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Abstract

This paper explores machine learning to address a problem of
Partially Observable Multi-sensor Sequential Change Detec-
tion (POMSCD), where only a subset of sensors can be ob-
served to monitor a target system for change-point detection
at each online learning round. In contrast to traditional Multi-
sensor Sequential Change Detection tasks where all the sen-
sors are observable, POMSCD is much more challenging be-
cause the learner not only needs to detect on-the-fly whether a
change occurs based on partially observed multi-sensor data
streams, but also needs to cleverly choose a subset of informa-
tive sensors to be observed in the next learning round, in order
to maximize the overall sequential change detection perfor-
mance. In this paper, we present the first online learning study
to tackle POMSCD in a systemic and rigorous way. Our ap-
proach has twofold novelties: (i) we attempt to detect change-
points from partial observations effectively by exploiting po-
tential correlations between sensors, and (ii) we formulate the
sensor subset selection task as a Multi-Armed Bandit (MAB)
problem and develop an effective adaptive sampling strategy
using MAB algorithms. We offer theoretical analysis for the
proposed online learning solution, and further validate its em-
pirical performance via an extensive set of numerical studies
together with a case study on real-world data sets.

Introduction

Unsupervised learning for sequential monitoring of com-
plex systems (a.k.a., sequential change detection) is ubiqui-
tous in a wide range of applications, such as quality control
in manufacturing processes, logistic systems, transportation
networks, electrical grids, the internet of things (IoT) sys-
tems, etc. Typically, to capture information about the un-
derlying system state in real time, a massive array of vari-
ables are measured continuously and sequentially for prompt
change detection and timely decision making. However, in
practice, the acquisition of continuously measurements of
such a large amount of variables may be infeasible due to
resource constraints. For example, the number of available
sensors may be less than the number of interested variables
to be monitored due to expensive cost of the sensors; or at
each sensing epoch only a limited number of sensors can be
setin the “ON” mode for measurement due to limited battery
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lifetime. Furthermore, when the number of variables is large
and their measurement streams are generated in high veloc-
ity, real-time analysis may be significantly hindered due to
the constraints of system memory, storage space, transmis-
sion bandwidth, computational power and processing speed.
Consequently, in many applications, even if all variables can
be measured, only partial observations of them can be trans-
mitted back to the data fusion center for real-time analytics.

All the above constraints trigger the demand of new learn-
ing techniques to address the emerging challenge of Par-
tially Observable Multi-sensor Sequential Change Detection
(POMSCD), where only a subset of sensors can be observed
at each epoch for change detection. Specifically, consider a
system characterized by a set of p variables (for example,
in a manufacturing system, each variable corresponds to a
fabrication characteristic). Signals of these variables at each
sensing epoch ¢ are denoted as X(t) = [X1(¢),..., X,(t)],
where each value X;(t),i = 1,...,p is a scalar indicating
the state of the i system characteristic at the current epoch
t. We are interested in detecting the distribution changes of
the p variables in a sequential manner. However, due to the
constraints of limited sensing resources, we can only choose
to observe m out of p variables (m < p) at each sensing
epoch. The goal of machine learning for POMSCD is to de-
vise an online learning algorithm for sequential change de-
tection which dynamically chooses a subset of variables to
observe at each sensing epoch such that the detection power
can be maximized without violating the sensing constraints.

Our key contributions of this paper are twofold: (i) we
propose a sequential change detection scheme based on con-
fidence region of the system state which is estimated via
a Bayesian detection framework and can deal with missing
observations. The proposed confidence region takes correla-
tions of different variables into account and hence increases
the detection power; (ii) As the detection power is closely
related to the sensing resource allocation strategy, we formu-
late the learning problem as an online Combinatorial Multi-
armed Bandit (CMAB) task (Hoi et al. 2018), and solve it us-
ing an effective adaptive sampling strategy. In particular, at
each sensing epoch, the adaptive sampling strategy attempts
to choose a subset of sensors/variables that are most infor-
mative to observe for change detection at the next epoch;
(iii) Finally, we give theoretical analysis on the asymptotic
detection power of the proposed adaptive sampling scheme.



