NLP

0 2 4
Log-scaled index of PCs

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

nc
e

ga
tin

g
co

ef
fic

ie
nt

s

CN
all-but-the-top

Figure 1: The variance gating coefficients of ABTT and CN
for Word2Vec. Hyper-parameters: d = 3 for ABTT and α =
2 for CN.

community that envisages a connection between “neural
word embedding” and PMI-matrix factorization based word
embedding (Levy and Goldberg 2014; Pennington, Socher,
and Manning 2014; Levy, Goldberg, and Dagan 2015).

In the PMI approach for word association modeling, for
each word w and each context (i.e., sequences of words)
q, the PMI matrix M assigns a value for the pair (w, q):
M(w, q) = log P(w,q)

P(w)P(q) . In practical NLP tasks, the sets
of words and contexts tend to be large, and therefore, di-
rectly working with M is inconvenient. To lift the prob-
lem, one way is to perform a truncated SVD on M , fac-
torizing M into the product of three smaller matrices M ≈
Θ:,1:nD1:n,1:nΓ>:,1:n, where Θ:,1:n is the first n left singu-
lar vectors of the matrix M , D1:n,1:n is the diagonal matrix
containing n leading singular values ofM , and Γ:,1:n are the
first n right singular vectors of the matrix M . A generic way
to induce word vectors from M is to let

E := Θ:,1:nD1:n,1:n ∈ R|V |×n,

which is a matrix containing word vectors as rows. Coined
by Levy, Goldberg, and Dagan (2015), the term eigenvalue
weighting4 (EW) refers to a post-processing technique for
PMI-matrix-induced word vectors. This technique has its
root in Latent Semantic Analysis (LSA): Caron (2001) first
propose to define the post-processed version of E as

ẼEW := Θ:,1:nD
p
1:n,1:n,

where p is the weighting exponent determining the relative
weights assigned to each singular vector of Θ:,1:n. While an
optimal p depends on specific task demands, previous re-
search suggests that p < 1 is generally preferred, i.e., the
contributions of the initial singular vectors of M should be
suppressed. For instance, p = 0, 0.25, and 0.5 are recom-
mended in (Caron 2001; Bullinaria and Levy 2012; Levy,

4It seems to us that a term “singular value weighting” is more
appropriate because the weighting is based on singular values of a
PMI matrix M but not eigenvalues of M . The term “eigenvalue”
is relevant here only because the singular values of M are also the
square roots of eigenvalues of M>M .

6781

Goldberg, and Dagan 2015). Bullinaria and Levy (2012) ar-
gue that the initial singular vectors of M tend to be contam-
inated most by aspects other than lexical semantics.

We now show that applying CN on the PMI-matrix-based
word embedding E := Θ:,1:nD1:n,1:n has a tantamount ef-
fect with “suppressing initial singular vectors” of EW. Act-
ing the negated ¬C on word vectors of E (i.e., rows of E),
we get the post-processed word vectors as rows of the ẼCN:

ẼCN := (¬CE>)>

= E(I −R(R+ α−2I)−1)

= E(I −
1

|V |
E>E(

1

|V |
E>E + α−2I)−1)

= Θ:,1:nD1:n,1:n(I −
1

|V |
D2

1:n,1:n(
1

|V |
D2

1:n,1:n + α−2I)−1)

= Θ:,1:nD1:n,1:ndiag([
|V | · α−2

λ21 + |V | · α−2
, · · · ,

|V | · α−2

λ2n + |V | · α−2
])

Since

0 <
|V | · α−2

λ2i + |V | · α−2
≤ |V | · α−2

λ2j + |V | · α−2
< 1,

for all 1 ≤ i < j ≤ n and α ∈ (0,∞), these weights sup-
press the contribution of the initial singular vectors, similar
to what has been done in EW.

Experiments
We evaluate the post-processed word vectors on a variety of
lexical-level intrinsic tasks and a down-stream deep learn-
ing task. We use the publicly available pre-trained Google
News Word2Vec (Mikolov et al. 2013)5 and Common Crawl
GloVe6 (Pennington, Socher, and Manning 2014) to per-
form lexical-level experiments. For CN, we fix α = 2
for Word2Vec and GloVe throughout the experiments7. For
ABTT, we set d = 3 for Word2Vec and d = 2 for GloVe, as
what has been suggested by Mu and Viswanath (2018).

