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Abstract

In real-world applications, data are often with multiple
modalities, and many multi-modal learning approaches are
proposed for integrating the information from different
sources. Most of the previous multi-modal methods utilize
the modal consistency to reduce the complexity of the learn-
ing problem, therefore the modal completeness needs to be
guaranteed. However, due to the data collection failures,
self-deficiencies, and other various reasons, multi-modal in-
stances are often incomplete in real applications, and have
the inconsistent anomalies even in the complete instances,
which jointly result in the inconsistent problem. These degen-
erate the multi-modal feature learning performance, and will
finally affect the generalization abilities in different tasks.
In this paper, we propose a novel Deep Robust Unsuper-
vised Multi-modal Network structure (DRUMN) for solv-
ing this real problem within a unified framework. The pro-
posed DRUMN can utilize the extrinsic heterogeneous infor-
mation from unlabeled data against the insufficiency caused
by the incompleteness. On the other hand, the inconsis-
tent anomaly issue is solved with an adaptive weighted es-
timation, rather than adjusting the complex thresholds. As
DRUMN can extract the discriminative feature representa-
tions for each modality, experiments on real-world multi-
modal datasets successfully validate the effectiveness of our
proposed method.

Introduction
With the development of data collection techniques, a huge
number of multi-modal data can be collected from different
channels, e.g., the articles are always with image and text in-
formation, the videos include the image, audio and text. And
multi-modal learning approaches aim to utilize these multi-
ple information, in which different modalities can comple-
ment each other to improve the generalization abilities of the
whole learners, e.g., Yang et al. (2015) extracted informative
features of weak modality with the auxiliary strong modal-
ities; Arora, Mianjy, and Marinov (2016) studied the partial
least square problem as a stochastic optimization problem.

Considering the labeling costs, subspace embedding
based unsupervised multi-modal methods, have been at-
tracted many researches, which mainly aim to obtain a dis-
criminative latent subspace shared by multiple modalities.
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As a consequence, with the learned subspace, it is straight-
forward to conduct the subsequent tasks, such as clustering,
retrieval, etc. Recently, incorporated with the deep models,
the deep unsupervised multi-modal methods are also pro-
posed, e.g., Ngiam et al. (2011) proposed the multi-modal
deep auto-encoder to learn a shared representation between
different modalities; Kan, Shan, and Chen (2016) used a
multi-modal deep network MvDN to seek a non-linear dis-
criminant and modal-invariant representations. It is notable
that previous multi-modal learning methods mainly concen-
trate on utilizing the consistency principle between different
modalities, which can reduce the complexity of the learning
problem, therefore, it is necessary to ensure that all instances
have complete modal information and consistency between
different modalities.

While in real applications, note that there are many rea-
sons for incompleteness, including data collection failures
caused by the damage of data sensors, data corruptions from
network communication, data privacy policies, etc, e.g., the
articles may miss the images or texts as shown in Fig. 1. Ex-
isting multi-modal learning approaches cannot directly ap-
ply on the incomplete modal situation unless removing the
incomplete instances, yet the model trained will clearly loses
information. Aiming at this issue, there are some prelimi-
nary investigations, Shao et al. (2016) learned the latent fea-
ture matrices for each incomplete modality and pushes them
towards a common consensus; Yang et al. (2018) utilized the
extrinsic information from unlabeled data against the insuf-
ficiencies brought by the incomplete modal issues. However,
these methods are mainly linear methods, which are difficult
to extend to non-linear situation, and rarely consider the in-
consistent anomalies in the complete situation.

On the other hand, considering the noise effects, even
the complete instances are not necessarily consistent, which
can be defined as “inconsistent anomalies”. Note that dif-
ferent from standard single-modal anomalies, there are two
cases of inconsistent anomalies defined as (Zhao and Fu
2015), i.e., class-anomalies exhibit inconsistent characteris-
tics across different modalities; feature-anomalies exhibit in-
consistency on all modalities as shown in Fig. 5. Thus, Iwata
and Yamada (2016) proposed probabilistic latent variable
models for multi-modal anomaly detection; Fan et al. (2017)
considered the confidence levels of both modalities and in-
stances. While these methods are always with many hyper-
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parameters for adjusting, which are unprocurable.
In conclusion, there are many reasons for modal incon-

sistency in real applications, including the incompleteness
and the inconsistent anomalies. To solve these problems,
DRUMN utilizes the deep energy based model for each
modality to handle the heterogeneous incomplete multi-
modalities, while maximizing the consistency among the ho-
mogeneous multi-modalities simultaneously. With the het-
erogeneous information and consistency constraints, the in-
completeness problem can be relieved. Meanwhile, an adap-
tive weight estimation for inconsistent anomalous instances
can be naturally embedded into our proposed approach, thus
it can also adopt for eliminating the influence of anomalies
rather than setting thresholds as traditional methods.