Related Work

Our work is related to the family of sequential change-point
detection works, which has been extensively studied in the
literature of statistics, machine learning and beyond (Xie
and Siegmund 2013; Tartakovsky, Nikiforov, and Basseville
2014; Chan 2017; Aminikhanghahi and Cook 2017). How-
ever, most existing studies assume all the variables with the
target system can be fully observable, which are not di-
rectly applicable to POMSCD in the partially observable
context. To the best of our knowledge, the only closely re-
lated works that attempt to address partial observations for
multi-sensor change detection are Liu, Mei, and Shi (2015)
and Xian, Wang, and Liu (2017). However, these two meth-
ods are traditional statistics-based approaches, and do not
exploit variables’ correlations. More critically, their detec-
tion powers are not satisfactory in some cases (which will
be demonstrated in numerical studies) due to their heuris-
tic adaptive sensor allocation strategies which are based on
the rule of thumb and cannot give theoretical guarantee. By
contrast, we propose the first online learning scheme for
POMSCD with rigorous theoretical guarantee, which care-
fully exploits the correlation of variables and dynamically
chooses the subset of informative sensors to maximize the
detection power.

Our problem is also different from adaptive resource al-
location problems such as ranking and selection (Nelson
et al. 2001), statistical adaptive monitoring (Tartakovsky et
al. 2006), multi-armed bandit (MAB)(Gai, Krishnamachari,
and Jain 2010; Even-Dar, Mannor, and Mansour 2006;
Bubeck, Wang, and Viswanathan 2013), active learning
(Kapoor et al. 2007) and online feature selection (Wang et
al. 2014), from the following perspectives: (i) In our prob-
lem, change patterns can be any mean shift and are unknown
in advance; hence, unsupervised learning is more suitable.
However, most of current change detection methods via ac-
tive learning or feature selection are based on supervised
learning, assuming abnormal patterns can be known be-
forehand for model training; (ii) We aim at a system-level
change detection. When a change occurs, we aim to mini-
mize the detection delay, while ranking and selection or tra-
ditional MAB studies aim at identifying which variable is
changed (Zhuang, Wang, and Wang 2017), i.e., detection in
the variable level. Consequently, they may not guarantee an
effective system-level performance; (iii) We allow different
variables to have correlations with each other, and such cor-
relation information can help for efficient detection. How-
ever, most existing works across the above often assume the
data streams are independent with each other.

Problem Formulation

Consider a system with p correlated variables, denote their
signals at sensing epoch ¢ as X(t) = [X1(¢),..., X, (t)].
Initially, X(¢) independently and identically (i.i.d) follows
a joint distribution p(X(t)|p) with the mean vector u. At
some unknown time epoch 7, an unusual event (a change)
occurs and affects an unknown subset of the p data streams
in the sense that if variable 7 is affected, the mean of its local
observations X;(¢) changes from p; to pi; for epoch ¢ > .
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The problem is to raise an alarm as quickly as possible af-
ter the change occurs. This mean (location) shift is a popu-
lar change pattern considered in many works, especially for
statistical process control in manufacturing (Montgomery
2009). Without loss of generality, we set the before-change
mean vector as g = 0 when the system is in the normal con-
dition, and set the post-change mean vector as p, # 0. Due
to limited sensing resources, at each sensing epoch, we can
only observe m out of p variables (m < p). By introducing
the binary decision variable z;; for each variable X;(¢) such
that z;; = 1 if and only if X;(¢) is observed at epoch ¢, the
sensing constraint can be expressed as » ¢+, z;; = m, VL.
We denote by Z(¢) the vector of indices corresponding to
the selected variables/sensors for observations in X ().

A general detection scheme to decide whether a change
occurs is defined as a scheme of stopping time 7" associated
with a test statistic A(t), V¢. Typically, one can define T =
inf; {A(t) > h} where h is a pre-defined constant threshold.
The interpretation of 7' is that, when 7' = n, the scheme
stops at epoch n and declares that a change has occurred in
some variables somewhere in the first n time epochs. We
want the scheme to stop as soon as possible after a change
occurs (in the abnormal condition) but will continue moni-
toring without raising false alarms as long as possible if no
change occurs (in the normal condition). In other words, we
want P(A(t) > h) as small as possible in the normal case
and as large as possible in the abnormal case. The perfor-
mance of a scheme 7" can be evaluated by two performance
indicators: the Average Run Length (ARL) before a false
alarm occurs in the normal case, i.e., ARLy = E(T |t = o0)
and the Average Detection Delay (ADD) in the abnormal
case, i.e., ADD, = E(T — 7|T > 7,7 < 00). In prac-
tice, the problem can be equivalently formulated as finding
a change detection scheme 7" that minimizes the ADD per-
formance subject to a constraint imposed on the AR Ly, i.e.,
ARLq must be greater than a predefined constant that essen-
tially controls the global false alarm rate.

