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Abstract

As one of the most popular techniques for solving the ranking
problem in information retrieval, Learning-to-rank (LETOR)
has received a lot of attention both in academia and indus-
try due to its importance in a wide variety of data mining
applications. However, most of existing LETOR approaches
choose to learn a single global ranking function to handle all
queries, and ignore the substantial differences that exist be-
tween queries. In this paper, we propose a domain general-
ization strategy to tackle this problem. We propose Query-
Invariant Listwise Context Modeling (QILCM), a novel neu-
ral architecture which eliminates the detrimental influence
of inter-query variability by learning query-invariant latent
representations, such that the ranking system could general-
ize better to unseen queries. We evaluate our techniques on
benchmark datasets, demonstrating that QILCM outperforms
previous state-of-the-art approaches by a substantial margin.

Introduction
As an important learning paradigm for tackling the ranking
problem in information retrieval, learning-to-rank (LETOR)
has received a lot of attention both in academia and in-
dustry due to its importance in a wide variety of applica-
tions, such as document retrieval (Ai et al. 2018; Chapelle
and Chang 2011), recommendation systems (Freno 2017;
Volkovs and Zemel 2012), and E-commerce search (Zhuang,
Ou, and Wang 2018; Karmaker Santu, Sondhi, and Zhai
2017).

The typical assumption behind LETOR methods is that
for any given query, the relevance score of a candidate item
is a parameterized global function of a set of features that
describe the query, the item, and their interactions (Kar-
maker Santu, Sondhi, and Zhai 2017; Ai et al. 2018). The
parameters of this function can be determined by fitting it to
a training set that consists of query-item pairs and the associ-
ated relevance judgments. Once learned, the function is ap-
plied to handle any future query to rank the candidate items
with respect the query. However, queries may vary signifi-
cantly in the underlying users’ intentions (Geng et al. 2008),
in the distributions of relevant items (Ai et al. 2018), or in the
features that are relevant to item ranking (Karmaker Santu,
Sondhi, and Zhai 2017), and it is difficult to learn a single
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model that could encompass all these diversities. Moreover,
given the substantial variations between queries, it is quite
possible that a unseen test query have certain characteris-
tics that are rarely encountered in the training set, leading to
degradation in generalization ability of the ranking function
(Karmaker Santu, Sondhi, and Zhai 2017).

So far, a number of approaches have been proposed to
tackle the aforementioned problem. In particular, it has
been demonstrated that the performance of a global rank-
ing model can be greatly improved by incorporating the lo-
cal ranking context information (Ai et al. 2018), which is
generally extracted from the input data via feature engineer-
ing efforts or novel model architectures (Geng et al. 2008;
Ai et al. 2018; Mottini and Acuna-Agost 2017; Zhuang,
Ou, and Wang 2018). Although some promising results have
been shown, these approaches still do not explicitly filter out
the detrimental variations of queries, which may increase the
risk of overfitting and hurt the performance.

At another extreme, we could train a ranking model for
every query independently (Ai et al. 2018; Geng et al. 2008).
While this strategy may avoid the negative influence of the
heterogeneity of queries, it does not allow information to be
shared and transfered between queries, which makes gener-
alization to unseen queries even harder.

A better solution may lie in the middle of these two
extremes: we still learn a common ranking model for all
queries, and yet treat every query as a separate domain. All
of the queries (domains) share the same learning task and the
same input feature space, but have different distributions. In
recognition of the variations between queries (domains), we
would like the model to acquire knowledge from ‘source’
queries (domains) that are available as the training set, and
adapt the learned knowledge to unknown ‘target’ queries
(domains).

In this formulation, we notice that the LETOR problem is
equivalent to a domain generalization (DG) problem (Blan-
chard, Lee, and Scott 2011), where the objective is precisely
to infer a learning system that can take as input a set of train-
ing domains and will output a model that can achieve high
accuracy for new domains. To achieve this goal, many ex-
isting DG methods propose to learn domain-invariant repre-
sentations that are expected to remove the negative effects of
distributional changes across domains (Muandet, Balduzzi,
and Schölkopf 2013; Xie et al. 2017).
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On the basis of the above considerations, in this paper we
propose to solve the query heterogeneity problem via DG
techniques. The main contributions of our work are summa-
rized as follows:

• We introduce a DG formulation of the LETOR problem
and discuss why a DG perspective is justified in this set-
ting;

• We propose Query-Invariant Listwise Context Model
(QILCM), a novel neural architecture for DG in this
LETOR context;

• We perform comprehensive evaluations on three bench-
mark datasets, demonstrating that QILCM outperforms
previous state-of-the-art approaches by a substantial mar-
gin.