In the following of this paper, we start with a brief review
of related works. Then give the DRUMN approach and the
experimental results. After that, we conclude the paper.

Related Work
The exploitation of multi-modal learning has attracted much
attention recently. And the basic assumption behind these
methods is the consistent principle, while realistic appli-
cations are hard to satisfy this assumption. In this paper,
our method concentrates on deep robust multi-modal feature
embedding in an unsupervised scenario for handling the in-
consistent problem. Therefore, our work is related to unsu-
pervised multi-modal feature embedding and robust multi-
modal learning.

Most unsupervised multi-modal methods are mainly
based on subspace learning, which fully utilize the con-
sistency between multiple modalities to find a discrimina-
tive shared subspace, e.g., Shrivastava et al. (2015) pro-
posed CCCM, which enforces the consistency across all
available modalities; Rupnik and Shawe-Taylor (2010) pro-
posed the multi-modal CCA (MCCA) to find a common sub-
space for different modalities. Considering that deep net-
works can learn nonlinear feature representations without
suffering from the drawbacks of nonparametric models, An-
drew et al. (2013) used the Deep Canonical Correlation
Analysis (DCCA) to learn complex nonlinear transforma-
tions for two modalities; Wang et al. (2015) proposed the
deep canonically correlated auto-encoders (DCCAE), which
combines the DCCA and deep auto-encoders in one uni-
fied framework. These multi-modal methods mainly utilize
the modal consistency with complete modalities. However,
multi-modal instances are always with incomplete features
and exist inconsistent anomalies.

Therefore, many researchers have devoted to learning
robust multi-modal methods. For incomplete problem, Li,
Jiang, and Zhou (2014) established a latent representation
where the different modalities of the same example are
close to each other; Shao, He, and Yu (2015) proposed
the MIC based on weighted nonnegative matrix factoriza-
tion with L2,1 regularization. However, these methods are
mainly linear models, which are difficult to learn more dis-
criminative feature representation, and rarely consider the
inconsistent anomalies. On the other hand, handling the
anomalous data is a relatively new topic, Iwata and Ya-
mada (2016) proposed probabilistic latent variable models

for multi-modal anomaly detection; Zhao and Fu (2015) pro-
posed a novel dual-regularized multi-modal outlier detection
method. However, the performance of these methods is sub-
ject to the hyper-parameters, which are sensitive to noise.

In this paper, a novel Deep Robust Unsupervised Multi-
modal Network (DRUMN) is proposed, which considers
both the incomplete and anomalous multi-modal data in a
unified framework to solve the inconsistent problem. Specif-
ically, DRUMN utilizes the deep energy based model for
each modality to handle the heterogeneous multi-modal
data, while maximizing the consistency between the homo-
geneous multi-modal examples simultaneously, besides, an
adaptive weight estimation method is utilized for inconsis-
tent anomalies detection, which considers the energy vari-
ance of the sample uncertainty sequence, rather than setting
thresholds of sample uncertainty for eliminating both class
and feature anomalies jointly. Finally, more discriminative
feature can be achieved.

Proposed Method
In the incomplete multi-modal setting, an instance can be
characterized by multiple modal features. Suppose we are
given N examples with K modalities. The k−th modal-
ity of i−th instance xi can be represented as xik ∈ Rdk ,
where dk is the dimension of the k−th modality. It is no-
table that each instance may has complete or partial modali-
ties, suppose we haveNc homogeneous examples with com-
plete modal features, meanwhile, we have Nk heteroge-
neous instances for each modality. Thus, the whole dataset
can be represented as D = {Xc, X1, X2, · · · , XK}, where
Xc = {(xi1 ,xi2 , · · · ,xiK )}Nc

i=1 ∈ RNc×d denotes the ex-
amples presenting in all modalities, d = d1 +d2 + · · ·+dK ,
Xk ∈ RNk×dk denotes the incomplete examples present-
ing in the k−th modality. Without any loss of generality, we
consider two modalities in this paper, i.e., image and text.

The Formulation of DRUMN
The goal of DRUMN is to learn discriminative feature rep-
resentations for each modality with the incomplete and in-
consistent anomalous multi-modal data. In this section, we
mainly introduce the concrete steps on how to construct a
robust deep network. There are several different setting:
Threshold Based Deep Network

Combing the canonical correlation analysis (CCA) and
reconstruction-based objective, Wang et al. (2015) proposed
a deep multi-modal method DCCAE, which consists two
distinct auto-encoder networks for different modalities, and
optimizes the combination of canonical correlation between
the learned bottleneck representations and the auto-encoder
reconstruction errors. Considering that some examples only
have partial modalities, e.g., some articles about “ Strike of
Kings” only have contents or images information as shown
in Fig. 1. Thus, the CCA term maximizes the mutual infor-
mation between different projected modal latent representa-
tions of the complete instances, while auto-encoder network
of each modality can be used to minimize the reconstruction
error of all the instances, including the complete and incom-
plete instances. Without any loss of generality, DCCAE can
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The hero Li Bai is very dependent on the displacement of 

his skills: 1. vertigo skill; 2. deceleration and armor skill, 

3. invincibility skill.