Our Method

Consider a general change detection scheme for POMSCD,
at each epoch t, it first determines if the system is still in
normal condition. If no, an alarm is triggered; otherwise, it
determines the sampling strategy i.e., Z(t + 1) to choose a
subset of sensors to observe at the next epoch ¢4 1 within the
sensing constraint. In particular, we address the following
two issues: (1) how to construct a change detection scheme
for the partially observed data streams with consideration of
their correlations; and (2) how to learn a good strategy to
determine which m out of the p variables to be sampled at
each epoch to increase the detection power of the scheme.

Online Weighted Bayesian Change Detection

Assume up to the current epoch n, no change alarm is trig-
gered. Then based on Z(t),t = 1,...,n, we can estimate
the current system state, i.e., the mean vector p of the p
variables. Here we adopt the Bayesian posterior estimator
approach. Since samples at recent epochs are more likely to
represent the current system state and can better identify the



potential system changes than the past epochs, we would like
to stress more effort on the current epochs in the estimation.
As such, we enforce time decayed weights w}',t =1,...,n
on the n samples, in the sense that wi < wy < ... < wy,
and get the weighted posterior distribution of g is

P(lXz1)s - Xz@n)) X po(pt) HP(XZ(t)lu')wt , (D
t=1

where Xz, is the vector of observed variables of X(t),
and po () is the prior distribution. In this paper, we use the
exponential decaying weight, i.e., w? = (1 — \)"~! with a
small positive value A € (0, 0.1]. Then (1) can be written in
an incremental way as

p~(l“l‘|XZ(1)77XZ(n)) = (2)

PXza), - Xzm-1) Xz ).

Following many previous works(Xie and Siegmund 2013;
Liu, Mei, and Shi 2015), in this paper we assume X(¢)
follows a Gaussian distribution with covariance matrix 3.
Though there also exist some works that consider more gen-
eral distributions, all the current works are constructed in a
FULLY observed context, and cannot be applied in our case.
Since our main contribution is change detection with ADAP-
TIVE SENSOR ALLOCATION for PARTIAL OBSERVED
DATA STREAM, we focus on the most classical setting and
would extend to more complex scenarios in future. In partic-
ular, by setting po(u) to be non-informative, (2) also follows
a Gaussian distribution with mean g,, and covariance matrix
V,, which can be calculated incrementally as:

V= (=0 B2 Bz,

Here X (4 is the Z(t) rows and columns of X, and E ;) €

R™*P, Its i'™ row is a unit vector who has 1 at the position
of the i'" element in Z(t) and 0 otherwise.

Note that p,, of (3) is estimated by considering the cor-
relation of different variables. For each variable 1, its esti-
mated (,; is not only based on the past observations of it-
self X;(t),t =1,...,n, but also on past observations of the
other variables X(t),j # i,t = 1,...,n. In other words,
even if variable ¢ is not observed at epoch n, its mean pi,;
will still be updated according to its correlations with the
other observed variables at epoch n.

Based on (3), we can get the 1 — « confidence region
of the current system mean vector p as C, = {u|(u —
u’n)lvgl(u - ll'n) S X]%,l—a}’ where X?),l—a isthe 1 —
upper critical value of X?g distribution with p degree of free-
dom. Then if 0 € C,, it means that we can not reject g = 0
with 1 — « confidence, and vice versa. As such, we can con-
struct the test statistic as

A(n) = (0 - l'l’n)lvgl(o - I’Ln) = N;Vr:ll‘n- “
Now we evaluate some theoretical properties of (4) in both
normal and abnormal conditions.

3

Lemma 1 When the system is still in the normal condition
with p = 0, as X — 0, A(n) asymptotically follows a X,
distribution with p degree of freedom.
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Based on Lemma 1, we can set a detection threshold h for
A(n) according to a pre-specific confidence level « (false
alarm rate), and define that if A(n) > h, the test statistic
triggers an abnormal alarm.

Lemma 2 When the system goes to an abnormal condition
with i = p, since the first epoch with T = 1, as A — 0,
A(n) asymptotically follows a non-central chi-square distri-
bution x?(cy) with the non-centrality

n
AT wauéz(t)zg(lt)ﬂcz(t)-
t=1

Lemma 2 shows that the detection power of A(n) is related
to the non-centrality c,,. A higher ¢,, indicates a larger detec-
tion power. Furthermore, ¢,, depends on V,,, which is further
related to Z(t),t = 1,...,n. As such, it is desirable to con-
struct an adaptive sampling strategy to maximize c,,.

