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Abstract

We study emergent communication between speaker and lis-
tener recurrent neural-network agents that are tasked to coop-
eratively construct a blocks-world target image sampled from
a generative grammar of blocks configurations. The speaker
receives the target image and learns to emit a sequence of dis-
crete symbols from a fixed vocabulary. The listener learns to
construct a blocks-world image by choosing block placement
actions as a function of the speaker’s full utterance and the
image of the ongoing construction. Our contributions are (a)
the introduction of a task domain for studying emergent com-
munication that is both challenging and affords useful anal-
yses of the emergent protocols; (b) an empirical comparison
of the interpolation and extrapolation performance of training
via supervised, (contextual) Bandit, and reinforcement learn-
ing; and (c) evidence for the emergence of interesting linguis-
tic properties in the RL agent protocol that are distinct from
the other two.

Introduction
We are interested in the challenging problem of learning
effective communication protocols for collaborative multi-
agent settings in which limited bandwidth communication
channels can be exploited by agents for task performance,
but where no protocols are provided to the agents in ad-
vance. This topic, sometimes called language emergence,
has attracted interest in multiple fields over several decades
(we briefly review some of this work below), including re-
cent progress in the application of neural networks (NNs).
We empirically study language emergence in a two-agent,
speaker-listener NN-based architecture, where the speaker
observes the task goal and takes communication actions that
sequentially emit symbols, and the listener (never seeing
the goal) receives the utterance and acts on the task en-
vironment. We investigate the degree to which the agents
converge on communication protocols that have interesting
linguistic structure, and that can successfully lead the lis-
tener to (at least partially) achieve the goal. We compare the
speaker-listener architecture to a baseline architecture where
a single-agent both sees the goal and acts on the environ-
ment.

Copyright c© 2019, Association for the Advancement of Artificial
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Our work makes three novel contributions to language-
emergence research. First, we introduce a collaborative
blocks-world construction task involving communication of
discrete symbol sequences that is challenging, systemat-
ically structured, and affords interesting analyses of the
emergent communication. Second, we demonstrate that,
when representing speaker and listener policies as recurrent
neural networks, how they are trained affects how well their
emergent protocols support generalization to unseen config-
uration sizes (defined by the number of blocks in the config-
urations). Specifically, we find that using Bandit for training
supports greater flexibility in construction to improve perfor-
mance over using supervised learning (SL), and that when
using reinforcement learning (RL) more structured commu-
nication emerges to overcome the harder problem induced
by delayed rewards. Third, we demonstrate the emergence
of interesting linguistic properties that distinguish the RL-
trained agent from the other two. Specifically, we provide
evidence for the emergence of subsequences (N-grams) of
symbols with a power-law frequency distribution similar to
that found in natural human languages, and that are impor-
tant in carrying meaning in way that is consistent with some
degree of compositionality.

Related Work
Research on language emergence spans many fields. Lin-
guistics and cognitive science are particularly interested in
the origins of properties of natural human language such as
hierarchical structure (Nowak, Plotkin, and Jansen 2000;
Nowak, Komarova, and Niyogi 2001; Steels 2003; Kirby,
Griffiths, and Smith 2014). The role of evolutionary pro-
cesses and pressures in shaping human language remains
a controversial topic (Berwick and Chomsky 2015), but a
point of agreement among most cognitive scientists and lin-
guists is that language to some degree is shaped by the
structure of the human cognitive architecture (Bratman et
al. 2010). A potential beneficial outcome of computational
explorations such as our work is to provide tools for cogni-
tive science to explore the implications of agent architecture
for emergent linguistic capacities.

