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Abstract

Distinguishing between arguments and adjuncts of a verb
is a longstanding, nontrivial problem. In natural language
processing, argumenthood information is important in tasks
such as semantic role labeling (SRL) and prepositional phrase
(PP) attachment disambiguation. In theoretical linguistics,
many diagnostic tests for argumenthood exist but they of-
ten yield conflicting and potentially gradient results. This
is especially the case for syntactically oblique items such
as PPs. We propose two PP argumenthood prediction tasks
branching from these two motivations: (1) binary argument-
adjunct classification of PPs in VerbNet, and (2) gradient ar-
gumenthood prediction using human judgments as gold stan-
dard, and report results from prediction models that use pre-
trained word embeddings and other linguistically informed
features. Our best results on each task are (1) acc. = 0.955,
F1 = 0.954 (ELMo+BiLSTM) and (2) Pearson’s r = 0.624
(word2vec+MLP). Furthermore, we demonstrate the utility of
argumenthood prediction in improving sentence representa-
tions via performance gains on SRL when a sentence encoder
is pretrained with our tasks.

1 Introduction
In theoretical linguistics, a formal distinction is made be-
tween arguments and adjuncts of a verb. For example, in the
following example, the window is an argument of the verb
open, whereas this morning and with Mary are adjuncts.

John opened [the window] [this morning] [with Mary].

What distinguishes arguments (or complements) from ad-
juncts (or modifiers)1, and why is this distinction impor-
tant? Theoretically, the distinct representations given to ar-
guments and adjuncts manifest in different formal behav-
iors (Chomsky 1993; Steedman 2000). There is also a range
of psycholinguistic evidence which supports the psycholog-
ical reality of the distinction (Tutunjian and Boland 2008).
In natural language processing (NLP), argumenthood infor-
mation is useful in various applied tasks such as automatic
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1Various combinations of the terminology are found in the liter-
ature, with subtle domain-specific preferences. We use arguments
and adjuncts, with a rough definition of arguments as elements
specifically selected or subcategorized by the verb. We use the um-
brella term (verbal) dependents to refer to both.

parsing (Carroll, Minnen, and Briscoe 1998) and PP attach-
ment disambiguation (Merlo and Ferrer 2006). In particular,
automatic distinction of argumenthood could prove useful
in improving structure-aware semantic role labeling, which
has been shown to outperform structure-agnostic models
in recent works (Marcheggiani and Titov 2017). However,
argument-adjunct distinction is one of the most difficult lin-
guistic properties to annotate, and has remained unmarked
in popular resources including the Penn TreeBank. Prop-
Bank (Palmer, Gildea, and Kingsbury 2005) addresses this
issue to an extent by providing ARG-N labels, but does not
provide full coverage (Hockenmaier and Steedman 2002).
Thus, there are theoretical and practical motivations to a sys-
tematic approach for predicting argumenthood.

We focus on PPs in this paper, which are known to be one
of the most challenging verbal dependents to classify cor-
rectly (Abend and Rappoport 2010). The paper is structured
as follows. First, we discuss the theoretical and practical mo-
tivations for PP argumenthood prediction in more detail and
review related works. Second, we formulate two different ar-
gumenthood tasks—binary and gradient—and describe how
each dataset is constructed. Results for each task using var-
ious word embeddings and linguistic features as predictors
are reported. Finally, we investigate whether better PP ar-
gumenthood prediction is indeed useful for NLP. Through
a controlled evaluation setup, we demonstrate that pretrain-
ing sentence encoders on our proposed tasks improves the
quality of learned representations.

2 Argumenthood Prediction
Theoretical Motivation Although arguments and ad-
juncts are theoretically and practically important concepts,
distinguishing arguments from adjuncts in practice is not a
trivial problem even for linguists (Schütze 1995). Numerous
diagnostic tests have been proposed in the literature; for in-
stance, omissibility and iterability tests are commonly used
(Pollard and Sag 1987). However, none of the existing diag-
nostic tests (or a set of tests) provide necessary or sufficient
criteria to determine the status of a verbal dependent. More-
over, it has long been noted that argumenthood is a gradient
phenomenon rather than a strict dichotomy (e.g., some ar-
guments are less argument-like than others, resulting in dif-
ferent syntactic and semantic behaviors (Rissman, Rawlins,
and Landau 2015)). This raises many interesting theoretical
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questions such as what kinds of lexical and contextual infor-
mation affect these judgments, and whether the judgments
would be predictable in a principled way given that informa-
tion. By building prediction models for gradient judgments
using lexical features, we hope to gain insights about what
factors explain gradience and to what degree they do so.