Adaptive Sampling for Sensors Selection by
Combinatorial Multi-armed Bandit

The problem of choosing a subset Z with |Z| = m from
p variables at each sensing epoch n is similar to MAB
with multiple plays (Gai, Krishnamachari, and Jain 2010;
Komiyama, Honda, and Nakagawa 2015; Xia et al. 2016;
Zhou and Tomlin 2018). However, we note that in our prob-
lem c,, cannot be decomposed as a combination of m sep-
arate functions of p.;,7 € Z(t), i.e., not a linear function
of the m selected variables. By contrast, different variables
have cross-influence on each other via the precision matrix
Py = Eg(lt). Furthermore, the cross-influence magnitude

between two selected variables, say ¢ and j, is further depen-
dent on the other selected variables z € Z(t), z # i, j, since
(®z,)ij # (Pg,)q; if two sets Z; # Z,. This means that
we cannot simply select these m variables one by one.

Instead, we propose to re-formulate the problem as a
Combinatorial Multi-armed Bandit (CMAB) task, where we
treat a set Z as a super arm, with M = ( 7’;) super arms in
total, and our goal is to select the best super arm. Specifi-
cally, we define the set of all super arms as Z = {Zy, k =
1,..., M}. The reward of choosing Zj, at epoch t is

rk(ﬂ%) = l*l’/cZk q)ZkIJ‘cZk = Z Z (bijZkMCi,U/Cja (5)
€2y JEZK

where ¢;;z, is the (,j) component of ®, . We are inter-
ested in designing a sampling strategy for this CMAB prob-
lem that performs well with respect to time decayed expected
regret, which is defined as

RZ(I"C) - Z wllr* - EW(Z w?r‘ﬂ'(t) (H’c))v (6)
t=1 t=1

where 7 = p . Pz« . is the reward of the optimal
super arms. Here Z* denote optimal arms, which are not
necessarily unique. In particular, denote the true changed
variable set of the p variables as Z“, with the cardinal-
ity |Z% = a. If a < m, the optimal super arms Z*
are any set that includes Z¢, ie., Z* C Z*. If m < a,
the optimal super arm is a unique subset of Z¢ satisfying



Z* = argmaxyc za | z|=m M.z Pz .7 In other words, the
optimal sampling strategy is to select all the changed arms
i € Z° (if a < m) or select the best subset of the changed
arms (if a > m).

Though CMAB has attracted increasing attention re-
cently, most of existing works focus on linear reward func-
tions(Gai, Krishnamachari, and Jain 2010; Durand and
Gagné 2014). However, as mentioned earlier, our reward
function r(w,.) is nonlinear with the individual arms
leir® € Zy. So far to our best knowledge, the only related
work for CMAB with non-linear reward functions is Chen
et al. (2016). However, this work has additional assump-
tions that the reward functions of super arms should have
the monotonicity property: the expected reward of playing
any super arm Z € Z is monotonically nondecreasing with
respect to their expectation vector, i.e., if forallt = 1,...p,
tei < pli, we have rz(p,) < rz(pl.),VZ € Z. Clearly,
this cannot be satisfied in our case. Consequently, direct ap-
plying these sampling strategies in the literature to our case
would lose their regret bound and lead to poor detection
power. As such, in this paper we develop a new CMAB strat-
egy tailored for our reward function, based on the UCB al-
gorithm. In particular, for each variable ¢ at epoch n, the
1 — 2InvNorm(,/7;,) confidence interval of its mean j; is
[Hni = \/TnUnis Bni + \/TnVni)» Where vy; is the i diago-
nal item of V,, representing the variance of the posterior
distribution of y;. Then the upper confidence bound of the
estimated reward of choosing Zj, at epoch ¢ based on p,, is

Z Z Pijz,, (Mm: + sgn(oi;z,, I-Lnil-’»nj)sgn(,uni)\/'ynvni)

i€Zy, jEZy
)

X <Mnj + Sgn(¢ijzk NniN7Lj)Sgn(N7Lj)\/'annj)

= Z Z Dijz), Bnifing + \/’Y'rﬂbgjzkﬂ%ivn_i

i€Z) JEZy,

2 2 2
+ \/’Yn(ﬁijzk Mnjvin + Yn \/¢ijzkvnivnj7

where sgn(z) = 1,Vz > 0 and sgn(z) = —1,Vz < 0.
The first part of (7) emphasizes on exploitation of the best
super arm so far we estimate, while the last three parts of
(7) emphasize on exploration of other potential super arms
by considering the estimation uncertainty. The term +,, bal-
ances exploitation and exploration. The bigger it gets, the
more it favours arms with high v,,; (exploration). If y,, = 0,
the algorithm is greedy. In our algorithm, we set -, as
exp(vn) = 2(1—(1—X)")/A. Then we can select the supper
arm Zj, that maximizes (7) as the variable set to be sampled
for epoch n + 1. The detailed adaptive sampling strategy is
shown in Algorithm 1.