Related Work
LETOR methods
According to how training losses are formulated, exist-
ing algorithms for LETOR can be broadly categorized into
three categories: (1) The pointwise approaches (Li, Wu, and
Burges 2008; Nallapati 2004), which reformulates LETOR
as a classification or regression problem on single items;(2)
The pairwise approaches (Freund et al. 2003; Burges et al.
2005), which formulate LETOR as a classification prob-
lem on the item pairs; (3) The listwise approaches (Taylor
et al. 2008; Wu et al. 2010) which directly optimize the
ranking metrics. As mentioned in the introduction section,
queries could vary greatly in various aspects, and exhibit
different ‘standards’ for ranking (Wu, Hsieh, and Sharp-
nack 2018). As a result, listwise and pairwise LETOR meth-
ods, which mainly focus on modeling the relative (instead
of absolute) preferences between items for a query, gener-
ally perform better than pointwise approaches in practice
(Karmaker Santu, Sondhi, and Zhai 2017; Cao et al. 2007;
Chapelle and Chang 2011). Our proposed DG perspective
for LETOR could be considered as a continuation of these
methods, since it more explicitly enforces the model to filter
out the ‘global’ differences between queries, and focus on
the ‘relative’ differences between items for each given query.
Meanwhile, most of existing listwise and pairwise LETOR
methods still try to learn a global ranking function that as-
sesses the relevance of each item individually. In contrast,
listwise context modeling methods studied in this paper treat
the candidate items as a whole, and can better model their
mutual influences (Zhuang, Ou, and Wang 2018).

Neural Ranking Models
Deep neural network methods have been applied to numer-
ous ranking applications, such as recommendation systems
(Covington, Adams, and Sargin 2016), ad-hoc retrieval (Fan
et al. 2018; Zamani et al. 2018), and context-aware rank-
ing (Zamani et al. 2017). Similar to the traditional LETOR
methods discussed above, these models also score each item
independently and neglect the negative influence of distribu-
tional differences between queries. This limitation is clearly
demonstrated in (Cohen et al. 2018), which shows that these

models could overfit to the domains from which the train-
ing data is sampled, and generalize poorly to domains not
encountered during training. To handle this problem, Co-
hen et al. also propose learning of domain invariant repre-
sentations. However, they assume that the queries have al-
ready been categorized into a few broad domains and focus
on avoidance of overfitting to these predetermined domains,
while our method do not rely on such additional supervisory
information, and instead focus directly on tackling the finer-
grained variations between queries.

Context Aware Ranking
A significant amount of research has focused on leverag-
ing contextual data to improve ranking. In particular, cer-
tain types of contextual information have been explored in
depth, such as temporal dynamics of user behaviors (Xiang
et al. 2010; Chen et al. 2018; Zhou et al. 2018) and the ge-
ological location data (Zamani et al. 2017; Manotumruksa,
Macdonald, and Ounis 2018).

On the other hand, modeling of the local ranking con-
text formed by candidate items is a less well studied prob-
lem, and state-of-the-art approaches are generally based on
the Recurrent Neural Network (RNN) models (Mottini and
Acuna-Agost 2017; Ai et al. 2018; Zhuang, Ou, and Wang
2018). For example, (Zhuang, Ou, and Wang 2018) refor-
mulate the ranking task as a RNN-based sequence genera-
tion problem and use the beam search algorithm to gener-
ate the ranked item list, while Deep Choice Model (DCM)
(Mottini and Acuna-Agost 2017) and Deep Listwise Con-
text Model (DLCM) (Ai et al. 2018) adopt RNNs to gener-
ate a context encoding that summarizes the candidate items,
which is then adopted to re-query the candidate items to gen-
erate the ranking scores. Although some promising results
have been shown, a potential limitation of these methods
is that RNNs are mainly designed for modeling sequential
data, and yet the data encountered in ranking problems can-
not always be organized as a natural and unique sequence.
For example, the candidate items may be selected from a
large repository using some initial retrieval methods (Cov-
ington, Adams, and Sargin 2016; Chapelle and Chang 2011),
and are essentially orderless. For such problems, although
one can still order the candidate items according to certain
pre-specified rules, and in principle universal approxima-
tors such as RNNs should be robust to choices of such pre-
ordering, previous studies nevertheless show that the input
order enforces a implicit prior on how RNNs should encode
the given data, and could have strong impact on the exper-
imental performance (Vinyals, Bengio, and Kudlur 2016).
Meanwhile, by adopting additional components such as po-
sitional encoding (Vaswani et al. 2017), models without re-
current structures can also incorporate useful order infor-
mation to achieve good performance (Vaswani et al. 2017;
Gehring et al. 2017; Zhou et al. 2018).

