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Abstract

The Jacobian matrix (or the gradient for single-output net-
works) is directly related to many important properties of
neural networks, such as the function landscape, stationary
points, (local) Lipschitz constants and robustness to adver-
sarial attacks. In this paper, we propose a recursive algorithm,
RecurJac, to compute both upper and lower bounds for each
element in the Jacobian matrix of a neural network with re-
spect to network’s input, and the network can contain a wide
range of activation functions. As a byproduct, we can effi-
ciently obtain a (local) Lipschitz constant, which plays a cru-
cial role in neural network robustness verification, as well as
the training stability of GANs. Experiments show that (lo-
cal) Lipschitz constants produced by our method is of better
quality than previous approaches, thus providing better ro-
bustness verification results. Our algorithm has polynomial
time complexity, and its computation time is reasonable even
for relatively large networks. Additionally, we use our bounds
of Jacobian matrix to characterize the landscape of the neural
network, for example, to determine whether there exist sta-
tionary points in a local neighborhood.

Introduction
Deep neural networks have been successfully applied to
many applications, but one of the major criticisms is their
being black boxes—no satisfactory explanation of their be-
havior can be easily offered. Given a neural network fp¨q
with input x, one fundamental question to ask is: how does
a perturbation in the input space affect the output predic-
tion? To formally answer this question and bound the be-
havior of neural networks, a critical step to answer this
question is to compute the uniform bounds of the Jaco-
bian matrix Bfpxq

Bx for all x within a certain region. Many
recent works on understanding or verifying the behavior
of neural networks rely on this quantity. For example,
once a (local) Jacobian bound is computed, one can im-
mediately know the radius of a guaranteed “safe region”
in the input space, where no adversarial perturbation can
change the output label (Hein and Andriushchenko 2017;
Weng et al. 2018b). This is also referred to as the ro-
bustness verification problem. In generative adversarial net-
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works (GANs) (Goodfellow et al. 2014), the training pro-
cess suffers from the gradient vanishing problem and can
be very unstable. Adding the Lipschitz constant of the dis-
criminator network as a constraint (Arjovsky, Chintala, and
Bottou 2017; Miyato et al. 2018) or as a regularizer (Gulra-
jani et al. 2017) significantly improves the training stability
of GANs. For neural networks, the Jacobian matrix Bfpxq

Bx
is also closely related to its Jacobian matrix with respect to
the weights Bfpx;W q

BW , whose bound directly characterizes the
generalization gap in supervised learning and GANs; see,
e.g., (Vapnik and Vapnik 1998; Sriperumbudur et al. 2009;
Bartlett, Foster, and Telgarsky 2017; Arora and Zhang 2018;
Zhang et al. 2018b).

In this paper, we propose a novel recursive algorithm,
dubbed RecurJac, for efficiently computing a certified Jaco-
bian bound. Unlike the layer-by-layer algorithm (Fast-Lip)
for ReLU network in (Weng et al. 2018b), we develop a re-
cursive refinement procedure that significantly outperforms
Fast-Lip on ReLU networks, and our algorithm is general
enough to be applied to networks with most common acti-
vation functions, not limited to ReLU. Our key observation
is that the Jacobian bounds of previous layers can be used
to reduce the uncertainties of neuron activations in the cur-
rent layer, and some uncertain neurons can be fixed without
affecting the final bound. We can then absorb these fixed
neurons into the previous layers’ weight matrix, which re-
sults in bounding Jacobian matrix for another shallower net-
work. This technique can be applied recursively to get a
tighter final bound. Compared with the non-recursive algo-
rithm (Fast-Lip), RecurJac increases the computation cost
by at most H times (H is depth of the network), which is
reasonable even for relatively large networks.

We apply RecurJac to various applications. First, we can
investigate the local optimization landscape after obtaining
the upper and lower bounds of Jacobian matrix, by guar-
anteeing that no stationary points exist inside a certain re-
gion. Experimental results show that the radius of this region
steadily decreases when networks become deeper. Second,
RecurJac can find a local Lipschitz constant, which up to
two magnitudes smaller than the state-of-the-art algorithm
without a recursive structure (Figure 1). Finally, we can use
RecurJac to evaluate the robustness of neural networks, by
giving a certified lower bound within which no adversarial
examples can be found.
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Figure 1: RecurJac can obtain local and global Lipschitz
constants magnitudes better than existing algorithms.

Related Work
Computing Lipschitz constant. Computing a local or
global Lipschitz constant of neural networks is a special case
of our problem. One simple approach for estimating the Lip-
schitz constant for any black-box function is to sample many
x, y and compute the maximal }fpxq´fpyq}{}x´y} (Wood
and Zhang 1996). However, the computed value may be an
under-estimation unless the sample size goes to infinity. The
Extreme Value Theory (De Haan and Ferreira 2007) can be
used to refine the bound but the computed value could still
under-estimate the Lipschitz constant (Weng et al. 2018b),
especially due to the high dimensionality of inputs.