Theorem 1 By setting vy, = 210g(#), the RT (p,)

of Algorithm 1 is at most
411/2;&)211 + 2H(i)zl ||1

[2(max A,

2m(1 — (1 — )\)”)}pAmax,

I—(1=A\)"
AQ

)qlog(

)+
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Algorithm 1: CMAB for adaptively sampling Z;

Input: Data streams X,,,n =1,...,
initialize v,,, m=1,..., M
forn=1,...,[p/m] do

Observe any m variables that have not been

observed so far.

| Update p(n) and V,, according to (3).
forn=[p/m]+1,...do
Select Z € Z for Z(n + 1) by maximizing

Z Z ¢1’jZ,UJni,Ufnj + \/ ’Ynd)?jz,uf%ivnj (8)

i€Z jez

+\/’Yn¢?jzﬂ121jvni + Tn \/(b?jzvnivnj-

where fizy € R™* with elements {|pc;|}

JjE€Z t)’

<i)Z(t) €  R™™ with elements {\¢”|}”€Z(t),

Az, = IJ’CZ*(PZ*IJ’(,Z* ch,‘I)Zlchlv q = 11
4y, B, 1+2||®

maxz, Ay ®z 1420 % < 1 while ¢ = 2 otherwise.

AZl

Proof 1 7o derive and bound the decayed expected regret of

Algorithm 1, we can analyze the expected number of times

that each non-optimal super arm is played, and sum this ex-

Zectation over all non-optimal super arms. In particular, we
ave

=FEnr [Zth’ _Zwt Tr(t) (Ke))

where T} (n) means the weighted number of epochs that Z;
is chosen from epoch 1 up to epoch n.

We introduce {T;(n)},j = 1,...,p,n = 1,... as a
counter after the initialization period. It is updated in the
following way: At each time epoch after the initialization
period, one of the two cases must happen: (1) an optimal
super arm is played; (2) a non-optimal super arm is played.
In the first case, set Tj(n) = T;(n — 1),¥j =1,...,p, and
Tj(t) = T](t) . (1 - )\)7Vj = 17...,p,t = 1,...,7’1 — 1.
When a non-optimal super arm Z), is picked at time n, be-
sides updating T;(n) by the same way as the first case, we
choose j' € Z, such that j’ = argminjez, Tj(n — 1). If
there are multiple such arms, we arbitrarily pzck one, say
J', and increase Tj/(n) by 1. In this way, each time a non-
optimal arm is picked, exactly one element in Tj (n) is incre-
mented by 1. This implies that the total “weighted” number
we have played the non-optimal super arms up to epoch n

is equal to the sum of all counters in {T;j(n)}1.,. Therefore,

we have
> E[Ti(n)] = E[T;(n)].
leZ j=1

In the proof, for explanation clarity, we abuse notation and
denote ., as [i,,. Without loss of generality, we further as-
sume diag(X) = 1 by assuming all the data have been nor-
malized. The extension to other X is straight-forward. De-

note I;(n) as the indicator function which is equal to 1 if

> Amaz Z E[’Tl (n

lez



Tj (n) is added by one at time n. Let d be an arbitrary posi-
tive integer. Then

n

Zwt{l t)}<d+Zwt{I T;t—1)>d}. (9)

When I;(t) = 1, a non-optimal super arm Z(t) is picked
from which arm j = argmin;ez ) Tj(t — 1) is selected to
update. Then we have

Tj(n) < d+ Zw?{ Do D Plihwifg [ ndRadvey

i€EZ* jEZ*

+ \/’Ytd);?,utjvtz + 7 ¢:J VtiUtj
< DD buzwwidig + N AP Y

1€Z(t) jeZ(t)

+ \/Vtgs?iz(t)ﬂ%j'vti + 7t \/¢?jz(t)vtivtj7,fj (t - 1) > d}

Note that d < T;(t—1) = minje ) Tj(t—1), this indicates
T;(t) > d,Vj € Z(t). The second part of (9) indicates that
at least one of the following must be true:

Z Z Brsbuifiy < Z Z Diticitte; — \/ VP 17 vt

i€Z* jEZ* i€Z* jEZ*
(10)
- \/’Yt%*-izﬂfjvti = \/¢fj21)tivtj;
Z Z Gijz(t)ftifity = Z Z bijztybeite; (11)
1€Z(t) jEZ(L) i€Z(t) JEZ(t)
+ \/’Yt(z)?jza)ﬂ?ivtj + \/’Yt¢?iz<t)ﬂ?jvt¢ + 7t \/¢?jz(t)vtivtj;