Word similarity We test the performance of CN on seven
benchmarks that have been widely used to measure word
similarity: the RG65 (Rubenstein and Goodenough 1965),
the WordSim-353 (WS) (Finkelstein et al. 2002), the rare-
words (RW) (Luong, Socher, and Manning 2013), the MEN
dataset (Bruni, Tran, and Baroni 2014), the MTurk (Radin-
sky et al. 2011), the SimLex-999 (SimLex) (Hill, Reichart,
and Korhonen 2015), and the SimVerb-3500 (Gerz et al.
2016). To evaluate the word similarity, we calculate the co-
sine distance between vectors of two words using Equa-
tion 1. We report the Spearman’s rank correlation coefficient
(Myers and Well 1995) of the estimated rankings against the
rankings by humans in Table 1. We see that the proposed
CN method consistently outperforms the original word em-
bedding (orig.) and the post-processed word embedding by
ABTT for most of the benchmarks.

5https://code.google.com/archive/p/word2vec/
6https://nlp.stanford.edu/projects/glove/
7Analytical optimization methods for the aperture α are avail-

able from (Jaeger 2014), remaining to be connected with the word
vector post-processing scheme in the future.

WORD2VEC GLOVE

orig. ABTT CN orig. ABTT CN
RG65 76.08 78.34 78.92 76.96 74.36 78.40

WS 68.29 69.05 69.30 73.79 76.79 79.08
RW 53.74 54.33 58.04 46.41 52.04 58.98

MEN 78.20 79.08 78.67 80.49 81.78 83.38
MTurk 68.23 69.35 66.81 69.29 70.85 71.07

SimLex 44.20 45.10 46.82 40.83 44.97 48.53
SimVerb 36.35 36.50 38.30 28.33 32.23 36.36

Table 1: Post-processing results (Spearman’s rank correla-
tion coefficient × 100) under seven word similarity bench-
marks. The baseline results (orig. and ABTT) are collected
from (Mu and Viswanath 2018).

The improvement of results by CN are particularly im-
pressive for two “modern” word similarity benchmarks Sim-
Lex and SimVerb – these two benchmarks carefully dis-
tinguish genuine word similarity from conceptual associ-
ation (Hill, Reichart, and Korhonen 2015). For instance,
coffee is associated with cup but by no means similar
to cup, a confusion often made by earlier benchmarks. In
particular, SimLex has been heavily used to evaluate word
vectors yielded by supervised word vector fine-tuning al-
gorithms, which perform gradient descent on word vectors
with respect to linguistic constraints such as synonym and
antonym relationships of words extracted from WordNet
and/or PPDB. When compared to a recent supervised ap-
proach of counter-fitting. Our results on SimLex are compa-
rable to those reported by Mrksic et al. (2016), as shown in
Table 2.

Post-processing method WORD2VEC GLOVE

supervised
Counter-Fitting + syn. 0.45 0.46
Counter-Fitting + ant. 0.33 0.43

Counter-Fitting + syn. + ant. 0.47 0.50
unsupervised CN 0.47 0.49

Table 2: Comparing the testing results (Spearman’s rank
correlation coefficient) on SimLex with those of Counter-
Fitting approach (results collected from (Mrksic et al. 2016,
Table 2) and (Mrksic et al. 2017, Table 3)). The linguistic
constraints for Counter-Fitting are synonym (syn.) and/or
antonym (ant.) relationships extracted from English PPDB.

Semantic Textual Similarity In this subsection, we show-
case the effectiveness of the proposed post-processing
method using semantic textual similarity (STS) benchmarks,
which are designed to test the semantic similarities of sen-
tences. We use 2012-2015 SemEval STS tasks (Agirre et al.
2012; 2013; 2014; 2015) and the 2012 SemEval Semantic
Related task (SICK) (Marelli et al. 2014).

Concretely, for each pair of sentences, s1 and s2, we com-
puted vs1 and vs2 by averaging their constituent word vec-
tors. We then calculated the cosine distance between two
sentence vectors vs1 and vs2 . This naive method has been
shown to be a strong baseline for STS tasks (Wieting et al.
2016). As in Agirre et al. (2012), we used Pearson correla-
tion of the estimated rankings of sentence similarity against

6782

the rankings by humans to assess model performance.
In Table 3, we report the average result for the STS tasks

each year (detailed results are in supplementary material).
Again, our CN method consistently outperforms the alterna-
tives.