For a neural network with known structure and weights,
it is possible to compute Lipschitz constant explicitly. An
easy way to obtain a loose global Lipschitz constant is to
multiply weight matrices’ operator norms and the maxi-
mum derivative of each activation function. Since this quan-
tity is simple to compute and can be optimized by back-
propagation, many recent works also propose defenses to
adversarial examples (Cisse et al. 2017; Elsayed et al. 2018;
Tsuzuku, Sato, and Sugiyama 2018; Qian and Wegman
2018) or techniques to improve the training stability of
GAN (Miyato et al. 2018) by regularizing this global Lip-
schitz constant. However, it is clearly a very loose Lipschitz
constant, as will be shown in our experiments.

For 2-layer ReLU networks, (Raghunathan, Steinhardt,
and Liang 2018) computes a global Lipschitz constant by
relaxing the problem to semi-definite programming (SDP)
and solving its dual, but it is computationally expensive. For
2-layer networks with twice differentiable activation func-
tions, (Hein and Andriushchenko 2017) derives the local
Lipschitz constant for robustness verification. These meth-
ods show promising results for 2-layer networks, but cannot
be trivially extended to networks with multiple layers.

Bounds for Jacobian matrix. Recently, (Weng et al.
2018a) proposes an layer-by-layer algorithm, Fast-Lip, for
computing the lower and upper bounds of Jacobian matrix
with respect to network input x. It exploits the special acti-
vation patterns in ReLU networks but does not apply to net-
works with general activation functions. Most importantly, it

loses power quickly when the network becomes deeper. Us-
ing Fast-Lip for robustness verification produces non-trivial
bounds only for very shallow networks (less than 4 layers).

Robustness verification of neural networks. Assuming
the output of a multi-class classification network fpxq is a
K-dimensional vector where each fjpxq is the logit for the
j-th class and the final prediction F pxq “ arg maxj fjpxq,
the following lemma gives a robustness lower bound (Hein
and Andriushchenko 2017; Weng et al. 2018b):
Lemma 1. For an input example x,

F px`∆q “ y for all }∆} ă min
 

R,min
j‰y

fypxq ´ fjpxq

Lj

(

,

(1)
where Lj is the Lipschitz constant of fjpxq ´ fypxq in some
local region (will be formally defined later).

Therefore, as long as a local Lipschitz constant can be
computed, we can verify that the prediction of a neural net-
work will stay unchanged for any perturbation within radius
R. A good local Lipschitz constant is hard to compute in
general: (Hein and Andriushchenko 2017) only shows the
results for 2-layer neural networks; (Weng et al. 2018b) ap-
plies a sampling-based approach and cannot guarantee that
the computed radius satisfies (1). Thus, an efficient, guaran-
teed and tight bound for Lipschitz constant is essential for
understanding the robustness of deep neural networks.

Other methods have also been proposed for robustness
verification, including direct linear bounds (Zhang et al.
2018a; Croce, Andriushchenko, and Hein 2018; Weng et
al. 2018a), convex adversarial polytope (Wong and Kolter
2018; Wong et al. 2018), Lagrangian relaxation (Dvijotham
et al. 2018) and geometry abstraction (Gehr et al. 2018;
Mirman, Gehr, and Vechev 2018). In this paper we focus
on Local Lipschitz constant based methods only.

RecurJac: Recursive Jacobian Bounding
In this section, we present RecurJac, our recursive algorithm
for uniformly bounding (local) Jacobian matrix of neural
networks with a wide range of activation functions.

Notations. For anH-layer neural network fpxqwith input
x P Rn0 , weight matrices Wplq P Rnlˆnl´1 and bias vectors
bplq P Rnl , the network fpxq can be defined recursively as
hplqpxq “ σplqpWplqhpl´1qpxq`bplqq for all l P t1, . . . ,H´
1u with hp0q :“ x, fpxq “WpHqhpH´1qpxq ` bpHq. σplq is
a component-wise activation function of (leaky-)ReLU, sig-
moid family (including sigmoid, arctan, hyperbolic tangent,
etc), and other activation functions that satisfy the assump-
tions we will formally show below. We denote W

plq
r,: as the

r-th row and W
plq
:,j as the j-th column of Wplq. For conve-

nience, we denote f plqpxq :“ Wplqhpl´1qpxq ` bplq as the
pre-activation function values.

Local Lipchitz constant. Given a function fpxq : Rn Ñ

Rm and two distance metrics d and d1 on Rn and Rm, re-
spectively, the local Lipschitz constant LS

d,d1 of f in a close
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ball of radius R centered at s (denoted as S “ Bdrs;Rs) is
defined as:

d1pfpxq, fpyqq ď LS
d,d1dpx, yq, for all x, y P S :“ Bdrs;Rs

Any scalar LS
d,d1 that satisfies this condition is a local Lip-

schitz constant. A good local Lipschitz constant should be as
small as possible, i.e., close to the best (smallest) local Lips-
chitz constant. A Lipschitz constant we compute can be seen
as an upper bound of the best Lipschitz constant.