The hero Lu Na is particularly difficult, when the third 

skill come out, she will be absolutely unbeatable.

In addition to providing us with the economy, the small 

soldier also has a critical and lethal effect on the success 
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Figure 1: An illustration of the inconsistency due to incom-
pleteness. The data are from the “Strike of Kings” forum
paragraph, which can be represented with image and con-
tent information. The incomplete modal instances are with
yellow shallows.

be reformulated as:

min
Θfk

,Θrk
,Uk

K∑
m 6=n

Nc∑
i=1

− 1

Nc
tr(U>mfm(xim)fn(xin)>Un)+

λ

K∑
k=1

Nc+Nk∑
i=1

‖xik − rk(fk(xik))‖2F

s.t. U>m(
1

Nc
fm(xim)fm(Xim)> + γmI)Um = I

u>mi
fm(xim)fn(xjn)>unj

= 0 i 6= j
(1)

where Θfk ,Θrk are the weight parameters of encoder net-
work fk and decoder network rk of the k−th modality,Uk =
[uk1 ,uk2 , · · · ,ukL

] are the CCA directions that project to
the output space, L is the shared dimension of latent space.
γm > 0 is regularization parameter for same covariance es-
timation (Hardoon, Szedmak, and Shawe-Taylor 2004), the
U>k fk(xik) is the final projection mapping for testing. λ > 0
is the trade-off parameter. Therefore, considering the trade-
off between the consistent term of different modalities, and
the information captured in the bottleneck representations
from auto-encoder term, DCCAE can learn more discrimi-
native feature representations.

On the other hand, note that real-world data always con-
tain inconsistent entries that result in the unreliable multi-
modal data, as a matter of fact, the affections of anoma-
lies become one of the barriers for modeling robust mod-
els. Inconsistent multi-modal anomalies have two varieties,
as shown in Fig. 2, paragraph 3 is a class-anomaly since the
content and image are not consistent, while paragraph 4 is
a feature-anomaly since it is an unrelated advertisement. To
solve this problem, a deep structure energy based approach
(DSEBMs) (Zhai et al. 2016) for anomaly detection can
be adopted naturally in the improved DCCAE framework.
Specifically, the energy function is the output of determinis-
tic deep neural networks, i.e., MLP, CNN, RNN, the energy
function can be represented of L-layers deep EBM structure

The hero Li Bai is very dependent on the displacement of 

his skills: 1. vertigo skill; 2. deceleration and armor skill, 

3. invincibility skill.

The hero Lu Na is particularly difficult, when the third 

skill come out, she will be absolutely unbeatable.

The main task of the striker is not to kill, but push the 

tower, the advantage largely depends on which side 

striker to pushing off the tower first.

This game nee not require any team-mate or any other 

complex operations, just poke at the bubble. Enjoying the 

3D magic Chong Qing Game

Para.

1
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2
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3
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4

Figure 2: An illustration of the inconsistency due to the in-
consistent anomalies. The data are from “Strike of Kings”
forum paragraph. Para. 1 and Para. 2 are normal para-
graph with consistent image and content information. The
anomalous instances are with yellow shallows. Para. 3 is a
class anomaly, in which different modalities are inconsis-
tent. Para. 4 is a feature anomaly, which is an irrelevant ad-
verting paragraph.

as:

Ek(xik ; θ) =
1

2
‖xik − b′‖22 −

Nl∑
j=1

hl,j

s.t. hl = g(f(hl−1)), l ∈ {1, · · · , L}

(2)

where Nl is the dimensionality of the l−th layer, g(x) is
the function log(1 + ex), and f(hl−1) is the particular op-
erator for different networks, i.e., for fully connect network,
f(hl−1) = W>l hl−1+bl, whereWl ∈ RNl−1×Nl , bl ∈ RNl ,
hl−1 is the output of the previous layer. b′ ∈ Rdk , and the
term ‖xik − b′‖22 acts as a prior, which punishes the proba-
bility of the inputs that far away from b′.