In addition, it is still necessary for these approaches to
learn from the data to filter out the detrimental variations
of queries, while preserving the necessary information for
the ranking task. Better performance may be obtained by
relieving such a learning burden using certain dedicated ar-
chitectures that explicitly encode robustness to inter-query
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variations, such as the DG models reviewed later.

Domain Generalization (DG)
So far, a large number of formulations have been proposed
to solve the DG problem, we refer the interested readers to
(Li et al. 2018; Shankar et al. 2018) for up-to-date reviews
of related techniques. Our method is directly inspired by the
DG approaches which learn a high-level data representation
that simultaneously minimizes domain dissimilarity and pre-
serves the functional relationship with the learning target. To
the best of our knowledge, this is the first time that such tech-
niques are applied to model the local ranking context formed
by candidate items.

Methodology
Problem Formulation
Let Q be the set of possible queries and D be the set of pos-
sible items. Assume we are given a set of queries T ⊆ Q as
the training data, where each query q ∈ T is provided with
a set of nq candidate items

{
dq,1, dq,2, · · · , dq,nq

}
∈ D to

be ranked. Each pair of query-item (q, dq,i) , 1 ≤ i ≤ nq is
described by the same set of categorical and numerical fea-
tures, and assigned a score yq,i that quantifies the relevance
of dq,i to q. The objective of LETOR is to infer a ranking
model that can accurately assess the relevance of any given
query-item pair.

Model Architecture
As discussed in the introduction, we propose to cast LETOR
as a DG problem, and view every query as an individual do-
main. All of the domains/queries share the same learning
task and the same input feature space, but have different dis-
tributions. To better account for such distributional differ-
ences, we parametrize the desired ranking model as a neural
architecture that consists of five main components, as illus-
trated in Figure 1:

• An item encoder that transforms each query-item pair
(q, dq,i) into an encoding vector hq,i;

• An exchangeable item pooling layer that collapses the
encoding vectors associated with each query q to a single
query embedding vector cq , which is then combined with
hq,i to construct a refined item encoding vector h̃q,i;

• A parameter-free query normalization layer that re-
duces the distributional differences between item encod-
ings from different queries;

• A ranking layer that computes the ranking score using
item representations learned from the previous layers;

• An objective function that simultaneously promotes the
improvement of ranking accuracy and the semantic align-
ment of feature distributions among queries.

Item Encoder
The item encoder that we consider in this paper is similar
to previous works (Mottini and Acuna-Agost 2017; Ai et
al. 2018; Covington, Adams, and Sargin 2016). It accepts

the features of query-item pairs as input. Given the sensitiv-
ity of neural networks to input scaling (LeCun et al. 2012;
Covington, Adams, and Sargin 2016), numerical features
are normalized to the interval [0, 1], and categorical fea-
tures are mapped to dense vectors via embeddings, which
are learned jointly with all other model parameters through
back-propagation.

Additionally, sometimes the input data may be supple-
mented with certain order information, such as the predic-
tive results given by an initial LETOR algorithm (Ai et al.
2018). Different from previous works that model such in-
formation using RNNs, we simply incorporate it as an addi-
tional numerical feature. While more sophisticated schemes
for encoding order information (Vaswani et al. 2017; Zhou
et al. 2018; Gehring et al. 2017) are readily applicable, we
found that such a simple option already performs well on the
datasets that we tested.