WORD2VEC GLOVE

orig. ABTT CN orig. ABTT CN
STS 2012 57.22 57.67 54.31 48.27 54.06 54.38
STS 2013 56.81 57.98 59.17 44.83 51.71 55.51
STS 2014 62.89. 63.30 66.22 51.11 59.23 62.66
STS 2015 62.74 63.35 67.15 47.23 57.29 63.74

SICK 70.10 70.20 72.71 65.14 67.85 66.42

Table 3: Post-processing results (×100) on the semantic tex-
tual similarity tasks. The baseline results (orig. and ABTT)
are collected from (Mu and Viswanath 2018).

Concept Categorization In the concept categorization
task, we used k-means to cluster words into concept cate-
gories based on their vector representations (for example,
“bear” and “cat” belong to the concept category of animals).
We use three standard datasets: (i) a rather small dataset
ESSLLI 2008 (Baroni, Evert, and Lenci 2008) that contains
44 concepts in 9 categories; (ii) the Almuhareb-Poesio (AP)
(Poesio and Almuhareb 2005), which contains 402 concepts
divided into 21 categories; and (iii) the BM dataset (Bat-
tig and Montague 1969) that 5321 concepts divided into 56
categories. Note that the datasets of ESSLLI, AP, and BM
are increasingly challenging for clustering algorithms, due
to the increasing numbers of words and categories.

Following (Baroni, Dinu, and Kruszewski 2014; Schn-
abel et al. 2015; Mu and Viswanath 2018), we used “purity”
of clusters (Manning, Raghavan, and Schütze 2008, Section
16.4) as the evaluation criterion. That the results of k-means
heavily depend on two hyper-parameters: (i) the number
of clusters and (ii) the initial centroids of clusters. We fol-
low previous research (Baroni, Dinu, and Kruszewski 2014;
Schnabel et al. 2015; Mu and Viswanath 2018) to set k as the
ground-truth number of categories. The settings of the initial
centroids of clusters, however, are less well-documented in
previous work – it is not clear how many initial centroids
have been sampled, or if different centroids have been sam-
pled at all. To avoid the influences of initial centroids in
k-means (which are particularly undesirable for this case
because word vectors live in R300), in this work, we sim-
ply fixed the initial centroids as the average of original,
ABTT-processed, and CN-processed word vectors respec-
tively from ground-truth categories. This initialization is
fair because all post-processing methods make use of the
ground-truth information equally, similar to the usage of the
ground-truth numbers of clusters. We report the experiment
results in Table 4.

The performance of the proposed methods and the base-
line methods performed equally well for the smallest dataset
ESSLLI. As the dataset got larger, the results differed and
the proposed CN approaches outperformed the baselines by
a margin.

WORD2VEC GLOVE

orig. ABTT CN. orig. ABTT CN
ESSLLI 100.0 100.0 100.0 100.0 100.0 100.0

AP 87.28 88.3 89.31 86.43 87.19 90.95
BM 58.15 59.24 60.19 65.34 67.35 67.63

Table 4: Purity (× 100) of the clusters in concept categoriza-
tion task with fixed centroids.

A Downstream NLP task: Neural Belief Tracker The
experiments we have reported so far are all intrinsic lexical
evaluation benchmarks. Only evaluating the post-processed
word vectors using these benchmarks, however, invites an
obvious critique: the success of intrinsic evaluation tasks
may not transfer to downstream NLP tasks, as suggested by
previous research (Schnabel et al. 2015). Indeed, when su-
pervised learning tasks are performed, the post-processing
methods such as ABTT and CN can in principle be absorbed
into a classifier such as a neural network. Nevertheless, good
initialization for classifiers is crucial. We hypothesize that
the post-processed word vectors serve as a good initializa-
tion for those downstream NLP tasks that semantic knowl-
edge contained in word vectors is needed.

