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Abstract

Video super-resolution is a challenging task, which has at-
tracted great attention in research and industry communi-
ties. In this paper, we propose a novel end-to-end archi-
tecture, called Residual Invertible Spatio-Temporal Network
(RISTN) for video super-resolution. The RISTN can suffi-
ciently exploit the spatial information from low-resolution
to high-resolution, and effectively models the temporal con-
sistency from consecutive video frames. Compared with ex-
isting recurrent convolutional network based approaches,
RISTN is much deeper but more efficient. It consists of three
major components: In the spatial component, a lightweight
residual invertible block is designed to reduce information
loss during feature transformation and provide robust feature
representations. In the temporal component, a novel recurrent
convolutional model with residual dense connections is pro-
posed to construct deeper network and avoid feature degrada-
tion. In the reconstruction component, a new fusion method
based on the sparse strategy is proposed to integrate the spa-
tial and temporal features. Experiments on public benchmark
datasets demonstrate that RISTN outperforms the state-of-
the-art methods.

Introduction
Video super-resolution (VSR) aims to generate high-
resolution (HR) video frames from its low-resolution (LR)
version, as shown in Figure 1. It can be widely applied
to various intelligent image processing tasks, e.g., satellite
videos (Demirel and Anbarjafari 2011), the surveillance and
4K televisions recovery (Zhang et al. 2010), and so on. VSR
is a long-standing challenging task, mainly due to the fol-
lowing two reasons: Firstly, super-resolution is an inherently
ill-posed problem for its one-to-many mapping nature, i.e.,
one LR frame can map to various HR frames. Secondly,
there is no a satisfying architecture designed to integrate spa-
tial and temporal information in a joint framework by far.

Along with flourishing of Convolutional Neural Net-
works (CNNs), a series of single image super-resolution
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Figure 1: Side-by-side comparisons of bicubic interpola-
tion, our result, and HR ground truth for 4× upsampling.

approaches emerged and achieved promising performances
(Dong et al. 2016; Tong et al. 2017; Zhang et al. 2018). How-
ever, the single-image methods completely ignore the intrin-
sic temporal information and motion nature, therefore can
not well adapted to the VSR task. Some deep architectures
were proposed to capture temporal consistency of consec-
utive frames, which can be mainly divided into two cate-
gories: motion compensation based approaches (Kappeler et
al. 2016; Caballero et al. 2017; Tao et al. 2017), and Re-
current Convolutional Networks (RCNs) based approaches
(Guo and Chao 2017; Huang, Wang, and Wang 2018;
Yang et al. 2018; Liu et al. 2018). The motion compensation
based approaches tried to extract explicit motion informa-
tion, e.g., optical flow, to model the temporal dependency
for highlighting visual continuity. However, the high com-
putational cost of these type of approaches is terrifying. Af-
terwards, the RCNs based approaches were proposed to ex-
tract the motion information of consecutive frames and en-
hance visual quality in an end-to-end manner. For instance,
in (Guo and Chao 2017), the stack of convolutional layers
was adopted to extract the spatial and content information of
a input single frame, and the recurrent convolutional layers
is adopted to capture the temporal information of consecu-
tive frames.

The aforementioned RCNs based approaches can adap-
tively deal with complicated and large motions with rela-
tively low computational cost. However, the performances
are always not remarkable for the following reasons: 1) The
LR video frames must be interpolated in advance, which not
only consumes a large amount of additional memory space,
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but also hinders the construction of much deeper network.
2) The existing methods can not well keep spatial informa-
tion. The spatial information makes sure the input LR video
frames and the corresponding super-resolved frames should
have more structural similarity. 3) The majority of the ex-
isting recurrent architectures is not deep enough to effec-
tively cover the long-range motion and temporal consistency
in VSR. 4) Spatial features and temporal features are not in-
tegrated for boosting the performance.

In this paper, a novel efficient Residual Invertible Spatio-
Temporal Network (RISTN) is proposed to tackle the above-
mentioned problems, which mainly consists of three compo-
nents, namely the spatial component, the temporal compo-
nent and the reconstruction component. In the spatial com-
ponent, Residual Invertible Block (RIB) is designed to ex-
tract informative features with spatial information. In the
temporal component, a residual dense convolutional LSTM
(RDC-LSTM) is presented to learn sequential feature repre-
sentation. Finally, a reconstruction component is adopted to
integrate spatial features and temporal features into a joint
framework.