DD Bhteine; < D D bijz(yteibtc (12)

1€EZ* jEZ i€EZ(t) JEZ(t)

+ 2\/’Yt¢?jz(t)ﬂ?ivtj + 2\/7t¢?iz(t)ﬂfjvti + 2t 4 /¢sz<t)vnvtj~

Now we first find the probability upper bound for (10). In
particular,

OIS 3 Pl 2 v £ 3 el 2

i€Z* i€z* ti

by setting v, = 2 log(l_(iig’\)n), we have P[(10)] <
mA?
T=(1—n)t
2
Similarly, we can also get P[(11)] < %
Now we derive the upper bound of (12).

PlA2)] =P |Agiy S D D 2/ 5 iives

i€EZ(t) JEZ(t)
+2w/%¢jiz(z)“tj”ti + 2'}’15
<P AZ(t) < 4Hz(t)‘1’z(t)1\/ Lt 2||‘I>Z(t)”1*} .

If d > ~, we have

ijZ(t)”ti”tJ’

[ L, & = ¥
Pl2)] <P Az < @i B2 T+ 2@z 10y 7 | -

This means that as long as we set d >

4ﬁlzlq>ZlI+2Hq’Zl ||1
i N

maxy
!

is false. If d <y, we have
o & . gl
Pl(12)] <P Az < (4 @201+ 2@ 20 l1) L

2
> v¢ the condition of (12)

This means that as long as we set d >
Ay ®7,1+2||® .
maxy, —-t ZlAZ ! lell)'yt the condition of (12)
l
is false.

apl, @2 1+218z, 01 \"  1-(1-An
z 1 H ]H lOg( ( ) )

E[T;(n)] <2 (max

z AZL A2
—t
+2mz T A)t )"
4, ®71+2||®7, |1\ 1—(1=M\)"
< 2 | max 2 =% ! ZlH log(i( 5 ) )
! Az, by
+2m(1—(1=N)"),
4p'y B2, 14+2||®
where ¢ = 1 if maxg, L Z’AZ 12212 <landq =2

otherwise. Consequently, we can conclude Theorem 1.

Corollary 1 Asn — oo, 1 — (1 — \)™ — 1, which is fixed.
Then we have R () is asymptotically bounded by

4, @714+ 2||® 7|1\ ° 1
Roo = |:4 (max Zi % 121 log(x)+2m

A .
A AZZ PAmazx

With Corollary 1, we can bound the asymptotic expected
detection power of A(n).

Corollary 2 When A — 0 and T = 1, the asymptotic ex-
pected detection power of A(n) as n — oo based on the
adaptive sampling strategy in Algorithm 1 is bigger than

_Qg(\/ C*_Roov\/];‘)a

where ¢* = p, ;. ®zepi ., and Q)5 is the Marcum Q-
function.

The whole proposed change detection scheme is as fol-
lows. For each new online sample X(n), we first observe
its values X 7,y and get A(n) according to (3) and (4). If
A(n) > h, the scheme triggers an abnormal alarm and the
system stops for diagnosis. Otherwise, the scheme decides
Z(n + 1) by Algorithm 1.

Remark 1 When m or p is big, searching all the M = (fr’l)
super arms might be time consuming, and the algorithm
might be impractical for very large-scale problems with
limited data processing resource. Therefore a more time-
efficient algorithm is desirable. Recall that it is ® 7 that
makes ¢, a nonlinear function of the selected variables.
If we force ®z;) to be a diagonal matrix, we can re-
move all the cross-influence and make c,, as the simplified
Crn = Dby 2iez() w2, which is a linear (and monotone)

function of the square of each arm’s reward, 1i2,. In this case,
sampling Z based on (8) in Algorithm 1 is degenerated to the
following strategy: calculating

T, = |/’an| + vV InUni, (13)



ranking r; from the largest to smallest as r(1y > 72y >
..+ = T(p), and selecting the variables with 7(1y, ..., T(m)
as Z(n + 1). The selection by (13) is similar to the CMAB
strategy in Chen et al. (2016).

In the following experiments, we denote the proposed de-
tection scheme for POMSCD using the CMAB algorithm in
Algorithm 1 with strategy (8) as “CMAB”, and the detection
scheme for POMSCD using the simplified CMAB strategy
in (13) as “CMAB(s)” for short.