To validate this hypothesis, we conducted an experiment
using Neural Belief Tracker (NBT), a deep neural network
based dialogue state tracking (DST) model (Mrksic et al.
2017; Mrkšić and Vulić 2018). As a concrete example to il-
lustrate the purpose of the task, consider a dialogue system
designed to help users find restaurants. When a user wants to
find a Sushi restaurant, the system is expected to know that
Japanese restaurants have a higher probability to be a good
recommendation than Italian restaurants or Thai restaurants.
Word vectors are important for this task because NBT needs
to absorb useful semantic knowledge from word vectors us-
ing a neural network.

In our experiment with NBT, we used the model specified
in (Mrkšić and Vulić 2018) with default hyper-parameter
settings8. We report the goal accuracy, a default DST perfor-
mance measure, defined as the proportion of dialogue turns
where all the user’s search goal constraints match with the
model predictions. The test data was Wizard-of-Oz (WOZ)
2.0 (Wen et al. 2017), where the goal constraints of users
were divided into three domains: food, price range, and
area. The experiment results are reported in Table 5.

WORD2VEC GLOVE

orig. ABTT CN. orig. ABTT CN
Food 48.6 84.7 78.5 86.4 83.7 88.8

Price range 90.2 88.1 92.2 91.0 93.9 94.7
Area 83.1 82.4 86.1 93.5 94.9 93.7

Average 74.0 85.1 85.6 90.3 90.8 92.4

Table 5: The goal accuracy of food, price range, and area.

Further discussions Besides the NBT task, we have also
tested ABTT and CN methods on other downstream NLP

8https://github.com/nmrksic/neural-belief-tracker

6783

tasks such as text classification (not reported). We found
that ABTT and CN yield equivalent results in such tasks.
One explanation is that the ABTT and CN post-processed
word vectors are different only up to a small perturbation.
With a sufficient amount of training data and an appropri-
ate regularization method, a neural network should general-
ize over such a perturbation. With a relatively small training
data (e.g., the 600 dialogues for training NBT task), how-
ever, we found that word vectors as initializations matters,
and in such cases, CN post-processed word vectors yield fa-
vorable results. Another interesting finding is that, having
tested ABTT and CN on Fasttext (Bojanowski et al. 2017),
we found that neither post-processing method provides visi-
ble gain. We hypothesize that this might be because Fasttext
includes subword (character-level) information in its word
representation during training, which suppresses the word
frequency features contained in word vectors. It remains for
future work to validate this hypothesis.

Conclusion
We propose a simple yet effective method for post-
processing word vectors via the negation operation of con-
ceptors. With a battery of intrinsic evaluation tasks and a
down-stream deep-learning empowered dialogue state track-
ing task, the proposed method enhances linguistic regulari-
ties captured by word vectors and consistently improves per-
formance over existing alternatives.

There are several possibilities for future work. We en-
visage that the logical operations and abstract ordering ad-
mitted by conceptors can be used in other NLP tasks. As
concrete examples, the AND ∧ operation can be potentially
applied to induce and fine-tune bi-lingual word vectors, by
mapping word representations of individual languages into
a shared linear space; the OR ∨ together with NOT ¬ opera-
tion can be used to study the vector representations of poly-
semous words, by joining and deleting sense-specific vector
representations of words; the abstraction ordering≤ is a nat-
ural tool to study graded lexical entailment of words.

Acknowledgement We appreciate the anonymous review-
ers for their constructive comments. We thank Xu He, Jor-
dan Rodu, and Daphne Ippolito, and Chris Callison-Burch
for helpful discussions.

References
Agirre, E.; Diab, M.; Cer, D.; and Gonzalez-Agirre, A. 2012.
Semeval-2012 task 6: A pilot on semantic textual similarity.
In Proceedings of the First Joint Conference on Lexical and
Computational Semantics, SemEval ’12, 385–393. Strouds-
burg, PA, USA: Association for Computational Linguistics.
Agirre, E.; Cer, D.; Diab, M.; Gonzalez-Agirre, A.; and Guo,
W. 2013. Sem 2013 shared task: Semantic textual similarity.
In Second Joint Conference on Lexical and Computational
Semantics, volume 1, 32–43.
Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.;
Gonzalez-Agirre, A.; Guo, W.; Mihalcea, R.; Rigau, G.; and