Assumptions on activation functions. RecurJac has the
following assumptions on the activation function σpxq:
Assumption 1. σpxq is continuous and differentiable almost
everywhere on R. This is a basic assumption for neural net-
work activation functions.
Assumption 2. There exists a positive constant C such that
0 ď σ1pxq ď C when the derivative exists. This covers
all common activation functions, including (leaky-)ReLU,
hard-sigmoid, exponential linear units (ELU), sigmoid, tanh,
arctan and all sigmoid-shaped family activation functions.
This assumption helps us derive an elegant bound.

Overview of Techniques. The local Lipschitz constant
can be presented as the maximum directional derivative in-
side the ballBdrs;Rs (Weng et al. 2018b). For differentiable
functions, this is the maximum norm of gradient with respect
to the distance metric d (or the maximal operator norm of
Jacobian induced by distances d1 and d in the vector-output
case). We bound each element of Jacobian through a layer-
by-layer approach, as shown below.

Define diagonal matrices Σ representing the derivatives of
the activation functions:

Σplq :“ diagtσ1pf plqpxqqu.

The Jacobian matrix of aH-layer network can be written as:

∇f pHqpxq “WpHqΣpH´1qWpH´1q ¨ ¨ ¨Wp2qΣp1qWp1q.
(2)

For the ease of notation, we also define

Yp´lq :“
Bf pHq

Bhpl´1q
“WpHqΣpH´1q ¨ ¨ ¨Wpl`1qΣplqWplq

for l P rHs. As a special case, Yp´1q :“ ∇f pHq.
In the first step, we assume that we have the following pre-

activation bounds lplqr and u
plq
r for every layer l P rH ´ 1s:

lplqr ď f plqr pxq ď uplqr @r P rnls, x P Bdrs;Rs (3)

We can get these bounds efficiently via any algo-
rithms that compute layer-wise activation bounds, including
CROWN (Zhang et al. 2018a) and convex adversarial poly-
tope (Wong and Kolter 2018). Because pre-activations are
within some ranges rather than fixed values, Σ matrices con-
tain uncertainties, which will be characterized analytically.

In the second step, we compute both lower and upper
bounds for each entry of Yp´lq :“ BfpHq

Bhpl´1q in a back-
ward manner. More specifically, we compute Lp´lq,Up´lq P

RnHˆnl´1 so that

Lp´lq ď Yp´lqpxq ď Up´lq @x P Bdrs;Rs (4)

holds true element-wisely. For layer H , we have Yp´Hq “

WpHq and thus Lp´Hq “ Up´Hq “ WpHq. For layers
l ă H , uncertainties in Σ matrices propagate into Yp´lq

layer by layer. Naively deriving pLp´l`1q,Up´l`1qq just
from pLp´lq,Up´lqq and plpl´1q,upl´1qq leads to a very
loose bound. We propose a fast recursive algorithm that
makes use of bounds for all previous layers to compute
a much tighter bound for Yp´lq. Applying our algorithm
to Yp´H`1q,Yp´H`2q, ¨ ¨ ¨ will eventually allow us to ob-
tain Yp´1q. Our algorithm can also be applied in a forward
manner; the forward version (RecurJac-F) typically leads to
slightly tighter bounds but can slow down the computation
significantly, as we will show in the experiments.

From an optimization perspective, we essentially try to
solve two constrained maximization and minimization prob-
lems with variables Σ

plq
r,r, for each element tj, ku in the Ja-

cobian ∇f pHqpxq:

max
l
plq
r ďΣ

plq
r,rďu

plq
r

r∇f pHqpxqsj,k and min
l
plq
r ďΣ

plq
r,rďu

plq
r

r∇f pHqpxqsj,k.

(5)

Raghunathan, Steinhardt, and Liang (2018) show that
even for ReLU networks with one hidden layer, finding
the maximum `1 norm of the gradient is equivalent to the
Max-Cut problem and NP-complete. RecurJac is a poly-
nomial time algorithm to give upper and lower bounds on
r∇f pHqpxqsj,k, rather than solving the exact maxima and
minima in exponential time.

After obtaining the Jacobian bounds Yp´1q :“ ∇f pHq,
we can make use of it to derive an upper bound for the lo-
cal Lipchitiz constant in the set S “ Bdrs;Rs. We present
bounds when d and d1 are both ordinary p-norm (p “

r1,`8qY t`8u) distance in Euclidean space. We can also
use the Jacobian bounds for other proposes, like understand-
ing the local optimization landscape.

Bounds for Σplq

From (2), we can see that the uncertainties in ∇f pHq are
purely from σ1pf plqpxqq; all Wplq are fixed. For any l P rH´
1s, we define the range of σ1pf plqr pxqq as l1plqr and u

1plq
r , i.e.,

l1plqr ď σ1pf plqr pxqq ď u1plqr @r P rnls. (6)

Note that l1plqr and u
1plq
r can be easily obtained because we

know l
plq
r ď f

plq
r pxq ď u

plq
r (thanks to (3)) and the analytical

form of σ1pxq. For example, for the sigmoid function σpxq “
ex

1`ex , σ1pxq “ σpxqp1´ σpxqq, we have:

l1plqr “

$

’

&

’

%

σ1pl
plq
r q if lplqr ď u

plq
r ď 0;

σ1pu
plq
r q if uplqr ě l

plq
r ě 0;

σ1pmaxt´l
plq
r ,u

plq
r uq if lplqr ď 0 ď u

plq
r .