For each pair of (q, dq,i), all of the pre-processed fea-
tures mentioned above are concatenated into an array xq,i.
As noted in (Ai et al. 2018), direct usage of this feature rep-
resentation may fail to fully leverage the expressive power
of neural models. We thus follow (Ai et al. 2018), and pass
xq,i through 2 layers of fully connected exponential linear
units (ELUs) (Clevert, Unterthiner, and Hochreiter 2015):

x
(1)
q,i = ELU

(
W(1)xq,i + b(1)

)
,

x
(2)
q,i = ELU

(
W(2)x

(1)
q,i + b(2)

)
,

(1)

the output of which is then concatenated with xq,i to con-
struct a new feature vector hq,i:

hq,i =

[
xq,i

x
(2)
q,i

]
. (2)

Item Pooling Layer
In this work, different queries are treated as different
domains, since we observe only a subset of the possi-
ble queries/domains during training, additional assumptions
are needed to ensure that we can generalize to a new
query/domain during testing. A useful technique in the DG
literature to generalize to new domains is domain embed-
ding (Shankar et al. 2018), which maps domains into the
same semantic space. Such a technique captures the domain
variations via continuous latent features, and thereby allows
effective knowledge transfer between domains.

Along the same line, previous listwise context model-
ing works (Ai et al. 2018; Mottini and Acuna-Agost 2017)
choose to construct ‘context encoding’ to capture contextual
information using RNNs. Concretely, given the set of fea-
ture vectors {hq,i}1≤j≤nq

for query q, these works firstly
feed the vectors sequentially into a RNN, and then create
the context encoding cq by using the final hidden state of the
RNN. As cq is then used to query the item vectors to gen-
erate the final ranking order, it plays a pivotal role in these
models. However, the recurrent nature of RNN means that
the creating process of cq has no direct access to the candi-
date items except for the last one, and all relevant informa-
tion has to be propagated by the RNN through the ordered
items in an one-by-one manner, which imposes additional
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Figure 1: The overall architecture of Query-Invariant Listwise Context Model (QILCM).

memorization burden on the RNN and may incur unneces-
sary information loss.

Based on the above considerations, in the paper we adopt
the self-attention mechanism (Lin et al. 2017; Vaswani et al.
2017) to create cq . Concretely, we first feed {hq,i}1≤i≤nq

through a multilayer perceptron MLPatt and then a softmax
function to generate the attention distribution over the items
of the list:

aq,i =
exp (MLPatt (hq,i))

nq∑
k=1

exp (MLPatt (hq,k))

, 1 ≤ i ≤ nq. (3)

The generated positive weight aq,i in (3) can be inter-
preted as an estimation of the probability that item dq,i is the
right place to focus on for downstream finer-grained rank-
ing. Based on the attention distribution, we calculate cq as
the attention-weighted mean of the item vectors:

cq =

nq∑
i=1

aq,ihq,i. (4)

Compared to previous models that simply adopt the last hid-
den state of RNN, attention layer defined in (3) and (4) may
extract a more informative global context encoding cq since
higher weights are assigned to items that are estimated to
be more relevant for context modeling. We then combine
cq with the original item representations to form the refined
representation vectors as:

h̃q,i =

[
cq,i � hq,i

hq,i

]
, 1 ≤ i ≤ nq, (5)

where � denotes the Hadamard product. h̃q,i is regarded as
the refined representation since it encodes both the listwise
contextual information and the item information that are rel-
evant to the ranking task.
Remark 1. It is interesting to note that the attention pool-
ing strategy adopted here is a variant of the orderless at-
tention mechanism considered in (Raffel and Ellis 2015;
Lin et al. 2017), where all items are independent instead

of being sequentially dependent as in RNN-based models.
Such a strategy allows the information contained in all item
representations to be directly propagated to cq , which may
prevent the long-term memorization problem in RNN-based
models.

Query Normalization Layer
As mentioned earlier, the feature distributions of candidate
items for different queries are often different, which makes
the learning of an effective global ranking function diffi-
cult. This problem cannot be completely solved by adopting
the context representation presented in the previous section,
as the ranking model still needs to learn to disentangle the
information about the ‘global’ differences between queries
and the ‘local’ differences between items for each query, and
then focus on the latter to perform effective ranking.

To address the distributional differences among queries,
we borrow ideas from previous DG approaches (Ganin
et al. 2016; Motiian et al. 2017; Muandet, Balduzzi, and
Schölkopf 2013), and encourage the ranking system to learn
query-invariant latent representations that have similar or
even identical distributions across all queries, with the hope
that the system may generalize better to unseen queries by
eliminating the detrimental influence of inter-query variabil-
ity.