Wiebe, J. 2014. Semeval-2014 task 10: Multilingual seman-
tic textual similarity. In Proceedings of the 8th international
workshop on semantic evaluation, 81–91.
Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.;
Gonzalez-Agirre, A.; Guo, W.; Lopez-Gazpio, I.; Maritx-
alar, M.; Mihalcea, R.; Rigaua, G.; Uriaa, L.; and Wiebeg, J.
2015. Semeval-2015 task 2: Semantic textual similarity, En-
glish, Spanish and pilot on interpretability. In Proceedings
of the 9th international workshop on semantic evaluation,
252–263.
Arora, S.; Liang, Y.; and Ma, T. 2017. A simple but tough-
to-beat baseline for sentence embeddings. In International
Conference on Learning Representations.
Baroni, M.; Dinu, G.; and Kruszewski, G. 2014. Don’t
count, predict! A systematic comparison of context-counting
vs. context-predicting semantic vectors. In Proceedings the
ACL 2014, 238–247. Association for Computational Lin-
guistics.
Baroni, M.; Evert, S.; and Lenci, A. 2008. Verb categoriza-
tion: Shared tasks from the ESSLLI 2008 workshop.
Battig, W. F., and Montague, W. E. 1969. Category norms
of verbal items in 56 categories a replication and extension
of the connecticut category norms. Journal of Experimental
Psychology 80(3, Pt.2):1–46.
Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017.
Enriching word vectors with subword information. Trans-
actions of the Association for Computational Linguistics
5:135–146.
Bruni, E.; Tran, N. K.; and Baroni, M. 2014. Multimodal
distributional semantics. Journal of Artificial Intelligence
Research 49(1):1–47.
Bullinaria, J. A., and Levy, P. J. 2012. Extracting se-
mantic representations from word co-occurrence statistics:
stop-lists, stemming, and SVD. Behavior Research Methods
44(3):890–907.
Caron, J. 2001. Experiments with LSA scoring: Optimal
rank and basis. Computational Information Retrieval 157–
169.
Dhillon, P. S.; Foster, D. P.; and Ungar, L. H. 2015. Eigen-
words: Spectral word embeddings. Journal of Machine
Learning Research 16:3035–3078.
Faruqui, M.; Dodge, J.; Jauhar, S. K.; Dyer, C.; Hovy, E. H.;
and Smith, N. A. 2015. Retrofitting word vectors to semantic
lexicons. In Proceedings of the NAACL HLT 2015, 1606–
1615.
Finkelstein, L.; Gabrilovich, E.; Matias, Y.; Rivlin, E.;
Solan, Z.; Wolfman, G.; and Ruppin, E. 2002. Placing
search in context: the concept revisited. ACM Transactions
on Information Systems 20(1):116–131.
Firth, J. R. 1957. A synopsis of linguistic theory 1930-
55. In Studies in Linguistic Analysis (special volume of the
Philological Society), volume 1952-59, 1–32. Oxford: The
Philological Society.
Gerz, D.; Vulic, I.; Hill, F.; Reichart, R.; and Korhonen, A.
2016. SimVerb-3500: a large-scale evaluation set of verb
similarity. In Proceedings of the EMNLP 2016, 2173–2182.