In summary, the main contributions of this paper can be
concluded as follows:

• We propose a novel Residual Invertible Spatio-Temporal
Network (RISTN) with much deeper structure compared
with existing recurrent convolutional networks based ap-
proaches, for achieving high model accuracy in an effi-
cient way.

• Inspired by the algorithm of Invertible Block (Jacobsen,
Smeulders, and Oyallon 2018), a lightweight Residual In-
vertible Block (RIB) is designed to better keep the spatial
information between the LR video frames and the corre-
sponding super-revolved frames. In RIB, the residual con-
nection is introduced to learn fine-grained feature repre-
sentation, meanwhile degrade the information loss.

• A novel residual dense convolutional LSTM (RDC-
LSTM) is presented. It can not only capture the temporal
information of consecutive video frames, but also effec-
tively transform spatial features from different hierarchi-
cal levels.

• We present a sparse features fusion strategy for combining
spatial and temporal features to reconstruct the final out-
put. The sparse features fusion can select informative fea-
tures and model the mapping across the low-quality and
high-quality video frames in an adaptive way.

• Extensive experiments conducted on benchmark datasets
demonstrate the effectiveness and efficiency of the pro-
posed RISTN compared with the state-of-the-arts.

Related Work
In this section, some related works are introduced from three
aspects: Firstly, we will introduce some single image super-
resolution works. Secondly, conventional technologies of
VSR are illuminated. Thirdly, two branches of deep learn-
ing methods will be comparatively illustrated.

Single image super-resolution aims to generate a HR im-
age from it’s corresponding low-resolution LR image. The

seminal CNNs based approach was proposed in (Dong et
al. 2016). Later, many works focused on the improvement
of CNNs architecture. On the one hand, some of approaches
proposed deeper architectures with shortcut connections and
achieved fruitful experimental results (Kim, Lee, and Lee
2016a; Tong et al. 2017; Zhang et al. 2018). On the other
hand, some of works aimed to design more simplified and
efficient model using recursive architectures (Kim, Lee, and
Lee 2016b; Tai, Yang, and Liu 2017; Han et al. 2018). All
those improvements tremendously promote the development
of super-resolution task.

VSR is an expand of single image super-resolution,
and mainly investigates two categories of traces: the intra-
frame spatial relationship and the inter-frame temporal re-
lationship. Conventional approaches extracted optical flow
for motion estimation to compensate temporal information
(Fransens, Strecha, and Gool 2004; Mitzel et al. 2009). In
(Liu and Sun 2011), a Bayesian framework was proposed
to estimate HR video sequences, in which they simultane-
ously computed the motion fields and blur kernels. Ma et
al. presented an algorithm that extended the same idea to
handle motion blur (Ma et al. 2015). However, these meth-
ods all suffered from the computation cost. Despite they
constructed complex motion compensation models, the con-
structed VSR models themselves was difficult to learn the
delicate compensated information.

Deep convolutional networks for VSR have achieved
promising results in recent works, which can be divided
into two categories: The one is motion compensation al-
gorithms based approaches, the other is recurrent convolu-
tional networks based approaches (RCNs). In motion com-
pensation algorithms based approaches, Kappeler et al. pro-
posed a general framework in which the motion compensa-
tion algorithm and the CNNs were combined (Kappeler et
al. 2016). In (Caballero et al. 2017), The 3D convolution
and sub-pixel convolution were adopted to improve the effi-
ciency of the learning process. In (Tao et al. 2017), a sub-
pixel motion compensation layer was proposed and com-
bined with a recurrent convolutional network. And Sajjadi et
al. proposed an end-to-end trainable frame-recurrent video
super-resolution framework that adopted the previously in-
ferred HR estimation to super-resolve the subsequent frame
in (Sajjadi, Vemulapalli, and Brown 2018). However, there
are still much time consumptions and computational loads
in the motion compensation process.