Utility in NLP Automatic parsing will likely benefit from
argumenthood information. For instance, the issue of PP
attachment negatively affects the accuracy of a competi-
tive dependency parser (Dasigi et al. 2017). It has been
shown that reducing PP attachment errors leads to higher
parsing accuracy (Agirre, Baldwin, and Martinez 2008;
Belinkov et al. 2014), and also that argument-adjunct dis-
tinction is useful for PP attachment disambiguation (Merlo
and Ferrer 2006).

Argument-adjunct distinction is also closely connected to
Semantic Role Labeling (SRL). He et al. (2017) report that
even state-of-the-art deep models for SRL still suffer from
argument-adjunct distinction errors as well as PP attachment
errors. They also observe that errors in widely-used auto-
matic parsers pose challenges to improving performance in
syntax-aware neural models (Marcheggiani and Titov 2017).
This suggests that improving parsers with better argument-
hood distinction would lead to better SRL performance.

Przepiórkowski and Patejuk (2018) discuss the issue of
core-noncore distinction being confounded with argument-
adjunct distinction in the annotation protocol of Universal
Dependencies (UD), which leads to internal inconsistencies.
They point out the flaws of the argument-adjunct distinction
and suggest a solution that disentangles it better from the
core-noncore distinction that UD advocates. This does im-
prove within-UD consistency, but argument-adjunct status is
still explicitly encoded in many formal grammars including
Combinatory Categorial Grammar (CCG) (Steedman 2000).
Thus, being able to predict argumenthood would still be im-
portant in improving the quality of resources being ported
between different grammars, such as CCGBank.

Related Work Our tasks share a similar objective with
Villavicencio (2002), which is to distinguish PP arguments
from adjuncts by an informed selection of linguistic features.
However, we do not use logical forms or explicit formal
grammar in our models, although the use of distributional
word representations may capture some syntactic informa-
tion. The scale and data collection procedure of our binary
classification task (Experiment 1) are more comparable to
those of Merlo and Ferrer (2006) or Belinkov et al. (2014),
where the authors construct a PP attachment database from
Penn TreeBank data. Our binary classfication dataset is sim-
ilar in scale, but is based on VerbNet (Kipper-Schuler 2005)
frames. Experiment 2, which is a smaller-scale experiment
on predicting gradient argumenthood judgment data from
humans, is a novel task to the extent of our knowledge. The
crowdsourcing protocol for collecting human judgments is
inspired by Rissman, Rawlins, and Landau (2015).

Our evaluation setup to measure downstream task perfor-
mance gains from PP argumenthood information (Section 5)

is inspired by a recent line of efforts on probing for evalu-
ating linguistic representations encoded by neural networks
(Gulordava et al. 2018; Ettinger et al. 2018). In order to
investigate whether PP argument-adjunct distinction tasks
have a practical application, we attempt to improve perfor-
mances on existing tasks such as SRL with an ultimate goal
of making sentence representations better and more gener-
alizable (as opposed to representations optimized for one
specific task). We use the setup of pretraining a sentence
encoder with a linguistic task of interest, fixing the encoder
weights and then training a classifier for tasks other than the
pretraining task, using the representations from the frozen
encoder (Bowman et al. 2018). This enables us to compare
the utility of information from different pretraining tasks
(e.g., PP argument-adjunct distinction) on another task (e.g.,
SRL) or even multiple external tasks.