Recent work on learning communication among cooper-
ative agents has proposed deep learning techniques for end-
to-end learning of communication protocols. In Sukhbaatar
et al. (2016), a population of homogeneous agents based on
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NNs learned effective continuous communication through
end-to-end backpropagation in several simulated multi-
agent tasks. Foerster et al. (2016) proposed a framework
with an end-to-end differentiable communication channel
that allowed agents to communicate with one-bit messages
for solving riddle games. In contrast to our paper, both of
these papers did not evaluate the generalization ability of
the learned communication protocols to unseen tasks. More
recently, Mordatch and Abbeel (2017) grounded discrete
communication learning in a multi-agent navigation task
with goals given to the agents as disentangled features, and
each agent was trained with the auxiliary task of predicting
the goals of other agents. Like us, they used the Gumble-
softmax technique for end-to-end communication learning,
but unlike us, their agents are homogeneous in that they all
have the same roles and they share all their parameters. They
also emphasize and evaluate different kinds of generaliza-
tion than in our experiments (specifically, they generalize to
unseen numbers of agents and the presence of distractors).

In another line of work, the communication is learned
in the context of two-player referential games wherein one
agent has to identify the objects (usually images) referred to
by the other agent through a learned language. For example,
Lazaridou et al. (2016) allowed for communication with a
single discrete symbol, while Havrylov and Titov (2017) al-
lowed for variable-length discrete communication. Choi et
al. (2018) and Lazaridou et al. (2018) instead took synthetic
images as the referential objects, each containing an item
of a particular color-shape specification. In these studies the
emergent languages were able to generalize to unseen im-
ages. Our work explores generalization in settings that re-
quire the listener to perform a sequential task that places
greater demands on the communication from the speaker to
make rich task-relevant discriminations.

The Blocks-World Construction Task
Grammar for generating target configurations. A tar-
get configuration is generated by the probabilistic grammar
in Table 1 by expanding the rule for a CP (“configuration
phrase”) with (x, y) initialized to (0, 0) (lower left corner of
a 10 × 10 grid). There are small, medium, and large blocks
of sizes 1×1, 2×2, and 3×3 squares. The grammar creates
a variable number of stacks, from left to right, bounded by
the width of the environment. Stacks have at most one large
block, and a variable number of medium and small blocks,
bounded by the environment’s height. Larger blocks never
go on smaller ones, and blocks cannot cantilever. Two tow-
ers of small blocks can appear over a large block. Figure 1
shows sample target configurations to provide a sense of the
range of possible configurations. See Figure 2 for a tree sam-
pled from the grammar, and its corresponding target image.

Observations. Observations of the target configuration
and of the current work space are as raw (artificially gen-
erated) pixel images of the sort seen in Figure 1.

Utterances and Construction Actions. In the two-agent
setting, the speaker generates a fixed-length utterance by se-
quentially generating symbols from the elements of a fixed

The non-terminal expanded based at (x, y) Probability

CP → LP (x, y) 0.4
LP (x, y) CP (x+ 5, y) 0.6

LP → left L(x, y) 0.5
right L(x+ 2, y) 0.5

MP →
left M(x, y) 0.25
right M(x+ 1, y) 0.25
S(x, y) S(x+ 2, y) 0.5

SP → left S(x, y) 0.5
right S(x+ 1, y) 0.5

L→
LargeBlock(x, y) 0.01
LargeBlock(x, y)MP (x, y + 3) 0.495
MP (x, y) 0.495

M →
MedBlock(x, y) 0.1
MedBlock(x, y)M(x, y + 2) 0.45
MedBlock(x, y) SP (x, y + 2) 0.45

S → SmallBlock(x, y) 0.1
SmallBlock(x, y) S(x, y + 1) 0.9

Table 1: The probabilistic context-free grammar for tar-
get configuration generation. LargeBlock, MedBlock and
SmallBlock are terminals; the rest are non-terminals.

Figure 1: Sample target images generated from grammar in
Table 1. Note the varying number of columns and heights.

vocabulary V of primitive discrete symbols (“a”, “b”,...).
Note that the symbols in V have no predefined meaning;
their meaning gets implicitly grounded/defined during learn-
ing based on what actions the learner takes after hearing the
utterances. A sample utterance is shown immediately above
the grid in Figure 2b.