Additionally, compared with general DG problems,
LETOR has its own distinct characteristics that can be ex-
ploited to facilitate the learning of query-invariant represen-
tations. In particular, the candidate items for each query is
available as a whole, which makes the problem of charac-
terizing the underling distributions easier. For example, for
any query q, we can directly compute the attention-weighted
per-dimension mean and variance vectors of its associated
feature distribution as:

cq =

nq∑
i=1

aq,ih̃q,i, (6)

σ2
q =

nq∑
i=1

aq,i

(
h̃q,i − cq

)2
. (7)
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As is the case with the context vector (4), the attention
weights (3) are adopted here to emphasize items that are
estimated to be more important. Based on (6) and (7), we
can construct a query normalization (QN) layer that directly
matches these two feature distribution statistics of any given
query to zero and unit vectors, respectively:

hq,i =
(
h̃q,i − cq

)
� (σq + ε)

−1
, 1 ≤ i ≤ nq, (8)

where ε is a small positive constant to avoid division by zero.
The QN transform (8) can be viewed as a straightfor-

ward extension of the widely used batch normalization (BN)
transform (Ioffe and Szegedy 2015), where the key differ-
ence is that the latter applies the normalization to a batch of
training queries instead of to items in each single query.

Ranking Layer
The normalized hidden representations (8) are passed into
another MLP with softmax function to infer the final ranking
score:

sq,i =
exp

(
MLPrank

(
hq,i

))
nq∑
i=1

exp
(
MLPrank

(
hq,i

)) , 1 ≤ i ≤ nq. (9)

Note that (3) and (9) have the same structure, thus the
ranking layer is essentially the second attention layer in
our model, and {sq,i}1≤i≤nq

are the calculated attention
weights.

Objective Function
In general, for each training batch B ⊆ T , QILCM jointly
minimizes the ranking loss and the query confusion loss with
a weight parameter λ:

LQILCM = Lrank + λLconf. (10)

In (10), the ranking loss Lrank can be any suitable loss func-
tion that measures the ranking accuracy. In this work, we
specifically adopt the AttRank loss proposed in (Ai et al.
2018) due to its good performance. Let the relevance labels
be normalized as:

ỹq,i =
ψ (yq,i)

nq∑
j=1

ψ (yq,j)

, 1 ≤ i ≤ nq, (11)

where ψ (x) is the truncated exponential function that re-
turns exp (x) if x > 0 and 0 otherwise. The ranking loss
simply measures the cross entropy between the score (9) and
the normalized relevancy labels:

Lrank =
1

|B|
∑
q∈B

(
− 1

nq

nq∑
i=1

ỹq,i log (sq,i)

)
, (12)

where |·| denotes the cardinality of a set.
On the other hand, by using the QN layer, the latent fea-

ture distribution for any given query is enforced to have zero
mean and unit variance in each dimension. However, other
types of distributional differences, such as the differences of

covariance patterns, can still be present between feature rep-
resentations from two queries. The query confusion loss is
therefore intended to further promote the alignment of distri-
butions of latent features (8) mapped from different queries.
In previous DG works, this goal is typically achieved either
by minimizing a metric between distributions, or through
domain adversarial learning (Ganin et al. 2016; Cohen et al.
2018) which updates the model parameters to fool a jointly
learned domain discriminator that attempts to distinguish
between samples from different domains. Due to the large
number of domains/queries involved, it is difficult to train a
domain discriminator in our setting, and thus we focus on
the former approach and choose to minimize the following
loss:

Lconf =
1

|B|2
∑
q1∈B

∑
q2∈B

dCH (q1, q2), (13)

where dCH is the Chamfer (pseudo)-distance (CD) (Fan, Su,
and Guibas 2017) for measuring the distance between two
point sets:

dCH (q1, q2) =

nq1∑
i=1

min
1≤j≤nq2

(∥∥hq1,i − hq2,j

∥∥2
2

)
+

nq2∑
j=1

min
1≤i≤nq1

(∥∥hq1,i − hq2,j

∥∥2
2

) (14)

Remark 2. As both the QN layer and the query confusion
regularization are intended to reduce the distributional dif-
ferences of queries, a naturally arising question is whether
these techniques would lead to loss of useful query informa-
tion and hurt the ranking performance. We will address this
issue in the experiments.