3 Exp. 1: Binary Classification
3.1 Task Formulation
Class Labels We use VerbNet subcategorization frames to
define the argument-adjunct status of a verb-PP combina-
tion. This means if a certain PP is listed as a subcategoriza-
tion frame under a certain verb entry, the PP is considered
to be an argument of the verb. If it is not listed as a sub-
categorization frame, it is considered an adjunct of the verb.
This way of defining argumenthood has been proposed and
studied by McConville and Dzikovska (2008). Their evalu-
ation suggests that even though VerbNet is not an exhaus-
tive list of subcategorization frames and not all frames listed
are strictly arguments, VerbNet membership is a reasonable
proxy of PP argumenthood. We chose VerbNet over Prop-
Bank ARG-N and AM labels, which are also a viable proxy
for argumenthood (Abend and Rappoport 2010), since Verb-
Net’s design goal of exhaustively listing frames for each
verb better matches our task that requires broad type-level
coverage of V-PP constructions.

Figure 1: Examples of PP.X frames in VerbNet.

Verbs and Prepositions 2714 unique verbs (V) and 60
unique prepositions (P) are used to generate all possible
combinations of {V, P}. These are all unique verb entries
that pertain to a single set of VerbNet class and all prepo-
sitions that appear in VerbNet PP frames excluding multi-
word prepositions (e.g., all over, on top of ). Some frames are
only defined by features such as {+SPATIAL}, without spec-
ifying which specific prepositions these features correspond
to (see Figure 1). For such featurally-marked frames, a man-
ual mapping was made to preposition sets constructed ap-
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w2v Glove fastText ELMo

Classification model Acc. F1 Acc. F1 Acc. F1 Acc. F1

BiLSTM + MLP 94.0 94.0 94.5 94.4 94.6 94.6 95.5 95.4
Concatenation + MLP 92.4 92.5 93.3 93.3 93.6 93.5 94.4 94.4
BoW + MLP 91.9 91.9 92.4 92.4 92.7 92.5 93.7 93.7
Majority class (== chance) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Table 1: Test set performance on the binary classification task (n = 4064).

proximately based on PrepWiki sense annotations (Schnei-
der et al. 2015). As a result, we have 2714 ∗ 60 = 162, 480
different {V, P} tuples that either correspond to (7→ARG) or
do not correspond to (7→ADJ) a subcategorization frame.

Dataset and Task Objective Since each verb subcatego-
rizes only a handful of prepositions out of the possible 60,
the distribution of labels ARG and ADJ is heavily skewed to-
wards ADJ. The ratio of ARG:ADJ labels in the whole dataset
is approximately 1:10. For this reason, we use randomized
subsampling of the negative cases to construct a balanced
dataset. Since there were 13, 544 datapoints with label 1 in
the whole set, the same number of label 0 datapoints were
randomly subsampled. This balanced dataset (n = 27, 088)
is randomly split into 70:15:15 train:dev:test sets.

The task is to predict whether a given {V, P} pair is an ar-
gument or an adjunct construction (i.e., whether it is an ex-
isting VerbNet subcategorization frame or not). Performance
is measured by classification accuracy and F1 on the test set.

Full-sentence Tasks The meaning of the complement
noun phrase (NP) of the preposition can also be a clue to de-
termining argumenthood. We did not include the NP as a part
of the input in our main task dataset because the argument-
hood labels we are using are type-level and not labels for in-
dividual instantiation of the types (token-level). However,the
NP meanings, especially thematic roles, do play crucial roles
in argumenthood. To address this concern, we propose vari-
ants of the main task that give prediction models access to
information from the NP by providing full sentence inputs.
We report additional results on one of the full-sentence vari-
ants (ternary classification) using two of the best-performing
model setups for the main task (Table 2).

The full-sentence variants of the main task dataset are
constructed by performing a heuristic search through the
Stanford Natural Language Inference (SNLI; (Bowman et al.
2015)) and Multi-genre Natural Language Inference (MNLI;
(Williams, Nangia, and Bowman 2018)) datasets using the
syntactic parse trees provided, to find sentences that contain
a particular {V, P} construction. Note that the full sentence
data is noisier compared to the main dataset (1) because
the trees are parser outputs and (2) the original type-level
gold labels given to the {V, P} were unchanged regardless
of what the NP may be. Duplicate entries for the same {V,
P} were permitted as long as the sentences themselves were
different. In the first task variant, for case where no exam-
ples of the input pair is found in the dataset, we retained the

original label. In the second variant, we assign a new UNOB-
SERVED label to such cases. This helps filter out overgen-
erated adjunct labels in the original dataset, where the {V,
P} is not listed as a frame because it is an impossible or an
infelicitous construction. It also eliminates the need for sub-
sampling, since the three labels were reasonably balanced.