The learner’s action set A contains (30) actions to add
either a small, medium, or large block whose left side is
aligned with a particular column x in the workspace, where
x ∈ [0, 10) is an integer. The y-coordinate of the added
block is determined by simple gravity-like rules: in essence
the block drops vertically until it hits another block below
it or to a y of zero if there is no block below it. The lis-
tener also has a special (31st) action Terminate ∈ A to end
the episode. The episode also ends when the listener adds a
block that is not in the target configuration. A sample action-
sequence that places the blocks labeled 1–4, in that order, is
shown at the top of Figure 2b.
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Figure 2: (a:top) Configuration tree generated from the
grammar. (b:bottom-left) Target configuration rendered
from the tree in (a). (c:bottom-right) The single agent ar-
chitecture.
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Figure 3: The speaker-listener architecture. The speaker’s
modules are in blue and the listener’s modules are in red.

Agent Architectures and Learning
Single Agent Baseline Architecture. Shown in Figure 2c,
the single agent gets both the target and current configu-
ration images as input. The two images are processed by
shared multiple convolutional layers (i.e., the 2 CNNs in the
figure use the same weights). The concatenated learned fea-
ture encodings of the two configurations are fed into a ReLU
layer and then into a softmax layer that produce a distribu-
tion over construction (and terminate) action probabilities.
There are no utterances.
Speaker-Listener Architecture. Shown in Figure 3, the
speaker gets the target image as input and outputs a fixed-
length sequence of symbols, while the listener gets the full
utterance of the speaker as input as well as the current
workspace image, and outputs block placement / terminate
actions. Note that during training the speaker and listener

NNs are trained end to end as if they were a single NN, i.e.,
gradients flow from the listener to the speaker; it is during
evaluation that they act as separate agents. Both the speaker
and the listener use convolutional layers with shared weights
to extract high-level features from the observed configu-
rations presented as images, and separate LSTM networks
for speaking and listening. The speaker’s LSTM recursively
takes the encoding of the target configuration and of the pre-
vious symbol to produce a distribution over symbols to emit
at the next step. A fixed-length sequence of symbols is gen-
erated in this way using a Gumbel-softmax (Jang, Gu, and
Poole 2016) trick (this allows gradients to pass through from
listener to speaker that simply sampling from the softmax
over symbols does not allow). The listener receives the entire
discrete symbol sequence produced after Gumbel-softmax,
and processes it through its LSTM to create an encoding of
the speaker’s full sentence. At each time step of acting on
the workspace this sentence representation is concatenated
with the CNN’s encoding of the current configuration and
fed through a ReLU layer into a final softmax layer to pro-
duce a distribution over construction (and terminate) actions.

Supervised, Bandit, and Reinforcement Learning
We evaluated three training algorithms on both the baseline
and the speaker-listener agents. Note that there are exponen-
tially many action sequences because of the partial order
over actions that yield the same target image. When using
supervised learning (SL), a canonical correct sequence of
construction actions is used to do the training, where the
action sequence builds stacks left to right, and each stack
from the bottom up (corresponding to the blocks’ order in a
depth first traversal of the configuration’s parse tree). When
using (contextual) Bandit, the agents are given a reward of
+1 for every construction action that is consistent with the
target configuration and a −1 for an action that is inconsis-
tent with the target configuration. When using RL the reward
is the same as for Bandit but is accumulated and only made
available at the end of the episode to the agents. In both Ban-
dit and RL training an episode ends when the agent chooses
an action that is inconsistent with the target image.

SL uses the following cross-entropy loss:

LSL = Eos∼Os,ol0,a
∗
0 ,o

l
1,a
∗
1 ,...,a

∗
T−1

[
−
∑
t

log πl
t(a
∗
t )

]
(1)

where os is a target configuration uniformly sampled from
the set of possible target images Os, {a∗t }T−1t=0 is the super-
vised action sequence for os, olt is the configuration after
taking the first t actions, and πl

t is the distribution of the lis-
tener’s actions conditioned on olt and the speaker’s utterance.