(7)

u1plqr “

$

’

&

’

%

σ1pu
plq
r q if lplqr ď u

plq
r ď 0;

σ1pl
plq
r q if uplqr ě l

plq
r ě 0;

σ1p0q if lplqr ď 0 ď u
plq
r .

(8)
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Equations (7) and (8) are also valid for other sigmoid-
family activation functions, including σpxq “ ex

1`ex , σpxq “
tanhpxq, σpxq “ arctanpxq and many others.

For (leaky-)ReLU activation functions with a negative-
side slope α (0 ď α ď 1), l1plqr and u

1plq
r are:

l1plqr “

#

α if lplqr ď u
plq
r ď 0 or l

plq
r ď 0 ď u

plq
r ;

1 if uplqr ě l
plq
r ě 0.

u1plqr “

#

α if lplqr ď u
plq
r ď 0;

1 if uplqr ě l
plq
r ě 0 or l

plq
r ď 0 ď u

plq
r .

For (leaky-)ReLU activation functions, in the cases where
l
plq
r ď u

plq
r ď 0 and u

plq
r ě l

plq
r ě 0, we have l

1plq
r “ u

1plq
r ,

so Σ
plq
r,r becomes a constant and there is no uncertainty.

A recursive algorithm to bound Yp´lq

Bounds for Yp´H`1q. By definition, we have Yp´Hq “

WpHq and Yp´H`1q “ Yp´HqΣpH´1qWpH´1q. Thus,

Y
p´H`1q
j,k “

ÿ

rPrnH´1s

W
pHq
j,r σ

1pf pH´1q
r qW

pH´1q
r,k , (9)

where l
1pH´1q
r ď σ1pf

pH´1q
r q ď u

1pH´1q
r thanks to (6).

By assumption 2, σ1pxq is always non-negative, and thus
we only need to consider the signs of WpHq and WpH´1q.
Denote L

p´H`1q
j,k and U

p´H`1q
j,k to be a lower and upper

bounds of (9). By examining the signs of each term, we have

L
p´H`1q
j,k “

ÿ

W
pHq
j,r W

pH´1q
r,k ă0

u1pH´1q
r W

pHq
j,r W

pH´1q
r,k

`
ÿ

W
pHq
j,r W

pH´1q
r,k ą0

l1pH´1q
r W

pHq
j,r W

pH´1q
r,k ,

(10)

U
p´H`1q
j,k “

ÿ

W
pHq
j,r W

pH´1q
r,k ą0

u1pH´1q
r W

pHq
j,r W

pH´1q
r,k

`
ÿ

W
pHq
j,r W

pH´1q
r,k ă0

l1pH´1q
r W

pHq
j,r W

pH´1q
r,k .

(11)

In (10), we collect all negative terms of W
pHq
j,r W

pH´1q
r,k

and multiply them by u
1pH´1q
r as a lower bound of

ř

W
pHq
j,r W

pH´1q
r,k ă0

σ1pf
pH´1q
r pxqqW

pHq
j,r W

pH´1q
r,k , and collect

all positive terms and multiply them by l
1pH´1q
r as a lower

bound of the positive counterpart. We obtain the upper
bound in (11) following the same rationale. Fast-Lip is a spe-
cial case of RecurJac when there are only two layers with
ReLU activations; RecurJac becomes much more sophisti-
cated in multi-layer cases, as we will show below.

Bounds for Yp´lq when 1 ď l ă H ´ 1. By definition,
we have Yp´l`1q “ Yp´lqΣpl´1qWpl´1q, i.e.,

Y
p´l`1q
j,k “

ÿ

rPrnl´1s

Y
p´lq
j,r σ1pf pl´1q

r pxqqW
pl´1q
r,k , (12)

where l
1pl´1q
r ď σ1pf

pl´1q
r pxqq ď u

1pl´1q
r thanks to (6) and

L
p´lq
j,r ď Y

p´lq
j,r ď U

p´lq
j,r @j, r

thanks to previous computation. We want to find the bounds

L
p´l`1q
j,k ď Y

p´l`1q
j,k ď U

p´l`1q
j,k @j, k.

We decompose (12) into two terms:

Y
p´l`1q
j,k “

ÿ

tr : L
p´lq
j,r ă0ăU

p´lq
j,r u

Y
p´lq
j,r σ1pf pl´1q

r pxqqW
pl´1q
r,k

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

I

`
ÿ

tr : L
p´lq
j,r ě0 or Up´lq

j,r ď0u

Y
p´lq
j,r σ1pf pl´1q

r pxqqW
pl´1q
r,k

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

II

,

(13)
and bound them separately.