Experiments
Baseline Methods
We compare the proposed QILCM with the following three
benchmark methods whose implementations are publicly
available:

DCM1 (Mottini and Acuna-Agost 2017) and DLCM2 (Ai
et al. 2018) are two recently proposed listwise context mod-
eling methods based on RNNs. Note that the initial formu-
lation of DCM could only handle binary-valued relevancy
labels, we resolve this problem by simply replacing the orig-
inal softmax loss function of DCM with the AttRank loss (9)
used in DLCM and our method.

LambdaMART (Wu et al. 2010) is one of most widely-
used listwise LETOR method. We adopt the open-source im-
plementation of this algorithm provided in (Capannini et al.
2016).

Ranking Tasks and Datasets
We evaluate various methods on two ranking tasks which
listwise context modeling methods have been successfully
applied to:

1https://www.dropbox.com/s/swghso88q0s3hp7/code.zip
2https://github.com/QingyaoAi/Deep-Listwise-Context-

Model-for-Ranking-Refinement
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Ranking Refinement. (Ai et al. 2018) show that the initial
ranked list returned by a LETOR method can be greatly im-
proved by using listwise context modeling methods to rerank
the top-ranked results. For this task, we used two large-
scale LETOR datasets: Istella-S3 (Lucchese et al. 2016) and
Microsoft Letor 30K4 (Qin and Liu 2013). We followed
the experimental protocols described in (Ai et al. 2018),
and adopted LambdaMART to do the initial retrieval, items
ranked among the top-100 positions were then re-ranked us-
ing various listwise context modeling methods. Note that
item lists with less than 100 items were entirely re-ranked
in our experiments.

User Choice Ranking. (Mottini and Acuna-Agost 2017)
show that listwise context modeling methods can accu-
rately predict the user’s choice among alternative commodi-
ties. For this task, we used Airline Itinerary5, which is an
anonymized version of the dataset used in (Mottini and
Acuna-Agost 2017), each record in the data corresponds to
a query, and contains the candidate items presented to a cus-
tomer. The items that the customers purchased are positive
samples and others are negative samples.

Statistics of the used datasets are summarized in Table 1.

Dataset Queries Items Rel. Feats.
Airline Itinerary 33951 1,089k 2 17
Microsoft 30k 31531 3,771k 5 136

Istella-S 33018 3,302k 5 220

Table 1: Characteristics of the datasets used in the experi-
ments: number of queries, items, relevance levels, and fea-
tures.

Evaluation Metrics
For each task, we adopt the evaluation metrics used in
prior work. For ranking refinement tasks, we follow (Ai
et al. 2018) and use the standard discounted cumulative
gain (NDCG) metrics that include NDCG@1, NDCG@3,
NDCG@5, and NDCG@10. For Microsoft 30k dataset, an
additional metric NDCG@50 was also evaluated. On the
other hand, for user choice ranking tasks where relevance
feedbacks are binary-valued, we follow (Mottini and Acuna-
Agost 2017) and use top precision metrics that include
P@1(Precision@1) and P@5.

Model Training
Each dataset is split in train, validation and test sets accord-
ing to a 60%-20%-20% scheme. The validation set was used
to select the optimal hyperparameters for all involved meth-
ods. We did not perform extensive hyperparameter search
for the proposed model, and used virtually the same archi-
tecture throughout all the experiments and datasets. More
specifically, the dimensions of the nonlinear transformations
(1) in the Input Encoder were fixed as 100, while MLPs used

3http://quickrank.isti.cnr.it/istella-dataset/
4https://www.microsoft.com/en-us/research/project/mslr/
5https://www.dropbox.com/s/qzyt0xwn4u2a1ed/data full

anonym.zip

in (3) and (9) consist of 2 hidden layers with either 256 or
128 ELUs. The models were trained with the Adam algo-
rithm (Kingma and Ba 2014) with a learning rate of 0.001,
batch size of 80. Training generally converged after less than
100 passes through the entire training dataset.

Comparisons with Baseline Methods
The performance comparison results of various methods are
reported in Table 2. To eliminate the influence of random
initiations, all results are averaged over 20 runs. As is shown
in this table, QILCM significantly outperforms all the base-
lines.