The Bandit loss function LBL = LBandit − λLentropy is
defined via

LBandit = Eos∼Os,ol0,a0,ol1,a1,···

[
−
∑
t

rt log π
l
t(at)

]
(2)

Ll
entropy = Eos∼Os,ol0,a0,ol1,a1,···

[∑
t

H(πl
t)

]
(3)
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where H is entropy, λ ≥ 0 is the entropy regularization co-
efficient, and rt ∈ {±1} is the reward of the Bandit. Here
olt is the configuration after taking the first t actions, and the
listener’s action at is sampled from πl

t.
For RL training, we delay the reward signals until the very

end of an episode. Formally, the RL loss function is LRL =
LREINFORCE − λLentropy, and LREINFORCE is defined via

LREINFORCE = (4)

Eos∼Os,ol0,a0,ol1,a1,···

[
−
∑
t

log πl
t(at)(Rt − b)

]

where Rt =
∑T−1

t′=t γ
t′−trRL

t′ is the cumulative reward from
time step t with discount factor γ = 0.99, and b is the base-
line of REINFORCE which is set to be the average episodic
reward of the previous epoch. Again olt is the configuration
after taking the first t actions, and the listener’s action at is
sampled from πl

t.

Experiments: Agent Performance
Our experiments have two primary aims. The first aim is
to demonstrate and understand the generalization abilities
of the speaker-listener agents by examining their interpola-
tion and extrapolation (these terms are defined formally be-
low) performance. We contrast the performances obtained
via Bandit, SL, and RL training, and use the single-agent
as a useful baseline to provide a kind of upper-bound on
expected performance of the speaker-listener agents. A sec-
ond aim is to understand the emergent communication pro-
tocols and how their linguistic properties relate to agent per-
formance. We describe the structure of the experiments and
report the performance measures in this section, and report
on the analyses of the communication protocols in the fol-
lowing section.

Experiment Structure
Data generation. We created data sets for our experi-
ments by first sampling configurations from the probabilis-
tic grammar and populating bins corresponding to configu-
ration size (number of blocks) with unique configurations.
More specifically, configurations were repeatedly sampled
from the grammar up to a maximum of 10,000 unique con-
figurations per bin and until the growth in unique config-
urations became very slow. Bins corresponding to config-
uration sizes of 8–21 blocks had the maximum of 10,000
unique configurations; bins in the 5–31 size range had 1,000
or more. The maximum configuration size is 40.

Training sets and interpolation-extrapolation testing
sets. For each experiment we choose an interpolation-
extrapolation boundary B ∈ {15, 25}. All configurations
with number of blocksN satisfyingN ≤ B, except for con-
figuration sizes of multiples of 5 are used for training (i.e.,
we trained only on configurations N ≤ B,N mod 5 6= 0).
All other configurations are used for testing. Specifically,
configurations with N < B,N mod 5 = 0 are used for
interpolation testing, and N > B for extrapolation.

Construction action and utterance symbol choice during
testing. Unless otherwise noted explicitly, during testing,
the speaker selects the next symbol with the maximum prob-
ability (breaking ties randomly) to utter and the listener se-
lects the next action with the maximum probability (break-
ing any ties randomly) to take. The vocabulary size is set to
|V | = 10 symbols, the utterance length is set to L = 15
symbols.

Results
Overall performance of interpolation and extrapolation.
We use two measures to assess interpolation and extrapola-
tion performance of all the agents. Full completion measures
the empirical probability of completing the target configura-
tion and terminating once it is constructed. Partial comple-
tion measures the proportion of the total number of blocks
in the target configuration constructed before the first incor-
rect action (i.e., this degree is defined as n/N , where n is
the number of blocks correctly added by the agent before
the first, if any, mistake). The second measure is more for-
giving, but it is informative of how much the agents have
learned.