We chose NLI datasets as the source of full sentence in-
puts over other parsed corpora such as the Penn TreeBank
for the following two reasons. First, we wanted to avoid us-
ing the the same source text as several downstream tasks
we test in Section 5 (e.g., CoNLL-2005 SRL (Carreras and
Màrquez 2005) uses sections of the Penn TreeBank), in or-
der to separate out the benefits of seeing the source text at
train time from the benefits of structural knowledge gained
from learning to distinguish PP arguments and adjuncts.
Second, we wanted both simple, short sentences (SNLI)
and complex, naturally-occuring sentences (MNLI) from
datasets of a consistent structure.

3.2 Model
Input Representation We report results using 4 different
types of word embeddings (word2vec (Mikolov et al. 2013),
GloVe (Pennington, Socher, and Manning 2014), fastText
(Bojanowski et al. 2016), ELMo (Peters et al. 2018)) to rep-
resent the input tuples. Publicly available pretrained embed-
dings provided by the respective authors2 are used.

Classifiers Our current best model uses a combination of
bidirectional LSTM (BiLSTM) and multi-layer perceptron
(MLP) for the binary classification task. We first obtain a
representation of the given {V, P} sequence using an en-
coder and then train an MLP classifier (Eq. 1) on top to per-
form the actual classification. The BiLSTM encoder is im-
plemented using the AllenNLP toolkit (Gardner et al. 2018),
and the MLP classifier is a simple feedforward neural net-
work with a single hidden layer that consists of 512 units
(Eq. 1). We also test models that use the same MLP classi-
fier with concatenated input vectors (Concatenation + MLP)
or bag-of-words encodings of the input (BoW + MLP).

l = argmax(σ(Wo[tanh(Wh[Vvp] + bh)] + bo)) (1)

Vvp is a linear projection (d = 512) of the output of an en-
coder (encoder states followed by max-pooling or a concate-

2code.google.com/archive/p/word2vec/
nlp.stanford.edu/projects/glove/
github.com/facebookresearch/fastText
github.com/allenai/allennlp
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w2v Glove fastText ELMo

Classification model Acc. F1 Acc. F1 Acc. F1 Acc. F1

BiLSTM + MLP 95.6 94.3 97.0 96.1 96.9 96.0 97.4 96.6
BoW + MLP 93.8 92.0 93.7 91.8 94.2 92.5 95.9 94.7
Majority class 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8
Chance 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3

Table 2: Model performances on full-sentence, unobserved label included variant of the original classification task (now
ternary classification) on the test set (n = 18, 764).

nated word vector), and σ is the softmax activation function.
The output of Eq. 1 is the label (1 or 0) that is more likely
given Vvp. The models are trained using Adadelta (Zeiler
2012) with cross-entropy loss and batch size = 32. Sev-
eral other off-the-shelf implementations from the Python li-
brary scikit-learn were also tested in place of MLP, but since
MLP consistently outperformed other classifiers, we only
list models that use MLP classifiers out of the models we
tested (Table 1).

3.3 Results
Table 1 compares the performance of the tested models. The
most trivial baseline is chance-level classification, which
would yield 50% accuracy and F1. Since the labels in the
dataset are perfectly balanced by randomized subsampling,
majority class classification is equivalent to chance-level
classification. All nontrivial models outperform chance, and
out of all models tested ELMo yielded the best performance.
Using concatenated inputs that preserve the linear order of
the inputs increases both accuracy and F1 by around 1.5%p
over bag-of-words, and using a BiLSTM to encode the V+P
representation adds 1.5%p improvement across the board.