Numerical Studies

We conduct extensive experiments on both synthetic and
real-world data sets, to evaluate the performance of the pro-
posed POMSCD detection schemes with the two CMAB
strategies, i.e., “CMAB” and “CMAB(s)”. We compare our
schemes with the following existing baselines:

o TRAS: the top-r adaptive sampling detection algorithm in
Liu, Mei, and Shi (2015);

e NAS: the nonparametric anti-rank adaptive sampling al-
gorithm in Xian, Wang, and Liu (2017);

In addition, we also include two additional variants of our
detection scheme as follows:

e RAND: a variant of the proposed POMSCD scheme by
replacing the adaptive sampling strategies (CMAB or
CMAB(s)) with a random strategy, i.e., Z(n+1) is drawn
by randomly sampling m from a total of p variables;

e ORACLE: the proposed detection scheme for POMSCD
but assuming all the p variables are fully observable at
each epoch. Clearly, this is just an oracle scheme and used
as a performance upper bound of our detection scheme.

Synthetic Data Experiments

Our experiments considers two settings, p 10 and
p = 100 respectively. For both settings, we set (%);; =
0.5,Vi # j, m = 5 and A = 0.1, and consider the fol-
lowing two change patterns: (i) The first ¢ variables have
the same mean shift magnitude with the same sign, i.e.,

p.=1[1,...,1,0,...,0] x d; (ii) The first ¢ variables have
N——

q
the same mean shift magnitude with opposite signs, i.e.,
p, = [1,-1,1,...,1,—-1,0,...,0] x &; where 0 is the

q
shift magnitude. We set ¢ = 4 for p = 10 and ¢ = 16
for p = 100. For each algorithm, we set its h such that its
ARLy = 200, and we evaluate its detection performance
in terms of ADDsqg with 7 = 50. All the ADDs in sub-
sequent simulations are calculated based on 10000 simula-
tion replications. For TRAS, we set its parameter r = m,
tmin = 0.25 and A = 0.03 for both settings according
to the recommendation of Liu, Mei, and Shi (2015). For
NAS, we set its parameter k = 0.5, and A = 0.04 for
p = 10 and A = 0.1 for p = 100 following the algorithm
of Xian, Wang, and Liu (2017). Their performances for the
two change patterns are shown in Tables 1-2.

It is clear that for both change patterns in both settings,
except for ORACLE that is infeasible in practice, CMAB
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has the smallest ADD, followed by CMAB(s). Compared
with these two schemes, RAND has weaker detection power,
which validates the efficacy of the proposed adaptive sam-
pling algorithm. However, when p is small (e.g..,p = 10),
RAND still outperforms TRAS and NAS, indicating the su-
periority of the proposed online change detection scheme
for POMSCD. Furthermore, for the same shift magnitude,
the proposed detection schemes (CMAB, CMAB(s), RAND
and ORACLE) generally have better detection performance
on pattern (ii) than pattern (i). This is reasonable since the
detection power is largely determined by the Mahalanobis
distance of the shifted mean vector from the normal one,
ie, A = p/ X 'u,. Given ¥ and the change patterns in
our study, we have A;;y > A(;). However, as TRAS does
not consider the correlations of variables in the detection
scheme, it is not expected to have a better detection result
for pattern (ii) than pattern (i). For NAS, it has the weak-
est detection power for pattern (i), since its test statistic is
based on the ranks of different variables. When different
variables shift in the same direction, their ranks will not
change very much, and consequently NAS would have un-
satisfactory performance.

To further examine the influence of m on the detection
performance, Table 3 shows the ADDs of different methods
on change pattern (i) with 6 = 0.5 using different m, in the
setting p = 10. Clearly, as m increases, all the methods have
smaller ADDs, and their relative performances are similar to
those in Tables 1-2, where CMAB has the best performance.

Case Study on Real-world Data

We use a real data set from a semiconductor manufacturing
process to demonstrate the application of our methodology.
The data set is publicly available in UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml/datasets/SECOM).
It contains in total 1,567 wafer samples from a semicon-
ductor manufacturing process. Among them, 1,463 samples
are classified as conforming ones (normal samples), while
the remaining 104 samples are classified as nonconforming
ones (abnormal samples). After preprocessing, each sample
consists of measurements of 31 variables in each wafer pro-
duction. Figure 1 shows the correlations of the 31 variables
calculated based on all normal samples. We can see that
different variables have strong cross-correlations with each
other. This indicates considering variable correlations in the
anomaly detection scheme is essential.