Figures 4a, 4b, 4e, and 4f show the full completion on
testing configurations as a function of target image size N
for interpolation-extrapolation boundaryB ∈ {15, 25}. Fig-
ures 4c, 4d, 4g, and 4h show the partial completion. The
graphs summarize the results of five independent runs for
each algorithm at each boundary B; the shaded region is the
performance range of the five runs, the top solid line is the
best run, and the dotted line is the mean.

For the baseline agent (Figures 4a-4d), Bandit and RL
training are comparable and both significantly outperform
SL. Indeed, the extrapolation of both the best Bandit and the
best RL trained baseline agent is excellent for the B = 25
setting, which itself is an interesting result (previous success
on extrapolation in blocks world has required use of rela-
tional or other structured representations (Irodova and Sloan
2005)). For the speaker-listener agents (Figures 4e-4h), the
3 training algorithms are roughly comparable at full com-
pletion, but Bandit is better at partial completion (especially
evident in Figure 4g). Below we highlight a few empirical
conclusions.

Unsurprising advantage of Single Agent. For extrap-
olation, the single agent performs overall better than the
speaker-listener, and this performance gap is especially large
when the configuration size becomes large. This suggests
that in this task, it is difficult for the agents to learn to gen-
eralize communication about very large numbers of blocks.

Unless explicitly stated otherwise all of the discussion
that follows is for the speaker-listener agents.

Explaining the Bandit extrapolation advantage over SL.
For extrapolation, the Bandit partial completion perfor-
mance is better overall than SL. We tried a version of SL
with entropy regularization with the same coefficient as in
Bandit and RL, and while it improves performance a little
bit, it is still worse than Bandit. All of the discussion about
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(c) partial, B = 15
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(e) Speaker-listener, full, B = 15
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(f) full, B = 25
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(g) partial, B = 15
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(h) partial, B = 25

Figure 4: Full and partial completion on test configurations; X-axis is target configuration size. Points left of the vertical
boundary line are interpolation tests; points right are extrapolation. Top graphs: Single agent architecture. Bottom graphs:
Speaker-listener architecture. Left graphs: Full completion (probability). Right graphs: Partial completion (proportion). Shaded
region is performance range of five runs, top solid line is best run, and dotted line is mean. Shared legend in upper right graph.
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Figure 5: Left: Mean of maximum softmax probabilities for
listener’s actions during N = 30, B = 25 episodes. X-axis
is time step within episode. Right: Partial completion from
greedy sampling (solid) and softmax probabilities (dashed).

SL that follows in the rest of the paper is for training with-
out entropy regularization. In the partial completion graphs
(Figures 4c, 4d, 4g, 4h), we also plot the curve of B/N for
N > B. If partial completion exceeds B/N for a N > B,
the agents have learned to communicate about more blocks
than they saw during training, instead of constructing only
those blocks shared with the training configurations and ig-
noring the rest. The best performing Bandit run dominates
B/N forB ∈ {15, 25}, while SL has runs dominatingB/N
only for B = 25. We conjecture that Bandit learning is bet-
ter at extrapolation than SL because it can exploit the partial
ordering over construction actions for a given configuration,
while SL cannot. To confirm this conjecture we examined
the softmax probabilities according to which the listener se-
lects actions, and assessed performance when greedy action
selection is replaced with sampling from the softmax. Fig-
ure 5 (left) shows the maximum probability of the listener’s
softmax-action over time in an episode, averaged over target