The RCNs based approaches directly build an end-to-
end network without explicit motion compensation and also
show the superiority in complex motions reconstruction. In
(Guo and Chao 2017), a spatio-temporal network for VSR
was proposed, who built a infrastructural architecture of
RCNs. In (Liu et al. 2018), Liu et al. effectively utilized tem-
poral information by a temporal adaptive neural network and
a spatial alignment network. And some works directly built
a light architecture to achieve high efficiency (Huang, Wang,
and Wang 2018; Yang et al. 2018). While they are difficult to
achieve satisfied quality for their shallow architectures and
incomplete feature representations. Our work aims to im-
prove the RCNs and enhance the transformation capabilities
on the basis of some the state-of-the-art network architec-
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Figure 2: The framework of the proposed residual invertible spatio-temporal network (RISTN).

tures (He et al. 2016; Huang et al. 2017; Gomez et al. 2017;
Jacobsen, Smeulders, and Oyallon 2018).

Our Method
Overview
The framework of the proposed RISTN is shown in Fig-
ure 2. In the spatial component, the sequential LR frames
are feed into a padding layer, which builds an initial feature
maps by zero padding on RGB channels. The two followed
parallel residual invertible blocks (RIBs) have different ar-
chitectures with different numbers of layers for exploiting
hierarchical features. The output feature maps of the former
RIB will be concatenated and then put into the next parallel
RIBs. Notably, the concat operations of concatenation can
effectively increase the diversities of feature maps. In the
temporal component, a residual dense convolutional Long
Short-Term Memory (RDC-LSTM) network is proposed to
handle features of continuous frames. In the reconstruction
component, a sparse feature fusion method is proposed to
integrate the spatial and temporal feature maps, the fused
feature maps upsampled to the target HR size. Finally, the
reconstruction layer is adopted to recover the RGB-channel
HR frames.

The ultimate goal of VSR is to train a generating function
F that estimates the HR frames while given the LR frames.
Given the current low-resolution LR frames ILR

T and cor-
responding ground-truth HR frames IHR, the VSR can be
formulated as:

IHR
T = F ({ILR

T , ILR
T+i}), i ∈ {±1, ...,±k}, (1)

where the | denotes the conditional probability, T represents
the current timestamp. i denotes the consecutive i-th times-
tamp. In our work F can be represented by the proposed
RISTN.

Residual invertible block
The super-resolved frames should have similar structures
with the input LR frames, and this important property is
called the spatial information. However, previous works
can not sufficiently fulfill the spatial information for the
lossy features they use (Huang, Wang, and Wang 2018;
Yang et al. 2018). In the algorithm of invertible block (Ja-
cobsen, Smeulders, and Oyallon 2018), it retains all infor-
mation about the input signals in any of their intermediate

representations. In other words, the spatial information can
be maintained for its lossless feature transformation process.
However the invertible nature of the invertible block (IB)
limits its ability to learn rich reconstruction features for the
ill-posed super-resolution task. Inspired by (He et al. 2016),
we propose a residual invertible block (RIB), in which the
residual connection is constructed and the parallel invertible
block is designed to learn the difference between LR and HR
frames.

Residual Connection
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Figure 3: The residual invertible block architecture, ⊕ de-
notes the element-wise addition.

As shown in Figure 3, given the input features XFea, it
is splited into two sublayers, the X(0)

0 and X
(0)
1 . We de-

fine Fi, i ∈ [1, 2, ..., n − 1] called convolutional bottleneck.
The convolutional bottleneck consists of convolutional lay-
ers, Batch Normalizations (BNs) and Rectified Linear Units
(ReLUs). The features X(1)

1 can be calculated as:

X
(1)
1 = X

(0)
1 + F1(X

(0)
0 ). (2)

On the contrary, X(0)
1 can be inversely represented by

X
(1)
1 − F1(X

(0)
0 ). Therefore, an inference can be reached:

Given features from the i-th layer (X(i)
0 , X

(i)
1 ), their previ-

ous feature representation X(i−1)
1 and X(i−1)

0 are:

X
(i−1)
1 = X

(i)
1 − Fi(X

(i−1)
0 ), (3)

X
(i−1)
0 = X

(i)
0 . (4)

According to above formulas, previous features can be se-
quentially represented from any X(i)

1 and X(i)
0 . Besides, the

output of a RIB can be written as:

Xout = [X
(n)
0 , X

(n)
1 ] +XFea, (5)
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XFea is the input of RIB. [, ] denotes the concatenation of
feature maps. It can be seen that RIB is a memory-efficient
structure, that only half feature maps are calculated after
each convolutional bottleneck (Gomez et al. 2017). Accord-
ing to Formula (5), it can be seen that the concatenated fea-
ture maps generated by IB try to approximate the difference
between the input XFea and the target output feature maps,
thus the IBs in the consecutive RIBs can learn the difference
between LR and HR frames.