We additionally report results on the full-sentence,
ternary-classification variant of the task (description in Sec-
tion 3.1) from the best model on the main task. The results
are given in Table 2. We did not test the concatenation model
since the dimensionality of the vectors would be too large
with full sentence inputs. All tested models perform over
chance, with ELMo achieving the best performance once
again. We observe a similar gain of around 3%p by replacing
BoW with BiLSTM as in the main task.

4 Exp. 2: Gradient Argumenthood
Prediction

As discussed in Section 2, there is much work in theoreti-
cal linguistics literature that suggests argument-adjuncthood
is a continuum rather than a dichotomy. We propose a gradi-
ent argumenthood prediction task and test regression models
that use a combination of embeddings and lexical features.
Since there is no publicly available gradient argumenthood
data, we collected our own dataset via crowdsourcing3. Due

3See Supplemental Material for examples of questions given to
participants. Detailed protocol and theoretical analysis of the data
are omitted; it will be discussed in a separate theoretically-oriented
paper in preparation.

to the resource-consuming nature of human judgment col-
lection, the size of the dataset is limited (n = 305, 25-
way redundant). This task serves as a small-scale, proof-of-
concept test for whether a reasonable prediction of gradient
argumenthood judgments is possible with informed selec-
tion of lexical features (and if so, how well different models
perform and what features are informative).

Figure 2: Distribution of argumenthood scores in our gradi-
ent argumenthood dataset.

4.1 Data
The gradient argumenthood judgment dataset consists of
305 sentences that contain a single main verb and a PP
dependent of that verb. All sentences are adaptations from
example sentences in VerbNet PP subcategorization frames
or sentences containing ARG-N PPs in PropBank. To cap-
ture a full range of the argumenthood spectrum from fully
argument-like to fully adjunct-like, we manually augmented
the dataset by adding more strongly adjunct-like examples.
These examples are generated by substituting the PP of the
original sentence with a felicitous adjunct. This step is nec-
essary since PPs listed as a subcategorization frame or ARG-
N are more argument-like, as discussed in Section 3.1.

25 participants were recruited to produce argumenthood
judgments about these sentences on a 7-point Likert scale,
using protocols adapted from a prior work for collecting
similar judgments (Rissman, Rawlins, and Landau 2015).
Larger numbers are given an interpretation of being more
argument-like and smaller numbers, more adjunct-like. The

4github.com/idio/wiki2vec
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all d = 300 w2v-googlenews GloVe fastText

Model Pearson’s r R2 R2
adj Pearson’s r R2 R2

adj Pearson’s r R2 R2
adj

Simple MLP 0.554 0.255 0.231 0.568 0.268 0.245 0.582 0.281 0.257
Linear 0.579 0.280 0.257 0.560 0.243 0.219 0.591 0.291 0.268
SVM 0.561 0.243 0.218 0.463 0.110 0.082 0.580 0.267 0.243

d ≥ 1000 w2v-wiki4 (d = 1000) ELMo (d = 1024)

Model Pearson’s r R2 R2
adj Pearson’s r R2 R2

adj

Simple MLP 0.624 0.330 0.309 0.609 0.304 0.281
Linear 0.609 0.311 0.289 0.586 0.293 0.270
SVM 0.549 0.237 0.213 0.337 0.052 0.022

Table 3: 10-fold cross-validation results on the gradient argumenthood prediction task.

results were z-normalized within-subject to adjust for in-
dividual differences in the use of the scale, and then the
final argumenthood scores were computed by averaging
the normalized scores across all participants. The result is
a set of values on a continuum, each value representing
each sentence in the dataset. The actual numbers range be-
tween [−1.435, 1.172], roughly centered around zero (µ =
1.967e-11, σ = 0.526). The distribution is slightly left-
skewed (right-leaning), with more positive values than neg-
ative values (z = 2.877, p < .01; see Figure 2). Here are
some examples with varying degrees of argumenthood, in-
dicated by the numbers:

I whipped the sugar [with cream]. (0.35)
The witch turned him [into a frog]. (0.57)
The children hid [in a hurry]. (−0.41)
It clamped [on his ankle]. (0.66)
Amanda shuttled the children [from home]. (−0.1)