It is notable that the Restricted Boltzmann Machine
(RBM), as one of the most well known EBM model, is
proved closely related to a variant of auto-encoders method
DAEs (Vincent et al. 2010). Particularly, Vincent (2011)
showed that using score matching (SM) (Hyvarinen 2005),
an alternative method to MLE, and can be used to esti-
mate EBM. Consequently, training RBM is equivalent to
a one-layer DAE. In detail, SM minimizes the following
objective function: J(θ) = 1

2

∫
x
px(x)‖Ψ(x; θ) − Ψ(x))‖,

where px(x) is the true data distribution which is unknown,
Ψ(x; θ) = ∇x log p(x; θ) = −∇xE(x; θ) and Ψx(x) =
∇x log px(x) are the score function of the model and the true
density function, respectively. Vincent (2011) showed that
by approximating the px(x) with the Parzen window den-
sity, minimizing J(θ) is the same form as an auto-encoder
in DAEs, defined as:

r(f(x; Θf ); Θr) = x−∇xE(x; Θ) (3)

Where Θ = {Θf ,Θr}, and E(x; Θ) is the energy function
defined in Eq. 2. Thus, Eq. 3 can replace the network struc-
ture of auto-encoder term in Eq. 1 equivalently, which can
detect anomaly more easily.
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To perform the anomaly detection, we can select follow-
ing two criteria: first, the samples that are assigned proba-
bility lower than the pre-defined threshold, i.e., E(x; Θ) <
Ek

th; another criterion is based on the reconstruction error,
i.e., ‖x − r(f(x; Θf ); Θr)‖2F = ‖∇xE(x; Θ)‖2F ≥ Erkth,
in which high reconstruction errors correspond to examples
whose energy has large gradient norms. In other words, in-
stances with low energy probabilities and high reconstruc-
tion errors are viewed as anomalies.

Thus, when expanding to incomplete and anomalous
multi-modal data setting, combining Eq. 1, Eq. 2 and Eq. 3
in a unified framework, we can formulate the threshold
based deep framework as:

min
Θfk

,Θrk
,Uk

K∑
m 6=n

NC∑
i=1

`m,n
co + λ

K∑
k=1

NC+Nk∑
i=1

`kre (4)

where
`m,n
co = max{0, 1

Nc
tr(U>mfm(xim)fn(xin)>Un) −

Ecom,n
th },

the Ecom,n
th is the hyper-parameter for eliminating the

class anomalies, considering the two criteria mentioned in
the EBM model, we can formulate the loss of reconstruction
as
`kre = max{0, E(xik ; Θ) − Ek

th} + max{0, Erkth −
‖∇xEk(xik ; Θ)‖2F },

the Ek
th and Erkth are the hyper-parameters for elimi-

nating the feature anomalies. However, we find that there
is large number of hyper-parameters for adjusting, i.e.,
K×(K+3)

2 , which is unprocurable.
Weighted Based Deep Network

To overcome the disadvantage of the threshold based deep
model, we put forward a novel Deep Robust Unsupervised
Multi-modal Network approach (DRUMN), which can elim-
inate inconsistent anomaly configurations naturally by adap-
tive learning the weights of different instances on different
modalities.

Without any loss of generality, aiming at learning the dis-
criminative feature representation for each modality, we can
utilize the framework of Eq. 4 for handling the incomplete
multi-modal data. Meanwhile, for the second target, we wish
to adaptively update the weight of each instance on different
modalities rather than adjusting the thresholds manually. In-
spired from the active learning setting, the prediction vari-
ance can be used to measure the uncertainty of each sample
for either regression or classification problems (Schein and
Ungar 2007), and in the unsupervised setting, we can re-
fer to the energy variance instead. Considering the anomaly
setting, the instances with low energy variances are always
easy instances which are more convinced, or anomalies that
are always hard to be notarized, and in order to gain more in-
formation at each iteration, we prefer to choose the samples
with high energy variances, which are more uncertain. Since
the energy variances are estimated online, the weights can
be calculated based on the estimated variances plus the con-
fidence interval as (Chang, Learned-Miller, and McCallum

2017). Thus, the energy variance can be formulated as:

ωik = ˆstd
conf

ik (H)

ˆstd
conf

ik =

√√√√ ˆvar(EHt−1

ik
(xik ; Θ)) +

ˆvar(EHt−1

ik
(xi; Θ))2

|Ht−1
ik
| − 1

(5)

where ˆvar(EHt−1

ik
(xik ; Θ)) is the energy variance estimated

by history energy Ht−1
ik

of i−th instance on k−th modality,
and |Ht−1

ik
| is the number of stored energy probability, we

define as 8 in the experiments. Similarly, the correlation
weight can be defined as γim,n between m−th modal-
ity and n−th modality of i−th instance, i.e., γim,n =√

ˆvar(CHt−1
im,in

(xim ,xin)) +
ˆvar(C

H
t−1
im,in

(xim ,xin ))2

|Ht−1
im,in

|−1
,

where C(·) is the mutual information function.
Note that in the multi-modal setting, ωik can be used to

eliminate the feature-anomalies, which are with low weights
on all the modalities, γim,n can be used to eliminate the
class-anomalies, which are with low weights betweenm−th
modality and n−th modality of i−th instance. Substitute
ωik , γim,n into Eq. 1, we have the final formulation:

min
Θfk

,Θrk
,Uk

K∑
m 6=n

NC∑
i=1

−γim,n
1

NC
tr(U>

mfm(xim )fn(xin )
>Un)