Recurrent model with shortcut connections
In this component, the convolutional LSTM (C-LSTM)
is adopted to dig out informative features of consecu-
tive frames. Different from conventional one-dimensional
LSTM, C-LSTM captures 2D features from neighbour-
ing timestamps. For thoroughly exploiting temporal consis-
tency, the C-LSTM is constructed as a bidirectional architec-
ture. We build the bidirectional LSTM cell as (Graves, Jaitly,
and Mohamed 2013) that outputs of forward and backward
on timer shaft are concatenated as the output of one cell.
The schematic diagram of different C-LSTM architectures
are shown in Figure 4.

Cell CellCell Cell
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T

(a) C-LSTM

Cell CellCell CellCell CellCell Cell
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Cell Cell Cell Cell
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(c) DC-LSTM

Cell Cell Cell Cell

T+1

T-1

T

(d) RDC-LSTM

Figure 4: C-LSTM architectures, (a) is the original version,
(b), (c) and (d) are the proposed shortcut connected struc-
tures. ⊕ denotes element-wise addition.

There are still some shortcomings for the original C-
LSTM. With the increase of the network depth, the per-
formance of the original C-LSTM can not be accordingly
promoted. Furthermore, the vanishing gradient problem is
also serious. Thus, three variations with shortcut connec-
tions are proposed for better feature transformation, resid-
ual connected LSTM (RC-LSTM) is shown in Figure 4 (b),
which aims to optimize the residual value of input and out-
put. It is good at learning informative diversities and solving
gradient problems. Dense connected LSTM (DC-LSTM) is
shown in Figure 4 (c), which exploit hierarchical features
from different cell levels and alleviate the vanishing-gradient
problem. the final model residual dense connected LSTM
(RDC-LSTM) is shown in Figure 4 (d), it combines the ad-
vantages of residual connections and dense connections for
both supplement each other. The effectiveness of shortcut
connections are also verified in experiments. Notably, the
Figure 4 (b) and Figure 4 (d) have the element-wise addition,
which must guarantee equivalent channels. Therefore, we

introduce an auxiliary convolutional layer to convert the fea-
ture maps received from spatial component, it aims to keep
the same channels between input and output of the recurrent
model. An example of Figure 4 (d) can be represented as:

Xout =W1×1×c×c′ ∗Xin + [H0, H1, ...,Hn−1]c′ , (6)

where [H0, H1, ...,Hn−1] denotes the concatenation of the
feature maps produced in all preceding layers, Xin, Xout is
the input and output of RDC-LSTM. W is convolutional fil-
ter matrix that the kernel size is 1× 1. c is input the channel
number, “∗” represents the convolution operation, convert-
ing c to c

′
.

Sparse feature fusion
Previous works ignore the combination of spatial and tempo-
ral features in the reconstruction component (Guo and Chao
2017; Yang et al. 2018). In this section, we fuse the spatial
and temporal features using a sparse strategy. In my opinion,
the original spatial information should be taken into consid-
eration in the final reconstruction due to features degrada-
tion caused by the consecutive LSTM layers. The sparsity is
adopted to select useful feature maps for reducing the risk
of overfitting (Rubinstein, Zibulevsky, and Elad 2010). The
flowchart of the proposed sparse feature fusion method is
shown in Figure 5.

Spatial 

Feature Maps

Temporal 

Feature Maps

Concat Sparse Matrix

Fused 

Feature MapsMapping

0 0
0

0 00
00

000
0

Temporal 

Feature Maps

Figure 5: The flowchart of the sparse feature fusion.