We refrain from assigning definitive interpretations to the
absolute values of the scores, but how the scores compare
to each other gives us insight into the relative difference
in argumenthood. For instance, shuttled from home with a
score of −0.1 is more adjunct-like than a higher-scoring
construction such as clamped on his ankle (0.66), but more
argument-like compared to hid in a hurry with a score of
−0.41. This matches the intuition that a locative PP from
home would be more argument-like to a change-of-location
predicate shuttle, compared to a manner PP like in a hurry.
However, it is still less argument-like than a more clearly
argument-like PP on his ankle that is selected by clamp.

4.2 Model
Features We use the same sets of word embeddings we
used in Experiment 1 as base features, but we reduced their
dimensionality to 5 via Principal Component Analysis. This
reduction step is necessary due to the large dimensionality
(d ≥ 300) of the word vectors compared to the small size
of our dataset (n = 305). Various features in addition to
the embeddings of verbs and prepositions were also tested.
The features we experimented with include semantic proto-
role property scores (Reisinger et al. 2015) of the target PP
(normalized mean across 5 annotators), mutual information

(MI) (Aldezabal et al. 2002), word embeddings of the nomi-
nal head token of the NP under the PP in question, existence
of a direct object, and various interaction terms between the
features (e.g., additive, subtractive, inner/outer products).
The following lexical features were selected for the final
models based on dev set performance: embeddings of the
verb, preposition, nominal head, mutual information and ex-
istence of a direct object (D.O.). The intuition behind includ-
ing D.O. is that if there exists a direct object in the given sen-
tence, the syntactically oblique PP dependent would seem
comparatively less argument-like compared to the direct ob-
ject. This feature is expected to reduce the noise introduced
by different argument structures of the main verbs.

We also include a diagnostics feature which is a weighted
combination of two different traditional diagnostic test re-
sults (omissibility and pseudo-cleftability) produced by a
linguist with expertise in theoretical syntax. Unlike all other
features in our feature set, this diagnostics feature is not
straightforwardly computable from corpus data. We add this
feature in order to examine how powerful traditional linguis-
tic diagnostics are in capturing gradient argumenthood.

Regression Model The selected features are given as in-
puts to an MLP which is equivalent to Eq. 1 in Experiment
1 except that it outputs a continuous value. This regressor
consists of an input layer with n units (corresponding to n
features), m hidden units and a single output unit. Smooth L1
loss is used in order to reduce sensitivity to outliers, and m,
the activation function (ReLU, Tanh or Sigmoid), optimizers
and learning rates are all tuned using the development set for
each individual model. We limit ourselves to a simpler MLP-
only model for this experiment; the BiLSTM encoder model
suffered from overfitting.

Evaluation Metrics We use 15% of the dataset as devel-
opment set, and train/test using 10-fold cross-validation on
the remaining 85% rather than reporting performance on a
fixed test split. This is because the credibility of performance
on one test split may be questioned due to the small sample
size. Pearson’s r averaged over the 10 folds using Fisher z-
transformation is the main metric. Mean R2 and Adjusted
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w2v-wiki ELMo No embeddings

Model Pearson’s r R2 R2
adj Pearson’s r R2 R2

adj Pearson’s r R2 R2
adj

Embeddings 0.430 0.064 0.046 0.404 0.063 0.044 - - -
+MI 0.464 0.158 0.138 0.458 0.153 0.133 0.376 0.083 0.079
+D.O. 0.575 0.245 0.227 0.530 0.202 0.183 0.301 0.029 0.025
+diag. 0.449 0.125 0.104 0.440 0.138 0.117 0.268 0.027 0.023
+MI. +D.O. 0.586 0.278 0.258 0.607 0.297 0.277 0.466 0.165 0.158
+MI. +diag. 0.515 0.205 0.182 0.512 0.193 0.170 0.436 0.141 0.134
+diag. +D.O. 0.572 0.265 0.245 0.535 0.224 0.203 0.392 0.114 0.107
+all 0.624 0.330 0.309 0.609 0.304 0.281 0.516 0.215 0.206

Table 4: Ablation results from the two best models and a non-embedding features only-model (10-fold cross validation).