Ablation Studies
To elucidate the contributions of the main components of
our system, in this section, we test several variants of the
proposed model. The tested implementations include:
• Variant 1: Our model with the attention-weighted con-

text encoding (4) replaced by simple average pooling of
the item encoding vectors. Accordingly, the attention-
weighted statistics (6) and (7) are replaced with standard
mean and variance;

• Variant 2: Our model without the domain confusion loss;
• Variant 3: Our model without the domain confusion loss

and QN layer.
The performance results of different implementations of the
proposed methods are shown in Table 3, which shows that
QILCM consistently achieves the best performance among
all model variants.

Anomalous Query Analysis
To further investigate the performance of QILCM, in this
section we conducted additional analysis of experimental re-
sults on the Microsoft 30k dataset. Concretely, we firstly fol-
lowed (Geng et al. 2008), and constructed vector represen-
tation for each query by averaging over the feature values
of the top k ranked items (k was set as 10 during the ex-
periments). After that, we fitted Isolation Forest (Liu, Ting,
and Zhou 2008) to the training queries, and then used the
learned model to assign a ‘anomaly score’ to each query in
the test set. Intuitively, this score quantifies how different
a query is from the majority of training data, and we ex-
amine the performance difference between QILCM and the
best-performing baseline (DLCM) for queries with different
levels of anomaly. As shown in Figure 2, the performance
gap between QILCM and DLCM is significantly widened
for more anomalous queries. For example, the NDCG@1
gap between QILCM and DLCM is increased from 0.047 to
0.121, which clearly demonstrates the advantage of tackling
heterogeneous queries using the proposed DG perspective.

Conclusion
In this paper, we introduce a DG formulation of the LETOR
problem and propose a novel neural architecture for DG in
this LETOR context. We evaluate our techniques on three
benchmark datasets, demonstrating that the proposed ap-
proach outperforms previous state-of-the-art approaches by
a substantial margin.
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Dataset Metrics QILCM DCM DLCM LambdaMART Improv. P-value

Airline Itinerary P@1 *0.2833 0.2618 0.2562 0.2327 8.21% 2.40×10−23

P@5 *0.6958 0.6586 0.6651 0.6239 4.61% 1.22×10−20

Microsoft 30k

NDCG@1 *0.5447 0.4938 0.4973 0.4800 9.53% 3.83×10−19

NDCG@3 *0.5313 0.4827 0.4811 0.4766 10.06% 7.58×10−16

NDCG@5 *0.5368 0.4904 0.4892 0.4842 9.46% 1.60×10−16

NDCG@10 *0.5564 0.5093 0.5135 0.5061 8.35% 2.27×10−15

NDCG@50 *0.6482 0.6127 0.6146 0.6092 5.46% 4.51×10−15

Istella-S

NDCG@1 *0.7023 0.6762 0.6873 0.6644 2.18% 1.74×10−10

NDCG@3 *0.6696 0.6552 0.6537 0.6378 2.20% 1.99× 10−8

NDCG@5 *0.6953 0.6846 0.6831 0.6741 1.56% 4.25×10−10

NDCG@10 *0.7645 0.7558 0.7566 0.7456 1.04% 4.67× 10−7

Table 2: Performance comparison of various methods. The results are averaged over 20 random runs, and the best ones are
marked with *. The last two columns show the improvement of QILCM over the best baseline algorithm (highlighted with
underline), and the corresponding Student’s t-test P-values.

Dataset Metrics QILCM Variant 1 Variant 2 Variant 3

Airline Itinerary P@1 *0.2833 0.2749 0.2762 0.2694
P@5 *0.6958 0.6613 0.6803 0.6724

Microsoft 30k

NDCG@1 *0.5447 0.5287 0.5359 0.5139
NDCG@3 *0.5313 0.5127 0.5294 0.4970
NDCG@5 *0.5368 0.5230 0.5347 0.5030
NDCG@10 *0.5564 0.5459 0.5538 0.5229
NDCG@50 *0.6482 0.6363 0.6438 0.6331

Istella-S

NDCG@1 *0.7023 0.6966 0.6982 0.6837
NDCG@3 *0.6696 0.6654 0.6672 0.6628
NDCG@5 *0.6953 0.6936 0.6931 0.6923
NDCG@10 *0.7645 0.7622 0.7637 0.7602

Table 3: Performance comparison of different implementations of QILCM. The results are averaged over 20 random runs, and
the best ones are marked with *.
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Figure 2: Performance gap between QILCM and the best-
performing baseline (DLCM) on Microsoft 30k dataset.
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