The temporal features will be transformed into the same
space with the spatial features using a mapping layer. As-
suming that the spatial feature maps Xs have c1 chan-
nels, temporal feature maps Xt have c2 channels. We define
c = 2 × c1, the concatenated feature maps Xconcat can be
represented as:

Xconcat = [W1×1×c2×c1 ∗Xt, Xs]c, (7)

where W is the convolutional filter of temporal-to-spatial
mapping. c2 is the input numbers of channel and c1 is the
output numbers of channel. “∗” represents the convolution
operation. [, ] is the cross concatenation. Then, a sparse ma-
trix SM ∈ Rc×c/2, is designed to select useful feature maps
and compress feature channels in an adaptive way. The fused
feature maps Xfused can be calculated as:

Xfused = Xconcat × SM, (8)

where “×” denotes matrix multiplication. In addition, the
sparsity of SM is controlled by a L1 regular term in the
training loss.
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Upsampling during reconstruction
In the reconstruction component, deconvolutional layers are
constructed to upsample the feature maps to the resolution of
HR. In previous RCNs based methods (Guo and Chao 2017;
Huang, Wang, and Wang 2018; Yang et al. 2018), bicubic in-
terpolation is used to upsample LR frames initially, and the
upsampled frames are put into the networks. It increases the
computational complexity for SR. In addition, interpolation
approaches are uninformative for solving the SR problem.
Inspired by progress of single image super-resolution (Tong
et al. 2017), we employ deconvolution layers as the upsam-
pling layer in reconstruction component that the transformed
features are upsampled at the end of the network. Different
from sub-pixel convolutions (Caballero et al. 2017), decon-
volution layer adaptively allows arbitrary channel numbers
as input rather than the fixed numbers. In our work, two
stacks of deconvolution layers with small 3× 3 kernels and
256 feature maps are adopted for upsampling feature maps.

Training and loss
We firstly pre-train our spatial network on ImageNet dataset,
in which the pixel-wise mean square error (MSE) loss is
adopted as the loss metric. The MSE loss can be formulated
as:

Lpre = ||IHR − F (ILR)||22, (9)

where the ILR denotes the input low-resolution patch, and
IHR is ground truth high-resolution patch. ||.||2 denotes the
L2 norm. Then, the RISTN is trained on the video dataset
and the training loss L can be represented as:

L =

k∑
T=−k

||IHR
T − F (ILR

T )||22 + λ||SM ||1, (10)

where k is the total number of consecutive frames, T = 0
represents the current frame, λ is the hyper-parameter set
by users, and SM represents the sparse matrix of the fusion
part. The L1 norm can make sure the sparsity of SM (Ru-
binstein, Zibulevsky, and Elad 2010).

Experimental Evaluation
Dataset and metrics
In our approach, the randomly selected 50,000 images from
ImageNet are adopted for the spatial network pre-training.
And 195 videos of 1080p (1920 ×1080) are collected from
699pic.com and vimeo.com, which include different scenar-
ios: nature, streetscape and daily life, etc.. The collected
videos are downscaled by times 2 (960×540) and randomly
clipped to 5800 video sequences, which all consists of con-
secutive video frames. With no loss of generality, 5 con-
secutive video frames in each sequence are used for train-
ing. The public available benchmark dataset of Vide4 (Liu
and Sun 2011) is used to demonstrate the performance of
the RISTN. All experiments are performed using 4× up-
scaling factors from low resolution to high resolution. The
peak signal-to-noise ratio (PSNR) and the structural similar-
ity index (SSIM) are evaluation criterion. According to the
state-of-the-art approaches, the PSNR and SSIM are all cal-
culated on the individual Y- channel.

RIB evaluation
To demonstrate the effectiveness of RIB, we re-architect the
RISTN, in which the temporal component is removed. The
bicubic upsampling is introduced as a baseline for compari-
son, and is denoted as Bic. Two state-of-the-art image super-
resolution methods, DRCN (Kim, Lee, and Lee 2016b),
DSRN (Han et al. 2018) and RDN (Zhang et al. 2018) are
adopted for comparisons. Invertible block (IB), which aban-
dons the residual connection and residual block (RB), which
only utilize residual connection without invertible structure
based CNN are also compared to testify the effectiveness
and necessity of the RIB architecture. The size of the LR
patch is set as 30 × 30 and the ground truth HR patch is set
as 120× 120.

Table 1: The evaluation of RIB (4×) on the Set5 dataset.