R2 (R2
adj) are also reported to account for the potentially

differing number of predictors in the ablation experiment.

4.3 Results and Discussion

Table 3 reports performances on the regression task. Results
from several off-the-shelf regressors are reported for com-
parison. ELMo embeddings again produced the best results
among the embeddings used in Experiment 1 (although our
ablation study reveals that using only word embeddings as
predictors is not sufficient to obtain satisfactory results). We
further speculated that the dimensionality of the embeddings
may have impacted the results, and ran additional experi-
ments using higher-dimensional embeddings that were pub-
licly available. Higher-dimensional embeddings did indeed
lead to performance improvements, even though the actual
inputs given to the models were all PCA-reduced to d = 5.
From this observation, we could further improve upon the
inital ELMo results. Results from the best model (w2v-wiki)
are given in addition to the set of results using the same em-
beddings as the models in Experiment 1. This model uses
1000-d word2vec features with additional interaction fea-
tures (multiplicative, subtractive) that improved dev set per-
formance.

Ablation We conducted ablation experiments with the two
best-performing models to examine the contribution of non-
embedding features discussed in Section 4.2. Table 4 in-
dicates that any linguistic feature contributes positively to-
wards performance, with the direct object feature helping
both word2vec and ELMo models the most. This supports
our initial hypothesis that adding the direct object feature
would help reduce noise in the data. When only the linguis-
tic features are used without embeddings as base features,
mutual information is the most informative. This suggests
that there is some (but not complete) redundancy in informa-
tion captured by word embeddings and mutual information.
The diagnostics feature is informative but is a comparatively
weak predictor, which aligns with the current state of di-
agnostic acceptability tests—they are sometimes useful but
not always, especially with respect to syntactically oblique
items such as PPs. This behavior of the diagnostics predictor
adds credibility to our data collection protocol.

5 Why Is This a Useful Standalone Task?
In motivating our tasks, we suggested that PP argumenthood
information could improve existing NLP task performance
such as SRL and parsing. We investigate whether this is
a grounded claim by testing two separate hypotheses: (1)
whether the task is indeed useful, and if so, (2) whether it is
useful as a standalone task. We leave the issue of gradient
argumenthood to future work for now, since the dataset is
currently small and the notion of gradient argumenthood is
not yet compatible with formulations of many NLP tasks.

5.1 Improving Representations with Pretraining
We first test the utility of the binary argumenthood task in
improving performances on existing NLP tasks. We selected
three tasks that may benefit from PP argumenthood informa-
tion: SRL on Wall Street Journal (WSJ) data (CoNLL 2005;
Carreras and Màrquez 2005), SRL on OntoNotes Corpus
(CoNLL 2012 data; Pradhan et al. 2012)5, and PP attach-
ment disambiguation on WSJ (Belinkov et al. 2014).

We follow Bowman et al. (2018)’s setup to pretrain and
evaluate sentence encoders6. If learning to make correct PP
argumenthood distinction teaches models knowledge that is
generalizable to the new tasks, the classifier trained on top
of the fixed-weights encoder will perform better on those
tasks compared to a classifier trained on top of an encoder
with randomly initialized weights. Improvements over the
randomly initialized setup from pretraining on our main PP
argumenthood task (Arg) and its full-sentence variants (Arg
fullsent and Arg fullsent 3-way; see Section 3.1 for details)
are shown in Table 5. Only statistically significant (p < .05)
improvements over the random encoder model are bolded,
with significance levels calculated via Approximate Ran-
domization (Yeh 2000) (R = 1000). The models trained on
PP argumenthood tasks perform significantly better than the
random initalization model in both SRL tasks, which sup-
ports our initial claim that argumenthood tasks can be useful
for SRL. Although not all errors made by the models were
interpretable, we found interesting improvements such as the
model trained on the PP argumenthood task being slightly
more accurate than the random initialization model on AM-
DIR, AM-LOC, and AM-MNR labels.