+ λ

K∑
k=1

NC+Nk∑
i=1

ωik‖xik − rk(fk(xik ))‖
2
F

s.t. the same as the constraints of Eq. 1
(6)

Optimization
The objective couples all training samples through the

whitening constraints as in Eq. 1, thus, standard stochas-
tic gradient descent cannot be applied. Wang et al. (2015)
proved that DCCA can still be optimized efficiently when
the gradient is estimated with a sufficiently large mini-batch,
which owing to large mini-batch contains enough informa-
tion for estimating the covariances. The whole procedure is
summarized in Algorithm 1.

Experiments
In this section, we first introduce the datasets in brief and
then give the empirical results of DRUMN and compared
methods.

Datasets and Configurations
DRUMN can learn more discriminative feature representa-
tions for each modality by considering the incomplete and
anomalous multi-modal data in a unified framework. With
the learned features, we can conduct further tasks, i.e., re-
trieval, clustering. In this section, we will provide the empir-
ical investigations and performance comparison of DRUMN
on cross-modal retrieval and anomaly detection. In partic-
ular, we experiment on 4 public real-world datasets, i.e.,
FLICKR25K, IAPR TC-12, WIKI and NUS-WIDE, and
1 real-world incomplete multi-modal dataset, i.e., WKG
Game-Hub.
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1.Genghis khan is a role with high DPS (damage), especially 

when he gets lower cooldown of attacks during the late-game 

stage. Together with his passive skills, he can output a very 

high explosive  damage.

2.Basic introduction. Career position: Sagittarius/infield

3.Specialty: fast speed and continuous output ability

4.Out of the pack: the greed, the shadow of the foot, the 

endless blade of war, the blade of blood, the broken bow, the 

famous sword.

5.Inscription: inheritance * 10, hunting * 10, eagle eye * 10.
Genghis khan (成吉思汗), 

output  ability, Sagittarius/infield

1.Huang Zhong restraints all heros that with lower

displacement abilities. After armed with good equips, he is

with high damage.

2.Conclusion: Huang Zhong is an extremely hurtful striker.

As long as he has teammates, huang can lead the team to

victory easily.

3.Basic introduction: inscriptions match: 10 * destiny, 10 *

equilibrium, 10 * long life.

4.Skill of summoner: flash.

5.The idea: in current version, Bai qi are selected as a

secondary location in most cases , so there is no need to

provide a lot of damage for the team.

Huang Zhong (黄忠), equipment 

are molded, striker , flash

Summoning skill: flash.

Genghis khan (成吉思汗)

has insufficient output

ability in the early stages of

the competition, in the

medium term, he will join

the group and use the

economic advantage to kill

the opponents. In the later

stage, the economy will be

absolutely suppressed and

the opponents will be

eliminated.

5.Genghis khan 1. Correlated Hero2.Correlated Hero 3.Map 4. Equipment

In addition to the

ability to protect

himself as a tank,

TAICHI (东皇太一)

is able to throw

three balls at a

distance to slow

down and stun the

enemy.

4.Mi Yue(芈月)2.Yang Jian (杨戬) 5.TAICHI3.Hero relationship1.TAICHI

Figure 3: Examples of retrieval results from WKG Game-Hub dataset, the top row examples are the “T→ I” and the bottom
row examples are the “I → T”. There are four example queries on the left, and top 5 results are shown on the right (correct
results are with blue, otherwise with red).

Algorithm 1 The pseudo code of DRUMN
Input:
• Dataset: D = {Xc, X1, X2, · · · , XK}
• Parameter: λ, S
• MaxIter: T , learning rate: {αt}Tt=1
Output:
• Feature embedding network: fk

1: repeat
2: Create Batch: Randomly pick up |S| examples from

D without replacement;
3: Calculate the ωik , γim,n ← Eq. 5;
4: Calculate the loss L← Eq. 6;
5: Obtain the derivative ∂L

∂Uk
, ∂L
∂Θrk

, ∂L
∂Θfk

, update pa-
rameters Uk,Θrk ,Θfk ;

6: until converge or reach the max-iter

• FLICKR25K: (Huiskes and Lew 2008) consists of 25,000
image-text pairs collected from Flickr website. The text is
represented as a 1386-dimensional bag-of-words vector;

• IAPR TC-12: (Escalante et al. 2010) consists of 20,000
image-text pairs. The text is represented as a 2912-
dimensional bag-of-words vector;

• WIKI: (Rasiwasia et al. 2010) has 2,866 documents ex-
tracted from Wikipedia. We represent the text information
by 7343-dimensional vectors based on TF-IDF;

• NUS-WIDE: (Chua et al. 2009) selects 195,834 image-
text pairs that belong to the 21 most frequent concepts.
The text is represented as a 1000-dimensional bag-of-
words vector;

• WKG Game-Hub: consists of 32,222 image-text pairs
collected from the Game-Hub of “ Strike of Kings”. The
content is represented as a 300-dimensional word2vector
vector.