Observing the signs of each term in I and u
1pl`1q
r ě

l
1pl`1q
r ě 0, we take:
L
p´l`1q,˘
j,k “

ÿ

W
pl´1q
r,k

ă0

u
1pl´1q
r U

p´lq
j,r W

pl´1q
r,k `

ÿ

W
pl´1q
r,k

ą0

u
1pl´1q
r L

p´lq
j,r W

pl´1q
r,k

(14)

U
p´l`1q,˘
j,k “

ÿ

W
pl´1q
r,k

ă0

u
1pl´1q
r L

p´lq
j,r W

pl´1q
r,k `

ÿ

W
pl´1q
r,k

ą0

u
1pl´1q
r U

p´lq
j,r W

pl´1q
r,k

(15)

The index constraint tr : L
p´lq
j,r ă 0 ă U

p´lq
j,r u is still

effective in (14) and (15), but we omit it for notation sim-
plicity. Then we can show that Lp´l`1q,˘

j,k and U
pl`1q,˘
j,k are

a lower and upper bound for term I in (13) as follows.
Proposition 1.

L
p´l`1q,˘
j,k ď I ď U

p´l`1q,˘
j,k , (16)

where I is the first term in (13).
For term II in (13), the sign of Yp´lq

j,r does not change

since L
p´lq
j,r ě 0 or U

p´lq
j,r ď 0. Similar to what we did

in (10) and (11), depending on the sign of Y
p´lq
j,r W

pl´1q
r,k ,

we can lower/upper bound term II using Yp´lq itself in-
stead of its bound pLp´lq,Up´lqq. This will give us much
tighter bounds than just naively using pLp´lq,Up´lqq as we
deal with term I . More specifically, we define 2nH matrices
|Wpl,l´1,jq,xWpl,l´1,jq P Rnlˆnl´2 for j P rnH s as below:
|W
pl,l´1,jq
i,k “

ÿ

L
p´lq
j,r ě0,W

pl´1q
r,k ą0

or Up´lq
j,r ď0,W

pl´1q
r,k ă0

W
plq
i,rl

1pl´1q
r W

pl´1q
r,k

`
ÿ

L
p´lq
j,r ě0,W

pl´1q
r,k ă0

or Up´lq
j,r ď0,W

pl´1q
r,k ą0

W
plq
i,ru

1pl´1q
r W

pl´1q
r,k ,

(17)
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xW
pl,l´1,jq
i,k “

ÿ

L
p´lq
j,r ě0,W

pl´1q
r,k ą0

or Up´lq
j,r ď0,W

pl´1q
r,k ă0

W
plq
i,ru

1pl´1q
r W

pl´1q
r,k

`
ÿ

L
p´lq
j,r ě0,W

pl´1q
r,k ă0

or Up´lq
j,r ď0,W

pl´1q
r,k ą0

W
plq
i,rl

1pl´1q
r W

pl´1q
r,k .

(18)

Then we can show the following lemma.
Lemma 2. For any j P rnH s, we have

Y
p´l´1q
j,: Σplq|W

pl,l´1,jq
:,k ď II ď Y

p´l´1q
j,: ΣplqxW

pl,l´1,jq
:,k ,

(19)
where II is the second term in (13).

Note that when the sign of Yp´lq
j,r is fixed, i.e., Lp´lq

j,r ě

0 or U
p´lq
j,r ď 0 in term II , the bounds in (19) is

always tighter than those in (16). After we know the
sign of Y

p´lq
j,r , we can fix σ1pf

pl´1q
r pxqq to be either

l
1pl´1q
r or u

1pl´1q
r according to the sign of W

pl´1q
r,k and

thus eliminate the uncertainty in σ1pf
pl´1q
r pxqq. Then we

can plug Y
p´lq
j,r “

ř

s Y
p´l´1q
j,i σ1pf

plq
i pxqqW

plq
i,r into the

lower and upper bounds and merge terms involving W
plq
i,r,

σ1pf
pl´1q
r pxqq and W

pl´1q
r,k , resulting in (19). Compared with

using the worst-case bound L
p´lq
j,r ď Y

p´lq
j,r ď U

p´lq
j,r di-

rectly in (16), we expand Y
p´lq
j,r and remove uncertainty in

σ1pf
pl´1q
r pxqq in (19), and thus get much tighter bounds.

Finally, combining Proposition 1 and Lemma 2, we get
the following recursive formula to bound Yp´l`1q.
Theorem 1. For any 1 ă l ă H and any j P rnH s, we have

Y
p´l`1q
j,: ě L

p´l`1q,˘
j,: `Y

p´l´1q
j,: Σplq|W

pl,l´1,jq
:,k

and

Y
p´l`1q
j,: ď U

p´l`1q,˘
j,: `Y

p´l´1q
j,: ΣplqxW

pl,l´1,jq
:,k ,

where Lp´l`1q,˘,Up´l`1q,˘,|Wpl,l´1,jq and xWpl,l´1,jq are
defined in (14), (15), (17) and (18), respectively.
Remark 1. The lower and upper bounds of Yp´H`1q in
(10) and (11) can be viewed as a special case of Theo-
rem 1 when l “ H . Because we have Lp´Hq “ Up´Hq “

Wplq in this case, we do not have term I in the de-
composition (13). Moreover, the bounds of term II in
(19) are reduced to exactly (10) and (11) after we no-
tice that |W

pH,H´1,jq
j,k “ L

p´H`1q
j,k and xW

pH,H´1,jq
j,k “

U
p´H`1q
j,k and specify Yp´H´1q “ ΣpHq “ InH

. Specifying
Yp´H´1q “ ΣpHq “ InH

is equivalent to adding another
identity layer to the neural network f pHqpxq.