Method Bic DRCN DSRN RDN IB RB RIB
PSNR 28.42 31.53 31.40 32.47 31.30 31.49 31.65
SSIM 0.810 0.884 0.883 0.899 0.872 0.885 0.897

Params 0M 1.75M 1.25M 22M 1.21M 6.08M 1.21M

As shown in Table 1, RIB achieves the highest scores
among all the compared methods. By adopting the resid-
ual architecture, the PSNR score of RIB rises by 0.35 dB
to 31.65 dB than IB. The RIB also outperforms RB by 0.16
dB of PSNR. Compared with the state-of-the-art DRCN and
DSRN, RIB also surpasses them more than 0.12 dB and 0.25
dB in PSNR. Meanwhile, RIB has less parameters, which re-
duce DRCN and DSRN by 0.54 M and 0.04 M, due to the
memory-efficient structure (Gomez et al. 2017). All the ex-
periments can demonstrate the effectiveness and necessity
of RIB. Though RDN achieves promising results, the pa-
rameter scale of RDN (about 22M) is nearly 20 times of our
model. Visual comparisons are shown in Figure 6, relatively
clear feathers are recovered by RIB.

Bic DRCN IB RIB HR

Figure 6: The visual comparisons of RIB evaluation (4×).

Recurrent architecture evaluation
Three kinds of recurrent model with shortcut connections
are evaluated in this section, namely RC-LSTM, DC-LSTM
and RDC-LSTM (Readers can kindly refer to Figure 4). The
C-LSTM is viewed as the baseline for comparisons. For each
recurrent model, it is testified with different numbers of lay-
ers. In other words, the 3-layer, 5-layer, 8-layer, 10-layer
models are all testified and compared. The input LR patch
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Figure 7: The visual comparisons on “Calendar” of Vid4 with scaling factors as 4×.

Table 2: Comparison of average PSNR and SSIM on Vid4 dataset for scaling factor 4.

Method Bic VSRNet STCN VESPCN SPMC LapSRN BRCN RDN Liu et al. RISTN-NF RISTN-DF RISTN
PSNR 23.74 24.41 24.91 25.35 25.52 25.15 24.43 25.30 25.88 25.74 25.97 26.13
SSIM 0.633 0.707 0.734 0.757 0.760 0.771 0.712 0.750 0.767 0.782 0.789 0.792

size is set as 40 × 40, and the ground-truth HR patch is set
as 160× 160.

Table 3: The PSNR of recurrent model (4×) on Vid4 dataset
with different layer numbers.

Layers
Method C-LSTM RC-LSTM DC-LSTM RDC-LSTM

3 24.81 25.18 25.09 25.16
5 24.90 25.26 25.13 25.35
8 21.98 25.35 25.29 25.47
10 22.13 25.40 25.36 25.60

As shown in Table 3, when the layer number is set as 3,
RC-LSTM achieves the highest score, while the PSNR of
RDC-LSTM is slightly lower than RC-LSTM. It can be ex-
plained that dense connections have less feature maps in a
shallow architecture, which is not conducive to exploit infor-
mative features. On the other hand, due to the vanishing gra-
dient problem, the C-LSTM structure will decrease the when
the layer number increases. The other recurrent architectures
with shortcut connections produce better performance with
increasing layer numbers. Obviously, the RDC-LSTM can
achieve more prominent advantages with deeper layers. As
shown in Table 3, the RDC-LSTM outperforms RC-LSTM
and DC-LSTM by 0.13 dB and 0.17 dB of PSNR in the con-
dition of 10 layers. It can be concluded that RDC-LSTM can
effectively combine the advantage of residual connections
with dense connections in the deep structure.

Method comparison
In this section, the proposed method is compared with the
state-of-the-art methods. Here, Bicubic is viewed as the
baseline. VSRNet (Kappeler et al. 2016), VESPCN (Ca-
ballero et al. 2017), SPMC (Tao et al. 2017), STCN (Guo
and Chao 2017), Liu et al. (Liu et al. 2018), LapSRN (Lai et
al. 2018), BRCN (Huang, Wang, and Wang 2018), and RDN
(Zhang et al. 2018) are introduced. To verify the effective-
ness of sparse fusion, RISTN without fusion (RISTN-NF)
and RISTN with dense fusion (RISTN-DF) are introduced.