Table 1: MAP of the first 50 rank list of 4 real-world datasets.
The best performance is bolded.

Methods I→ T

FLICKR IAPR TC-12 WIKI NUS

DCCA .5839 .4069 .1711 .4737
DCCAE .5906 .4409 .1740 .4983
Corr-AE .5573 .3370 .1780 .4683
Corr-Cross-AE .5583 .4311 .1770 .4815
Corr-Full-AE .6376 .3481 .1654 .4460
DRUMN-Thres .6416 .4323 .1567 .5009

DRUMN .6266 .4605 .1781 .5626

Methods T→ I

FLICKR IAPR TC-12 WIKI NUS

DCCA .5807 .4472 .1647 .4572
DCCAE .4518 .4347 .1660 .5021
Corr-AE .4576 .3423 .1627 .4765
Corr-Cross-AE .5048 .4568 .1699 .4868
Corr-Full-AE .4750 .3877 .1643 .4490
DRUMN-Thres .5097 .4578 .1722 .4776

DRUMN .6589 .4974 .1887 .5548

For each dataset, we randomly select 20% data for the
test (query) set and the remaining instances are used for
training. Considering that the FLICKR25K, IAPR TC-12,
WIKI and NUS-WIDE are completely in raw data, we first
conduct the experiments on completely data, then conduct
more experiments on segmented incomplete data as in (Yang
et al. 2018). To demonstrate the generalization ability, we
also experiment on the real-world incomplete multi-modal
dataset, i.e., WKG Game-Hub, which contains 27,276 in-
stances with two modalities, and 4946 instances appear with
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Table 2: MAP of the first 50 rank list of WKG Game-Hub.
The best performance is bolded.

Methods I→ T T→ I

L > 1 L > 3 L > 1 L > 3

DCCA .3259 .2400 .3080 .2172
DCCAE .3205 .2486 .3212 .2415
Corr-AE .2682 .2370 .2108 .1445
Corr-Cross-AE .3378 .2276 .3415 .2148
Corr-Full-AE .2911 .2031 .1923 .1522
DRUMN-Thres .2729 .1829 .2574 .1577

DRUMN .3594 .2629 .3448 .2495

single modalities.
To verify the learned feature representations of our

method, we examine the task of cross-modal retrieval. More
specifically, given a text query, we aim to find images that
are most relevant to it. For each query in the test set, we rank
the retrieval results using the learned feature representations,
without any loss of generality, we adopt the Euclidean rank-
ing protocol, which ranks the retrieval results according to
their Euclidean distances to the given query point, in an in-
creasing order. And we adopt the widely used Mean Aver-
age Precision (MAP) (Zhu, Shao, and Yu 2014) metric to
measure the accuracy of the Euclidean ranking protocol. The
deep network for image encoder is implemented the same as
Resnet50 (He et al. 2015). We run the following experiments
with the implementation of an environment on NVIDIA K80
GPUs server, and our model can be trained about 290 images
per second with a single K80 GPGPU. The parameter λ in
the training phase is tuned in {0.1, 0.2, · · · , 0.9}. When the
variation between the objective value of Eq. 6 is less than
10−4 between iterations, we consider DRUMN converges.

Compared methods
DNN-based unsupervised multi-modal methods are com-
pared in the experiments: DCCA (Andrew et al. 2013), DC-
CAE (Wang et al. 2015), Corr-AE (Feng, Wang, and Li
2014), Corr-Cross-AE (Feng, Wang, and Li 2014), Corr-
Full-AE (Feng, Wang, and Li 2014) and DRUMN-Thres.
Since the DCCA can only handle complete modalities, thus
we use the incomplete data for initialization. Note that all
compared methods are modified as threshold based models
for fairness. In detail, the compared methods are listed as:
• DCCA: computes representations of the two modalities

by passing them through multiple stacked layers of non-
linear transformation;

• DCCAE: consists two auto-encoders and optimizes the
combination of canonical correlation between the learned
bottleneck representations and the reconstruction errors of
the auto-encoders;

• Corr-AE: first use two uni-modal auto-encoders to learn
higher level image feature and text feature respectively,
and then use CCA to learn a common representation space
on the learned features;

• Corr-Cross-AE: combines immediately cross-modal auto-
encoders and CCA;

• Corr-Full-AE: combines full auto-encoders and CCA;
• DRUMN-Thres: threshold based deep network structure,

as mentioned in section 2.