5Tasks are labeling only, as described in Tenney et al. (2019).
6github.com/jsalt18-sentence-repl/jiant

6583



Sentence encoder pretraining tasks
Test tasks metric Random Arg Arg fullsent Arg fullsent 3-way

SRL-CoNLL2005 (WSJ) F1 81.7 83.9∗∗∗ 84.7∗∗∗ 84.5∗∗∗
SRL-CoNLL2012 (OntoNotes) F1 77.3 80.2∗∗∗ 80.4∗∗∗ 80.7∗∗∗
PP attachment (Belinkov et al. 2014) acc. 87.5 87.6 88.2 87.0

Table 5: Gains over random initialization from pretraining sentence encoders on PP argumenthood tasks. (∗∗∗ : p < .001)

However, we did not observe significant improvements
for the PP attachment disambiguation task. We speculate
that since the task as formulated in Belinkov et al. (2014)
requires the model to understand PP dependents of NPs as
well as VPs, our tasks that focus on verbal dependents may
not provide the full set of linguistic knowledge necessary
to solve this task. Nevertheless, our models are not signifi-
cantly worse than the baseline, and the accuracy of the Arg
fullsent model (88.2%) was comparable to a model that uses
an encoder directly trained on PP attachment (88.7%).

Secondly, we discuss whether it is indeed useful to for-
mulate PP argumenthood prediction as a separate task. The
questions that need to be answered are (1) whether it would
be the same or better to use a different pretraining task that
would provide similar information (e.g., PP attachment dis-
ambiguation), and (2) whether the performance gain can be
attributed to simply seeing more datapoints at train time
rather than to the regularities we hope the models would
learn through our task. Table 6 addresses both questions;
we compare models pretrained on argumenthood tasks to a
model pretrained directly on the PP attachment task listed in
Table 5. All models trained on PP argumenthood prediction
outperform the model trained on PP attachment, despite the
fact that the latter has advantage for SRL2005 since the tasks
share the same source text (WSJ). Furthermore, the variance
in the sizes of the datasets indicates that the reported perfor-
mance gains cannot solely be due to the increased number
of datapoints seen during training.

PP att. Arg Arg full Arg full 3-way

Size 32k 19k 58k 87k

SRL2005 80.2 83.9∗∗∗ 84.7∗∗∗ 84.5∗∗∗
SRL2012 79.8 80.2∗∗∗ 80.3∗∗∗ 80.7∗∗∗

Table 6: Comparison against using PP attachment directly as
a pretraining task (∗∗∗ : p < .001).

6 Conclusion
We have proposed two different tasks—binary and
gradient—for predicting PP argumenthood, and reported re-
sults on each using four different types of word embeddings
as base predictors. We obtain 95.5 accuracy and 95.4 F1 in
the binary classification task with BiLSTM and ELMo, and
r = 0.624 for the gradient human judgment prediction task.
Our overall contribution is threefold: first, we have demon-
strated that a principled prediction of both binary and gradi-
ent argumenthood judgments is possible with informed se-

lection of lexical features; second, we justified the utility of
our binary PP argumenthood classification as a standalone
task by reporting performance gains on multiple end-tasks
through encoder pretraining. Finally, we have conducted a
proof-of-concept study with a novel gradient argumenthood
prediction task, paired with a new public dataset7.

6.1 Future Work
The pretraining approach holds promise in understanding
and improving neural network models of language. Espe-
cially for end-to-end models, this method has an advantage
over architecture engineering or hyperparameter tuning in
terms of interpretability. That is, we can attribute the source
of the performance gain on end tasks to the knowledge nec-
essary to do well on the pretraining task. For instance, in
Section 5 we can infer that that knowing how to make cor-
rect PP argumenthood distinction helps models encode rep-
resentations that are more useful for SRL. Furthermore, we
believe it is important to contribute to the recent efforts for
designing better probing tasks to understand what machines
really know about natural language (as opposed to directly
taking downstream performances as metrics of better mod-
els). We hope to scale up our preliminary experiments and
will continue to work on developing a set of linguistically
informed probing and pretraining tasks for higher-quality,
better-generalizable sentence representations.
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