configurations with N = 30 blocks. (The results correspond
to the learning runs at boundary B = 25 reported in Fig-
ure 4h above.) For the SL listener, the maximum softmax
probability is almost always near one, while for the Bandit
listener, it begins below half and then increases over time
in an episode, indicating that substantial probability mass
is spread over multiple actions. Figure 5 (right) shows par-
tial completion when the listener selects actions greedily and
when it selects actions by sampling from the softmax. For
the SL listener, there is little difference between the two se-
lection strategies because the softmax is very sharp. For the
Bandit listener, sampling from the softmax results in only
modest reduction in partial completion, indicating that the
Bandit agents have learned to communicate such that the
listener is able to identify more than one correct action for a
given time point of the episode. Of course, RL agents have
the same flexibility as the Bandit agents in terms of the abil-
ity to learn multiple correct actions and unsurprisingly the
RL curves in Figure 5 are similar to the Bandit curves. How-
ever, RL agents do have a harder problem because of the
delayed reward, and this leads to their lower performance.

Evidence of learning the blocks-world domain structure.
Because we have used a grammar to specify the structural
regularities of the domain, it is possible to ask to what ex-
tent the agents have learned this structure. One way to do
this is to ask whether the incorrect construction actions nev-
ertheless are grammatical in the sense that they result in a
configuration within the generative space of the grammar.
Specifically, we analyzed the first incorrect action and found
that in all runs for all agents, at least 80% of the incorrect
actions were grammatical in this sense; in nearly all runs for
block sizes of < 30, the proportion of ungrammatical errors
was less than 5%. A random action baseline produces only
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20% grammatical actions.

Analyses of the Communication Protocols
We now analyze the emergent communication protocols to
gain insight into their linguistic properties and how these
properties relate to performance. The analyses support four
specific claims concerning interesting qualitative differences
in the RL agents’ protocol as compared to the other two.

N-gram distributions for the three protocols. The first
claim is that the RL agents rely on the reuse of frequent
subexpressions to a much greater degree than the other
agents. A simple distributional analysis of N-grams in the
utterance corpora from the three protocols reveals this dif-
ference. Figure 6 plots (log) frequency against (log) rank for
all the of N-grams (up to 5-grams) produced by the RL, Ban-
dit, and SL speakers. We plot the distributions in this man-
ner to assess a possible correspondence with a Zipfian dis-
tribution, which is expressed as an approximately log-linear
relationship between frequency and rank, a robust statisti-
cal regularity of linguistic forms in human languages (in-
cluding words and even larger collocations) (Ellis 2002).
The dashed lines show what is expected from a distribution
of random strings. All agents are reusing subexpressions at
much higher frequency than chance, and the approximate
log-linear relationship holds up to very infrequent forms.
But for the RL agents, the top-ranked N-grams are one to
two orders of magnitude more frequent than the correspond-
ing rank for the SL agents for both boundary 15 and 25 and
for the Bandit agents in the boundary 25 case. In the bound-
ary 15 case, the top-ranked N-gram for the RL agents are
as frequent as, if not more than, the corresponding rank for
the Bandit agents. Thus, RL utterances are much more likely
to be composed of longer subexpressions that are reused in
other utterances.

Action sequences induced by novel utterances composed
of frequent N-grams. The second claim is that these fre-
quent subexpressions and their compositions are more im-
portant for conveying meaning for the RL agents. We test
this claim by examining the action sequences induced by
giving the listeners novel utterances composed from a vo-
cabulary of frequent N-grams. The listeners take utterances
as input and take actions until the first action that results
in an ungrammatical configuration; we record the number
of grammatical (in the sense of producing a grammatical
blocks configuration) actions. Note that this is not a partial
completion measure because there is no target configuration,
but longer mean grammatical action sequences for a set of
utterances indicate that the utterances are able to convey a
larger portion of the space of grammatical configurations.

The analysis starts with the K most frequent N-grams,
for n = 2, 3, 4, and 5, to form a vocabulary of 4K “words”;
we explore K = 10, 20, 30, 40, 50. We compare the mean
grammatical action sequence length across three utterance
types: utterances composed of random strings, utterances
composed of a single N-gram followed by a random string
of symbols, and utterances composed entirely of a concate-
nation of frequent N-grams. An increase in the grammatical
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Figure 6: (Log) frequency of N-gram subsequences against
(log) frequency rank for N-grams of different sizes (dashed
for B=15, solid for B=25), with the expected distribution of
random strings (dotted).