Bicubic

HR

BRCN

LapSRN

Ours

Figure 8: Temporal profiles for “Walk” from Vid4.

The experimental results are shown in Table 2. The pro-
posed method outperforms all the other state-of-the-art ap-
proaches. Specifically, RISTN achieves highest evaluation
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Bicubic STCN SPMC LapSRN

RDN BRCN Ours HR

Figure 9: The visual comparisons on “Walk” of Vid4 with scaling factors as 4×.

scores and outperforms STCN, BRCN and Liu et al. by
1.22 dB / 0.058, 1.70 dB / 0.009 and 0.25 dB / 0.025 on
PSNR/SSIM. The main reasons are that RISTN has a deeper
architecture (RISTN is more than 130 convolutional layers,
while STCN, BRCN only have 23 and 3 convolutional lay-
ers.) with both the spatial and temporal components, and
it also fuses the spatial and temporal features for the fi-
nal video frame reconstruction. The visual comparisons on
“Calendar” and “Walk” are provided in Figure 7 and Figure
9. Besides, RISTN also gets better results compared with
RISTN-NF, which demonstrates the effectiveness of the fea-
ture fusion. In comparison with RISTN-DF, the PSNR of
RISTN rises by 0.15 dB, which demonstrates the effective-
ness of the proposed sparse strategy. Follow by (Sajjadi,
Vemulapalli, and Brown 2018), we adopt temporal profile
to evaluate temporal consistency. RISTN gets finer details
compared with other methods, as shown in Figure 8.
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Figure 10: The average running time and the PSNR score.

The Figure 10 exhibits the efficiency comparison of
average running time each frame. Obviously, the RISTN
achieves promising performance of both the running time
and PSNR. Although, the BRCN spends less time on pro-

cessing each video frame, it leads to an unsatisfied PSNR
result for the shallow architecture (3-layers). Compared with
STCN and SPMC, RISTN shows superior performance.
RISTN slightly slows the computing process of RISTN-
NF for the computational costs of more channels in the fu-
sion step. It should be discussed that FRVSR (Sajjadi, Vem-
ulapalli, and Brown 2018) is current state-of-the-art VSR
method uses both the optical flow and RGB features to cap-
ture motion and appearance information. But we only ex-
ploit appearance features to capture their relations.
Implementation details
The proposed network is trained specially for 4× scale fac-
tor super-resolution. We randomly crop the 200× 200 patch
in each frame as the ground truth, and downsample it to
50 × 50 as the input LR patch for training. In the spatial
component, the RGB video frames are zero pad to 16 chan-
nels. In the spatial component of RISTN, each parallel RIB
branch contains four consecutive RIBs. In one of the RIB
branch, there are 6, 8, 10, and 10 convolutional bottlenecks
in each RIB; In the other RIB branch, there are 6, 6, 12 and
6. The last concatenated of the spatial component includes
256-channel feature maps in total. In the temporal compo-
nent, the RDC-LSTM contains 10-bidirectional layers and
the growth-rate is set as 16 (Huang et al. 2017). It out-
puts 320-channel feature maps in total. In the reconstruction
component, the 320-channel temporal feature maps are con-
verted to 256-channel feature maps. After fusion, the output
has 256-channel feature maps in total. RISTN end-to-end is
optimized by Adam with the learning rate 0.0001. The λ of
L1 regular term is set as 5 × 10−7. The training process is
stopped when the training reaches 400 epochs and we select
the best model for comparison. Experiments are performed
on a NVIDIA Titan Xp GPU.

Conclusion
In this paper, we propose a novel residual invertible spatio-
temporal network (RISTN) for effective and efficient video
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super-resolutions. A lightweight residual invertible block
(RIB) is proposed to reduce the information loss and it
provides spatially consistent feature representations in the
spatial component. The residual dense convolutional LSTM
(RDC-LSTM) is designed for catching the temporal consis-
tency and building a deep spatial feature transformation in
the temporal component. The spatial and temporal feature
maps are fused by a well-designed sparse strategy in the re-
construction component. Experimental results conducted on
benchmark datasets show that RISTN achieves state-of-the-
art performance.
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