A recursive algorithm to bound Yp´lq. Notice that the
lower and upper bounds in Lemma 2 have exactly the same
formation of Yp´lq “ Yp´l´1qΣplqWplq, by replacing Wplq

with |Wpl,l´1,jq and xWpl,l´1,jq. Therefore, we can recur-
sively apply our Theorem 1 to obtain an lower and upper
bound for Yp´l`1q, denoted as Lp´l`1q and Up´l`1q sepa-
rately. This recursive procedure further reduces uncertainty
in Σ for all previous layers, improving the quality of bounds
significantly. We elaborate our recursive algorithm in Algo-
rithm 1 for the case nH “ 1, so we omit the last superscript
j “ 1 in |Wpl,l´1,1q and xWpl,l´1,1q. When nH ą 1, we can
apply Algorithm 1 independently for each output.

Algorithm 1 ComputeLU (compute the lower and upper Ja-
cobian bounds)

Require: Wplq, bounds tpLp´iq,Up´iq,WpiqquHi“l`1,
tl1pi´1q,u1pi´1quHi“l`1

1: if l “ H then
2: Lp´lq “ Up´lq “Wplq

3: else if l “ H ´ 1 then
4: Compute Lp´lq from (10), Up´lq from (11)
5: else if 1 ď l ă H ´ 1 then
6: Compute |Wpl`1,lq from (17), xWpl`1,lq from (18)
7: pLp´l´1,´lq,vq = ComputeLU( |Wpl`1,lq,
tpLp´iq,Up´iq,WpiqquHi“l`2, tl1pi´1q,u1pi´1quHi“l`2)

8: pv,Up´l´1,´lqq = ComputeLU( xWpl`1,lq,
tpLp´iq,Up´iq,WpiqquHi“l`2, tl1pi´1q,u1pi´1quHi“l`2)

9: Compute Lp´lq,˘ from (14), Up´lq,˘ from (15)
10: Lp´lq “ Lp´lq,˘ ` Lp´l´1,´lq

11: Up´lq “ Up´lq,˘ `Up´l´1,´lq

12: end if
13: return Lp´lq, Up´lq

Compute the bounds in a forward manner. In previous
sections, we start our computation from the last layer and
bound Yp´lq :“ BfpHq

Bhpl´1q in a backward manner. By trans-
posing (2), we have

r∇f pHqpxqsT “Wp1qT Σp1qWp2qT ¨ ¨ ¨ΣpH´1qWpHqT .

Then we can apply Algorithm 1 to bound ∇f pHqpxqT ac-
cording to the equation above. This is equivalent to starting
from the first layer, and bound Bfplq

Bx from l “ 1 to H . Be-
cause we obtain the bounds of pre-activations in a forward
manner by CROWN (Zhang et al. 2018a), the bounds (3) get
looser when the layer index l gets larger. Therefore, bound-
ing the Jacobian by the forward version is expected to get
tighter bounds of Bfplq

Bx at least for small l. In our experi-
ments, we see that the bounds for ∇f pHqpxq obtained from
the forward version are typically a little tighter than those
obtained from the backward version. However, the “output”
dimension in this case is n0, which is the input dimension
of the neural network. For image classification networks,
nH ! n0, the forward version has to apply Algorithm 1
n0 times to obtain the final bounds and thus increases the
computational cost significantly compared to the backward
version. We make a detailed comparison between the for-
ward and backward version in the experiment section.
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Compute a local Lipschitz constant
After obtaining Lp´1q ď Yp´1q :“ ∇fpxq ď Up´1q for all
x P S, we define

max
xPS

|r∇fpxqs| ďM :“ maxp|Lp´1q|, |Up´1q|q, (20)

where the max and inequality are taken element-wise.
In the rest of this subsection, we simplify the notations
Yp´1q,Lp´1q,Up´1q to Y,L,U when no confusion arises.

Recall that the Local Lipschitz constant LS
d can be eval-

uated as LS
d,d1 “ maxxPS }∇fpxq}d,d1 . ∇fpxq is the Jaco-

bian matrix and } ¨ }d,d1 denotes the induced operator norm.
Then we can bound the maximum norm of Jacobian (local
Lipschitz constant) considering its element-wise worst case.
When d, d1 are both ordinary p-norm (p “ r1,`8qYt`8u)
distance in Euclidean space, we denote Ld,d1 as Lp, and it
can be bounded as follows.
Proposition 2. For any 1 ď p ď `8, we have

LS
p :“ max

xPB`p rs;Rs
}∇fpxq}p ď }M}p, (21)

where M :“ maxp|L|, |U|q is defined in (20).