Cross Modal Retrieval
The MAP (pre@50) results, which calculate the MAP of
the first 50 rankings as (Jiang and Li 2017), the results
of DRUMN and other compare methods on 4 real-world
datasets are reported in Table 1. Here, “T”, “I” represent
the text and image separately, e.g., “I→ T” denotes the case
where the query is image and the retrieval result is text, and
“T → I” denotes the case where the query is text and the
retrieval result is image. From the Table 1, it reveals that for
all datasets, DRUMN almost consistently achieve the signif-
icant superior retrieval performance on all datasets compar-
ing to other methods except for the “I→ T” on FLICKR25K.

To further verify the effectiveness of DRUMN, we con-
duct more experiments on the real incomplete multiple
modal dataset WKG Game-Hub and record the results in the
Table 2. Considering that WKG Game-Hub is a multi-label
dataset, which exists the label imbalance problem. On MAP
calculation, we measure the similarity between the query in-
stances and ranking results by considering the sharing labels
larger than 1 (L>1) or 3 (L>3) labels. From the Table 2, it
reveals that DRUMN also achieves the significantly superior
retrieval performance.

Figure 3 shows several illustrative examples of the re-
trieval results on the WKG Game-Hub dataset. Qualitatively,
it can observe that DRUMN captures the general latent fea-
ture representation represented in both the images and the
texts. It is notable that most results shown are correct.

Influence on No. of Incomplete Multi-Modal Data
It is notable that the 4 real world datasets are complete.
In order to explore the influence of the ratio of the incom-
plete modalities on performance, extensive experiments are
conducted. In this section, the parameters in each investi-
gation are fixed as the optimal values selected in above in-
vestigations, while the ratio of the incomplete data varies
in {0%, 10%, 30%, · · · , 90%}, with 20% as interval. Re-
sults on 4 datasets, i.e., FLICKR25K, IAPR TC-12, WIKI,
NUS-WIDE, are recorded in Figure 4. From these figures,
it clearly shows that DRUMN achieves the best on most
datasets. Besides, we can also find that DRUMN achieves
superiorities from high incomplete ratio, and the perfor-
mance of DRUMN decreases slower than the compared
methods.

Anomaly Detection
DRUMN also considers the anomalous multi-modal data ex-
cept learning discriminative feature representation. Figure 5
shows several illustrative examples of the anomaly detec-
tion results on the WKG Game-Hub dataset. Qualitatively,
it reveals that DRUMN can detect both the class and fea-
ture anomalies compared to DRUMN-Thres method, in de-
tail, the class and feature anomalies detected by DRUMN
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Figure 4: The MAP(@50) results of 4 real-world datasets. The four columns from left to right are FLICKR25K, IAPR TC-12,
WIKI, NUS-WIDE datasets in order, the top row examples are the “I→ T” and the bottom row examples are the “T→ I”. PER
(partial example ratio) is the ratio of incomplete examples.

Class-anomalies:

DRUMN:

DRUMN-Thres:

The people of the “One peace” are reunited

three years later, and everyone has been grew

up and has their own unique lives.

We can see the opposite blue wild monster, also

can see the passing wild hunter, therefore, early

defense work should be needed.

Chan Liu, when using this skill, can open

a shield that absorbs damage, and can raise

their speed at the same time.

Recommended summoning skills: flash.

Attribute-anomalies:

DRUMN:

DRUMN-Thres:

At the end of the summer vacation, the people

complained that the holiday was too short to

play the King of Glory.

The awkward greeting. At this time, how to

integrate into this group and successfully attract

the attention of my sister?

Today, I'm just making fun of my brother, i.e.,

Bei Liu

Chao Feng says that the King of the Glory is

everywhere, i.e., subway, room, etc.

Figure 5: Examples of class and feature anomalies of DRUMN and DRUMN-Thres from WKG Game-Hub dataset. Left column
are class anomalies and the right column are attribute anomalies

are all corrected, while the first result in class-anomalies of
DRUMN-Thres is wrong.

Conclusion
Feature incompleteness and inconsistent class/feature-
anomaly in multi-modal learning scenarios are often take
place in real applications, which result in the inconsistent
problem. In this work, we propose a Deep Robust Unsuper-
vised Multi-modal Network (DRUMN) for utilizing the ex-
trinsic heterogeneous information, and learning latent rep-
resentation via a deep unified network. Besides, the model
itself can also tackle the inconsistent anomaly problem with
adaptively weight estimation. Experiments on real-world
multi-modal datasets successfully validate the effectiveness

of our proposed method. How to fully incorporate the super-
vised information into semi-supervised scenario is an inter-
esting future work.

Acknowledgments
The National Key R&D Program of China
(2018YFB1004300), NSFC (61773198, 61632004).