Table 2: Mean number of grammatical actions induced by
length 15 utterances composed of top 20 ranked N-grams,
one N-gram with random string suffixes, and random strings.
Cells are in the format of B = 15 / B = 25. All standard
errors are less than 0.01.

SL Bandit RL
N-gram full 8.06 / 6.04 10.11 / 7.24 7.60 / 7.14
One N-gram 7.28 / 6.70 6.26 / 6.58 3.80 / 4.27
Rand. strings 6.29 / 6.34 4.33 / 5.47 3.15 / 2.75

action sequence length across these three types would pro-
vide evidence that N-grams and their composition are im-
portant conveyors of meaning.

Table 2 summarizes the results for utterances composed
of the top K = 20 N-grams (K = 20 produced the
longest grammatical sequences for all three agents). There
is a clear increase for the RL agents across the three ut-
terance types, suggesting that the frequent subexpressions
are indeed meaningful at multiple positions in the utterance
string and when they are composed. (This is not evidence
that the subexpressions have a meaning that is independent
of position or context; showing this would require more de-
tailed analysis but does not bear on the present claim.) The
protocols of the SL and Bandit agents have this property in
the boundary 15 case, but in the boundary 25 case in which
more of the larger configurations are used for training, this
property disappears for the SL, and the Bandit has it to a
lesser degree.

The relationship between utterance similarity and con-
figuration similarity. Our third claim is that the RL pro-
tocol bears one simple signature of compositionality. The
finding that the compositions of N-grams are more likely to
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Figure 7: Left: Mean utterance similarity measured by edit
distance as a function of configurations similarity measured
by edit distance between the canonical action sequences of
sampled pairs. All standard errors are less than 0.02. Right:
Reduction in full and partial completion for the specific case
of RL B=25 one-symbol prefix truncation.

carry meaning than random strings or single N-grams for
RL (and to a lesser degree, Bandit) agents suggests that
the emergent protocol has some degree of compositional
structure: the meaning of an expression is composed of the
meanings of subparts of the expression. (Compositionality
is thought to be a hallmark of human language, though even
in human language, forms such as idioms violate composi-
tionality.)

One implication of compositionality is that meaning sim-
ilarity and utterance similarity will covary, and we test for
this relationship as follows. We sample pairs of target con-
figurations of 5–15 blocks for boundary 15 and 5–25 blocks
for boundary 25, for which the full completion of the agents
is near one. We then give these configurations as input to the
speaker to generate corresponding pairs of utterances, and
measure the mean edit distance between pairwise utterances
as a function of the edit distance between the canonical ac-
tion sequences of the corresponding pairwise configurations.

Figure 7(left) summarizes the results. For all agents, it is
clear that utterance similarity and configuration similarity
covary. From boundary 15 to 25, the agents are trained with
more of the larger configurations, and the RL utterance pairs
become more similar (that is, the edit distance is lower). The
SL and Bandit utterance pairs do not have this property.

Prefix and suffix meanings: Robustness to truncation.
Our final claim is that the RL protocol is more robust to pre-
fix and suffix truncation, consistent with another signature
of compositionality: parts of expressions are meaningful in
isolation, and convey part of the meaning of the whole. More
specifically, we probe here to what degree prefixes and suf-
fixes of utterances are meaningful to the listener.