Improve the bound for LS
8. For the important case of up-

per bounding LS
8, we use an additional trick to improve the

bound (21). We note that }∇fpxq}8 “ maxj

ř

k |Yj,k|. As
in (13), we decompose it into two terms
ÿ

k

|Yj,k| “
ÿ

kPTj

|Yj,k|

loooomoooon

I

`
ÿ

kPT `j

Yj,k ´
ÿ

kPT ´j

Yj,k

looooooooooooomooooooooooooon

II

, (22)

where T `j :“ tk|Lj,k ě 0u, T ´j :“ tk|Uj,k ď 0u, and
Tj :“ tk|Lj,k ă 0 ă Uj,ku.

For term I , we take the same bound as we have in (21),
i.e., I ď

ř

kPTj
Mj,k.

For term II , thanks to Y “ Yp´2qΣp1qWp1q, we have

II “
ÿ

r

Y
p´2q
j,r σ1pf p1qr pxqqp

ÿ

kPT `j

W
p1q
r,k ´

ÿ

kPT ´j

W
p1q
r,kq.

Define pwpjq P Rn1ˆ1 and

pwpjqr :“
ÿ

kPT `j

W
p1q
r,k ´

ÿ

kPT ´j

W
p1q
r,k. (23)

Algorithm 2 Upper bound of maxxPB`8 rs;Rs
}∇fpxq}8

1: Compute M from (20)
2: for j P rnH s do
3: Compute pw

pjq
r from (23)

4: pv,Up0,jqq = ComputeLU( pw
pjq
r ,

tpLp´iq,Up´iq,WpiqquHi“1, tl1pi´1q, u1pi´1quHi“1)
5: U

p0q
j “ Up0,jq `

ř

kPTj
Mj,k

6: end for
7: return maxjPrnH sU

p0q
j

Combining upper bounds for both terms, we obtain
ÿ

j

|Yi,j | ď
ÿ

kPTj

Mj,k `Y
p´2q
j,: Σp1q pwpjq

In the same flavor with Theorem 1, this bound avoids the
worst case bound Mj,k for entries whose signs are known.

Notice that Yp´2q
j,: Σp1q pwpjq has exactly the same formation

of Yp´1q and we can call Algorithm 1 to get its upper bound.
Finally, assume that from Algorithm 1 we already ob-

tained tpLp´lq,Up´lqquHl“1, we summarize the algorithm to
compute upper bound of LS

8 in Algorithm 2.

Improve the bound for robustness verification. In some
applications (e.g., robustness verification), we only need to
bound }fpxq´fpsq} for a fixed s and x P Brs;Rs. Although
LBrs;Rs ¨ R gives a bound of }fpxq ´ fpsq}, we can make
this bound tighter by using an integral:
Theorem 2.

}fpxq´fpsq} ď

ż R

0

LBrs;tsdt ď LBrs;Rs ¨R,@x P Brs;Rs.

In practice, the integral
şR

0
LBrs;tsdt can be upper

bounded by evaluating at n intervals:
ż R

0

LBrs;tsdt ď
n
ÿ

i“1

LBrs;tis∆t, (24)

where we divide R into n segments t0 “

0, t1, t2, ¨ ¨ ¨ , tn´1, tn “ R, and ti`1 ´ ti “ ∆t.

Applications and Experiments1
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Figure 2: The largest radius R˚ within which no stationary
point exists, for network with different depths (2-10 layers)

Local optimization landscape. In non-convex optimiza-
tion, a zero gradient vector results in a stationary point, po-
tentially a saddle point or a local minimum. The existence
of saddle points and local minima is one of the main diffi-
culties for non-convex optimization (Dauphin et al. 2014),

1Source code for RecurJac and all experiments is available at
http://github.com/huanzhang12/RecurJac-Jacobian-bounds
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(a) MNIST 5-layer tanh activation
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(b) MNIST 7-layer ReLU activation
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(c) CIFAR 10-layer ReLU activation

Figure 3: Global and local Lipschitz constants on three networks. FastLip can only be applied to (leaky)ReLU networks.

runner-up target random target least-likely target
Network Method Undefended Adv. Training Undefended Adv. Training Undefended Adv. Training
MNIST
3-layer

RecurJac 0.02256 0.11573 0.02870 0.13753 0.03205 0.16153
FastLip 0.01802 0.09639 0.02374 0.11753 0.02720 0.14067

MNIST
4-layer

RecurJac 0.02104 0.07350 0.02399 0.08603 0.02519 0.09863
FastLip 0.01602 0.04232 0.01882 0.05267 0.02018 0.06417

Table 1: Comparison of the lower bounds for `8 distortion found by RecurJac (our algorithm) and FastLip on models with
adversarial training with PGD perturbation ε “ 0.3 for two models and 3 targeted attack classes, averaged over 100 images.

including optimization problems on neural networks. How-
ever, if for at least one pair of tj, ku we have Uj,k ă 0 or
Lj,k ą 0, the Jacobian Y will never become a zero matrix
within a local region.