References
Andrew, G.; Arora, R.; Bilmes, J. A.; and Livescu, K. 2013.
Deep canonical correlation analysis. In ICML, 1247–1255.
Arora, R.; Mianjy, P.; and Marinov, T. V. 2016. Stochas-
tic optimization for multiview representation learning using
partial least squares. In ICML, 1786–1794.

5658



Chang, H.; Learned-Miller, E. G.; and McCallum, A. 2017.
Active bias: Training more accurate neural networks by em-
phasizing high variance samples. In NIPS, 1003–1013.
Chua, T.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; and Zheng, Y.
2009. NUS-WIDE: a real-world web image database from
national university of singapore. In CIVR.
Escalante, H. J.; Hernandez, C. A.; Gonzalez, J. A.; Lopez-
Lopez, A.; andEduardo F. Morales, M. M.; Sucar, L. E.;
Pineda, L. V.; and Grubinger, M. 2010. The segmented and
annotated IAPR TC-12 benchmark. CVIU 114(4):419–428.
Fan, Y.; Liang, J.; He, R.; Hu, B.; and Lyu, S. 2017.
Robust localized multi-view subspace clustering. CoRR
abs/1705.07777.
Feng, F.; Wang, X.; and Li, R. 2014. Cross-modal retrieval
with correspondence autoencoder. In ACMMM, 7–16.
Hardoon, D. R.; Szedmak, S. R.; and Shawe-Taylor, J. R.
2004. Canonical Correlation Analysis: An Overview with
Application to Learning Methods. MIT Press.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep
residual learning for image recognition. arXiv preprint
arXiv:1512.03385.
Huiskes, M. J., and Lew, M. S. 2008. The MIR flickr re-
trieval evaluation. In MIR, 39–43.
Hyvarinen, A. 2005. Estimation of non-normalized statisti-
cal models by score matching. JMLR 6:695–709.
Iwata, T., and Yamada, M. 2016. Multi-view anomaly detec-
tion via robust probabilistic latent variable models. In NIPS,
1136–1144.
Jiang, Q., and Li, W. 2017. Deep cross-modal hashing. In
CVPR, 3270–3278.
Kan, M.; Shan, S.; and Chen, X. 2016. Multi-view deep
network for cross-view classification. In CVPR, 4847–4855.
Li, S.; Jiang, Y.; and Zhou, Z. 2014. Partial multi-view
clustering. In AAAI, 1968–1974.
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng,
A. Y. 2011. Multimodal deep learning. In ICML, 689–696.
Rasiwasia, N.; Pereira, J. C.; Coviello, E.; Doyle, G.; Lanck-
riet, G. R.; Levy, R.; and Vasconcelos, N. 2010. A New Ap-
proach to Cross-modal Multimedia Retrieval. In ACMMM,
251–260.
Rupnik, J., and Shawe-Taylor, J. 2010. Multi-view canonical
correlation analysis. In KDD, 1–4.
Schein, A. I., and Ungar, L. H. 2007. Active learning for
logistic regression: an evaluation. ML 68(3):235–265.
Shao, W.; He, L.; Lu, C.; and Yu, P. S. 2016. Online multi-
view clustering with incomplete views. In BigData, 1012–
1017.
Shao, W.; He, L.; and Yu, P. S. 2015. Multiple incomplete
views clustering via weighted nonnegative matrix factoriza-
tion with l2,1 regularization. In ECML/PKDD, 318–334.

Shrivastava, A.; Rastegari, M.; Shekhar, S.; Chellappa, R.;
and Davis, L. S. 2015. Class consistent multi-modal fusion
with binary features. In CVPR, 2282–2291.

Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; and Man-
zagol, P. 2010. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denois-
ing criterion. JMLR 11:3371–3408.
Vincent, P. 2011. A connection between score matching and
denoising autoencoders. Neural Computation 23(7):1661–
1674.
Wang, W.; Arora, R.; Livescu, K.; and Bilmes, J. 2015. On
deep multi-view representation learning. In ICML, 1083–
1092.
Yang, Y.; Ye, H.-J.; Zhan, D.-C.; and Jiang, Y. 2015. Auxil-
iary information regularized machine for multiple modality
feature learning. In IJCAI, 1033–1039.
Yang, Y.; Zhan, D.; Sheng, X.; and Jiang, Y. 2018. Semi-
supervised multi-modal learning with incomplete modali-
ties. In IJCAI, 2998–3004.
Zhai, S.; Cheng, Y.; Lu, W.; and Zhang, Z. 2016. Deep
structured energy based models for anomaly detection. In
ICML, 1100–1109.
Zhao, H., and Fu, Y. 2015. Dual-regularized multi-view
outlier detection. In IJCAI, 4077–4083.
Zhu, F.; Shao, L.; and Yu, M. 2014. Cross-modality submod-
ular dictionary learning for information retrieval. In CIKM,
1479–1488.

5659