We construct the online change detection context as fol-
lows: for every simulation replication, at each sensing epoch
t < 7, we draw a sample X (¢) from the 1,463 normal sam-
ples randomly and sequentially with replacement. At each
sensing epoch 7 < ¢, we draw a sample X (¢) from the 103
abnormal samples randomly and sequentially with replace-
ment. We set 7 = 50. Furthermore, though the data set has a
total of 31 variables for each sample, in our experiment, we
assume only m out of 31 variables can be observed for each
X (t). Similar to synthetic data experiments, we apply the
change detection schemes to detect the abnormal wafer sam-
ples from the streams. Their calculated ADDs based on dif-
ferent m are shown in Table 4. As expected, CMAB achieves
the best performance and both CMAB and CMAB(s) signif-



Table 1: Average Detection Delays (ADDs) of different methods for change pattern (i).

p=10 p =100
0 NAS TRAS RAND CMAB(s) CMAB ORACLE NAS TRAS RAND CMAB(s) CMAB ORACLE
0 200 200 200 200 200 200 200 200 200 200 200 200
0.25 165 81.2 81.6 34.3 25.4 13.9 198 151 196 137 114 41.3
0.5 157 41.1 24 .4 9.15 6.94 4.60 197 91.9 195 61.3 48.5 6.31
0.75 154 28.3 8.68 4.83 3.87 3.04 196 69.5 193 23.5 16.5 3.35
1 152 21.3 4.46 3.50 2.95 2.24 196 57.5 190 13.1 8.91 2.44
1.25 140 17.3 3.96 2.56 2.01 1.85 194 52.5 187 8.42 5.43 2.08
1.5 135 14.3 3.14 2.14 1.87 1.65 195 45.6 152 5.53 4.90 1.82
1.75 132 12.6 2.90 1.75 1.52 1.48 192 42.9 32.7 4.43 3.86 1.65
2 129 11.2 1.76 1.61 1.44 1.38 194 39.0 17.2 3.99 3.45 1.50
Table 2: Average Detection Delays (ADDs) of different methods for change pattern (ii).
p=10 p =100
1 NAS TRAS RAND CMAB(s) CMAB ORACLE NAS TRAS RAND CMAB(s) CMAB ORACLE
0.25 109 119 55.4 24.1 19.4 10.6 168 178 198 136 112 30.3
0.5 50.5 81.1 16.8 6.97 5.03 3.64 87.3 90.7 196 63.5 49.3 5.03
0.75 28.5 40.6 7.50 4.08 3.12 2.50 57.2  68.9 195 18.4 11.2 3.23
1 19.5 28.1 4.60 3.13 2.21 2.01 36.2  57.0 193 9.12 5.32 2.42
1.25 15.1 21.2 3.12 2.34 2.01 1.84 29.5 497 190 5.78 4.14 1.93
1.5 13.3 17.3 2.62 2.07 1.98 1.61 20.1  45.1 101 4.27 3.64 1.69
1.75 11.7 14.1 2.22 1.84 1.72 1.58 19.6 423 24.8 3.98 2.95 1.65
2 11.3 12.6 1.92 1.71 1.64 1.57 17.5 38.8 14.9 3.11 2.49 1.48

variable index

15 20 25 30
variable index

Figure 1: Correlations of the 31 variables of normal samples
in the real-world data application.

icantly outperform the baselines. This further confirms the
superiority of the proposed methodology.

Conclusions

This paper presented a novel unsupervised online learn-
ing scheme for Partially Observable Multi-senor Sequential
Change-point Detection (POMSCD) in the context of lim-
ited sensing resources available for monitoring changes of
a system with multivariate streaming data. We tackled two
open challenges of POMSCD: (i) how to construct an effec-
tive online change-point detection scheme from multi-sensor
data streams with partial observations; and (ii) how to adap-
tively allocate sensing resources to collect the most informa-
tive observation in order to maximize the detection power.
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Table 3: ADDs of different methods for pattern (i) with dif-
ferent m for 6 = 0.5 in p = 10.

m NAS TRAS RAND CMAB(s) CMAB
3 185 78.2 31.6. 20.3 152
5 157 41.1 244 9.15 6.94
7 782 365 14.1 7.25 6.12
9 421 28.7 10.0 6.24 5.21
10 214 19.1 7.24 5.15 4.85

Table 4: ADDs of different methods on the real data set.

m NAS TRAS RAND CMAB(s) CMAB
3158 917 624 59.1 37.4
5 132 715 483 44.3 28.0
10 121 557 413 39.1 24.2
20 114 482 359 29.1 19.9
30 106 40.1 304 24.1 16.4
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