In this experiment, we train an MLP network with leaky-
ReLU activation (α “ 0.3) for MNIST and varying network
depth from 2 to 10. Each hidden layer has 20 neurons, and
all models achieve over 96% accuracy on validation set. We
randomly choose 500 images of digit “1” from the test set
that are correctly classified by all models, and bound the
gradient of f1pxq (logit output for class “1”). For each im-
age, we record the largest `2 and `8 distortion (denoted as
R˚2 and R˚8) added such that there is at least one element
k in ∇f1pxq that can never reach zero (i.e., U1,k ă 0 or
L1,k ą 0). The reported R˚ are the average of 500 images.

Figure 2 shows how R˚ decreases as the network depth
increases. Interestingly, for the smallest network with only
2 layers, no stationary point is found in its entire domain
(R˚ “ 8). For deeper networks, the region without sta-
tionary points near x becomes smaller, indicating the diffi-
culty of finding optimal adversarial examples (a global op-
tima with minimum distortion) grows with network depth.

Local and global Lipschitz constant. We apply RecurJac
to get local and global Lipschitz constants on 4 networks of
different scales for MNIST and CIFAR. For MNIST, we use
a 10-layer leaky-ReLU network with 20 neurons per layer,
a 5-layer tanh network with 50 neurons per layer, a 7-layer
ReLU network with 1024, 512, 256, 128, 64 and 32 hidden
neurons; for CIFAR, we use a 10-layer network with 2048,
2048, 1024, 1024, 512, 512, 256, 256, 128 hidden neurons.

As a comparison, we include Lipschitz constants com-
puted by Fast-Lip (Weng et al. 2018a), a state-of-the-art al-

gorithm for ReLU networks (we also trivially extended it to
the leaky ReLU case for comparison). For our algorithm,
we run both the backward and the forward versions, de-
noted as RecurJac-B (Algorithm 1) and RecurJac-F0 (the
forward version). RecurJac-F0 requires to maintain inter-
mediate bounds in shape nl ˆ n0, thus the computational
cost is very high. We implemented another forward version,
RecurJac-F1, which starts intermediate bounds after the first
layer and reduce the space complexity to nl ˆ n1.

We randomly select an image for each dataset and as the
input. Then, we upper bound the Local Lipschitz constant
within an `8 ball of radius R. As shown in Figure 1 and
3, for all networks, when R is small, our algorithms signif-
icantly outperforms Fast-Lip as we find much smaller (and
thus in better quality) Lipschitz constants (sometimes a few
magnitudes smaller, noting the logarithmic y-axis); When R
is large, local Lipschitz constant converges to a value which
corresponds to the worst case activation pattern, which is
in fact a global Lipschitz constant. Although this value is
large, it is still magnitudes smaller than the global Lipschitz
constant obtained by the naive product of weight matrices’
induced norms (dotted lines with label “naive”).

For the largest CIFAR network, the average computation
time for 1 local Lipschitz constant of FastLin, RecurJac-
B, RecurJac-F0 and RecurJac-F1 are 2.4 sec, 10.5 sec,
1 hr and 5 hr respectively, on 1 CPU core. RecurJac-
F0 and RecurJac-F1 sometimes provide better results than
RecurJac-B (Fig. 3a). However when nH ! n0, RecurJac-B
is preferred due to its computational efficiency.

Robustness verification for adversarial examples. For a
correctly classified source image s of class c and an attack
target class j, we define gpsq “ fcpsq ´ fjpsq ą 0 that rep-
resents the margin between two classes. For x P B`prs;Rs,
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if gpxq goes below 0, an adversarial example x is found.
Using Theorem 2, we know that the largest R such that
şR

0
LBrs;tspgqdt ă gpsq is a certified robustness lower bound

within which no adversarial examples of class j can be
found. In this experiment, we approximate the integral in
(24) from above by using 30 intervals.

We evaluate the robustness lower bound on unde-
fended networks and adversarially trained networks pro-
posed by (Madry et al. 2018). We use two MLP networks
with 3 and 4 layers with 1024 neurons per layer. Table 1
shows that our algorithm can indeed reflect the increased
robustness as the certified lower bounds under “Adv. Train-
ing” column become much larger than “Undefended”. Addi-
tionally, when the adversarial training procedure attempts to
defend against adversarial examples with `8 distortion less
than 0.3, our bounds are better than Fast-Lip and closer to
0.3, suggesting that adversarial training is effective.

Conclusion
In this paper, we propose a novel algorithm, RecurJac, for re-
cursively bounding a neural network’s Jacobian matrix with
respect to its input. Our method can be efficiently applied to
networks with a wide class of activation functions. Applica-
tions of RecurJac include characterizing local optimization
landscape, computing a local or global Lipschitz constant,
and robustness verification of neural networks.
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