6784

He, X., and Jaeger, H. 2018. Overcoming catastrophic in-
terference using conceptor-aided backpropagation. In Inter-
national Conference on Learning Representations.
Hill, F.; Reichart, R.; and Korhonen, A. 2015. Simlex-999:
Evaluating semantic models with (genuine) similarity esti-
mation. Computational Linguistics 41(4):665–695.
Jaeger, H. 2014. Controlling recurrent neural networks by
conceptors. Technical report, Jacobs University Bremen.
Jaeger, H. 2017. Using conceptors to manage neural long-
term memories for temporal patterns. Journal of Machine
Learning Research 18(13):1–43.
Khodak, M.; Saunshi, N.; Liang, Y.; Ma, T.; Stewart, B.; and
Arora, S. 2018. A la carte embedding: Cheap but effective
induction of semantic feature vectors. In the Proceedings of
ACL.
Levy, O., and Goldberg, Y. 2014. Neural word embedding
as implicit matrix factorization. In Ghahramani, Z.; Welling,
M.; Cortes, C.; Lawrence, N. D.; and Weinberger, K. Q.,
eds., Advances in Neural Information Processing Systems
27. Curran Associates, Inc. 2177–2185.
Levy, O.; Goldberg, Y.; and Dagan, I. 2015. Improving dis-
tributional similarity with lessons learned from word embed-
dings. Transactions of the Association for Computational
Linguistics 3:211–225.
Luong, M.; Socher, R.; and Manning, C. D. 2013. Bet-
ter word representations with recursive neural networks for
morphology. In Proceedings of the CoNLL 2013.
Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. In-
troduction to Information Retrieval. Cambridge University
Press.
Marelli, M.; Menini, S.; Baroni, M.; Bentivogli, L.;
Bernardi, R.; and Zamparelli, R. 2014. A sick cure for the
evaluation of compositional distributional semantic models.
In Proceedings of the Ninth International Conference on
Language Resources and Evaluation. European Language
Resources Association (ELRA).
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Burges, C. J. C.;
Bottou, L.; Welling, M.; Ghahramani, Z.; and Weinberger,
K. Q., eds., Advances in Neural Information Processing Sys-
tems 26. Curran Associates, Inc. 3111–3119.
Miller, G. A. 1995. Wordnet: A lexical database for English.
Communications of the ACM 38(11):39–41.
Mrkšić, N., and Vulić, I. 2018. Fully statistical neural belief
tracking. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short
Papers), 108–113. Association for Computational Linguis-
tics.
Mrksic, N.; Séaghdha, D.; Thomson, B.; Gasic, M.; Rojas-
Barahona, L. M.; Su, P.; Vandyke, D.; Wen, T.; and Young,
S. J. 2016. Counter-fitting word vectors to linguistic con-
straints. In Proceedings of the NAACL HLT 2016, 142–148.
Mrksic, N.; Vulic, I.; Séaghdha, D. Ó.; Leviant, I.; Reichart,
R.; Gasic, M.; Korhonen, A.; and Young, S. J. 2017. Seman-
tic specialization of distributional word vector spaces using

monolingual and cross-lingual constraints. TACL 5:309–
324.
Mu, J., and Viswanath, P. 2018. All-but-the-top: Simple
and effective postprocessing for word representations. In
International Conference on Learning Representations.
Myers, J. L., and Well, A. D. 1995. Research Design &
Statistical Analysis. Routledge, 1 edition.
Pavlick, E.; Rastogi, P.; Ganitkevitch, J.; Durme, B. V.; and
Callison-Burch, C. 2015. PPDB 2.0: Better paraphrase rank-
ing, fine-grained entailment relations, word embeddings,
and style classification. In Proceedings of the ACL 2015
(Volume 2: Short Papers), 425–430. Beijing, China: Associ-
ation for Computational Linguistics.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings of
EMNLP, 1532–1543.
Poesio, M., and Almuhareb, A. 2005. Identifying con-
cept attributes using a classifier. In Proceedings of the
ACL-SIGLEX Workshop on Deep Lexical Acquisition, 18–
27. Stroudsburg, PA, USA: Association for Computational
Linguistics.
Radinsky, K.; Agichtein, E.; Gabrilovich, E.; and
Markovitch, S. 2011. A word at a time: Computing
word relatedness using temporal semantic analysis. In
Proceedings of the 20th International World Wide Web
Conference, 337–346.
Rubenstein, H., and Goodenough, J. B. 1965. Contex-
tual correlates of synonymy. Communications of the ACM
8(10):627–633.
Schnabel, T.; Labutov, I.; Mimno, D. M.; and Joachims, T.
2015. Evaluation methods for unsupervised word embed-
dings. In Proceedings of EMNLP 2015, 298–307.
Turney, P. D. 2012. Domain and function: A dual-space
model of semantic relations and compositions. Journal of
Artificial Intelligence Research 44(1):533–585.
Wen, T.; Vandyke, D.; Mrkšić, N.; Milica, M.; Rojas-
Barahona, L. M.; Su, P.; Ultes, S.; and Young, S. 2017. A
network-based end-to-end trainable task-oriented dialogue
system. In EACL, 438–449. Valencia, Spain: Association
for Computational Linguistics.
Wieting, J.; Bansal, M.; Gimpel, K.; and Livescu, K. 2016.
Towards universal paraphrastic sentence embeddings. In In-
ternational Conference on Learning Representations.

6785