Figure 8(left) shows the reduction in partial completion
relative to no truncation when the utterances are truncated
at l < L = 15 and the listener only takes as input the
first l symbols before taking any action. Similarly Figure
8(right) shows the reduction that happens when the utter-
ance communicated to the listener drops the first symbol or
first two symbols. The performance of all agents is more
sensitive to prefix truncation; dropping just the first two sym-
bols degrades performance considerably—but the RL agents
are the most robust to prefix truncation, followed by Bandit.
Both RL and Bandit agents are more robust to suffix trun-
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(a) Suffix truncation, B = 15
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(b) Prefix truncation, B = 15
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(c) Suffix truncation, B = 25
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(d) Prefix truncation, B = 25

Figure 8: Effect of truncated utterances. The curves are from
the best SL/Bandit/RL, and show the reduction in partial
completion relative to no-truncation (higher values corre-
spond to greater reduction and hence worse performance).
Left: For suffix truncation, the utterances are truncated at 14
(solid), or 10 (dashed) Right: For prefix truncation, we drop
the first one (solid), or two (dashed) symbols.

cation than SL, suggesting that these agents have learned to
use prefixes to encode earlier parts of the correct action se-
quence.

Interestingly, for the RL agent in the boundary 25 case
(see Figure 8d) partial completion when the first symbol
is truncated is even higher than that with no truncation
for some configuration sizes. However, as Figure 7(right)
shows, there is significant reduction in full completion when
the first symbol is truncated, verifying that information is
spread across the full utterance.

We conclude by arguing why the differences between RL
and other agents that we have claimed are suggestive of com-
positionality are unlikely to be due instead just to differences
in how agents distribute information across the utterance.
It is unclear how even a complex information distribution
could explain how RL is more robust to both prefix and
suffix truncation, where the N-gram composition analysis
supports the plausible explanation that subexpressions carry
meaning more systematically for RL protocols. A distribu-
tion that makes the RL utterance effectively smaller could
explain some results, but is inconsistent with affix trunca-
tion analysis and with the edit distance results for dissimilar
configurations. And the pattern in RL, but not SL, where the
number of induced grammatical actions increases with the
use of more frequent N-grams, are consistent with a compo-
sitionality explanation but much less so based on informa-
tion distribution.
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Conclusion
This work presented a new collaborative blocks construction
domain for studying emergent communication that is chal-
lenging because it demands the speaking agent to express
a rich set of task-relevant discriminations for the listening
agent to succeed in the complex sequential decision-making
task it faces. We demonstrated that it is possible to train
speaker-agent recurrent neural nets with supervised, ban-
dit, and reinforcement learning algorithms such that all three
emergent communication protocols allow the agents to suc-
cessfully communicate about blocks configurations of sizes
unseen in the test set, including robust interpolation to sizes
within the range of the test set, and modest extrapolation
to larger sizes. We furthermore provided evidence that the
Bandit training generalizes more robustly than SL training
by exploiting the partial order over correct action sequences
versus the canonical order forced upon SL.

Finally, we took steps to understand the nature of the
emergent communication protocols, and how the differences
among the three protocols might manifest in performance.
Specifically, we provided evidence for the emergence of a
Zipfian distribution of N-grams of symbols in all three pro-
tocols, but with a qualitatively greater use of frequent N-
grams in the RL protocols. We furthermore showed that for
the RL protocols the frequent N-grams are more important in
conveying meaning, that similar meanings (configurations)
yield more similar utterances, and that parts of complete
utterances (prefixes and suffixes) more robustly carry parts
of the whole meaning. These differences are possible sig-
natures of a greater degree of compositionality in the RL
protocols.

These qualitative protocol differences and improved ro-
bustness to truncation for the RL agents arise despite the
fact that the RL agents performed somewhat worse overall
on the interpolation and extrapolation measures than the SL
and Bandit agents. The overall performance difference is not
surprising given the significantly more challenging nature
of the delayed reward RL training. But we can only con-
jecture that the more robust communication learned by the
speaker trained via RL also results from having to overcome
the same more challenging delayed RL feedback. Evaluat-
ing this conjecture, and applying unsupervised learning and
other induction methods used in human language analysis,
remains future work.
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