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Abstract

Traditional online multitask learning only utilizes the first-
order information of the datastream. To remedy this issue, we
propose a confidence weighted multitask learning algorithm,
which maintains a Gaussian distribution over each task model
to guide online learning process. The mean (covariance) of
the Gaussian Distribution is a sum of a local component and
a global component that is shared among all the tasks. In addi-
tion, this paper also addresses the challenge of active learning
on the online multitask setting. Instead of requiring labels of
all the instances, the proposed algorithm determines whether
the learner should acquire a label by considering the confi-
dence from its related tasks over label prediction. Theoretical
results show the regret bounds can be significantly reduced.
Empirical results demonstrate that the proposed algorithm is
able to achieve promising learning efficacy, while simultane-
ously minimizing the labeling cost.

Introduction
Multitask learning (MTL) aims to enhance the overall gen-
eralization performance by learning the related knowledge
of multiple tasks. Most existing works in multitask learn-
ing focus on how to take advantage of the task relationship,
either by sharing model parameters via regularization tech-
niques (Argyriou, Evgeniou, and Pontil 2008; Zhang and
Yeung 2010; Yang, Zhao, and Gao 2017) or learning cross-
task data directly (Crammer and Mansour 2012). This paper
focuses on a specific multitask setting where tasks are al-
lowed to query labels by interacting with other tasks for dif-
ficult cases, for example, recommending new products based
on customers’ preferences on old ones.

In a broad sense, there are two settings to learn multiple
tasks together: 1) batch learning, where an entire training
set is available to the learner before training; and 2) online
learning, where the model is trained over the data streams.
In contrast to batch learning, which often suffers from ex-
pensive re-training costs whenever new training data come,
online learning avoids re-training and learns incrementally
from sequential data, which is much more efficient (Hoi et
al. 2018; Zhao et al. 2011). Online MTL (OMTL) has been
intensively studied, where each task learner receives an in-
stance on each round and then predicts its label. After that
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the true label is revealed and the learner updates the model as
necessary. Previous studies (Dekel, Long, and Singer 2007;
Yang and Zhao 2015; Murugesan et al. 2016) mostly uti-
lized the first-order information of datastream. Few studies
worked on second-order algorithms. To remedy this issue,
we propose a confidence weighted MTL. The confidence
estimated through a local-global Gaussian distribution over
each task model can guide the direction and scale of param-
eter updates. Specifically, updates not only fix predicted er-
rors but also increase confidence.

However, such method assumes that the true labels are
readily provided for all the tasks, which is impractical in
several settings where the tasks (e.g., minority languages,
new products) naturally have very few data labels. On-
line active learning (OAL) addresses this concern by let-
ting the learner decide whether to request the true label
of the current instance or not. Most of OAL techniques
decide a query by estimating a confidence towards cur-
rent prediction (Cesa-Bianchi, Gentile, and Zaniboni 2006;
Dekel, Gentile, and Sridharan 2012). In the multitask learn-
ing setting, one can further reduce the total number of re-
quired labels by interacting with related peer tasks. This pa-
per proposes an active multitask learning, where the learner
determines a query by considering the confidence over la-
bel prediction from related peer tasks. The key idea is that
when a task model is uncertain about its prediction, it would
consult its peers. Theoretical results show the regret bounds
can be significantly reduced. Empirical results demonstrate
that the proposed technique in such setting minimizes the
learning errors and labeling cost simultaneously.

Related Work
Existing works on OMTL focus on how to take advantage of
task relationship. To achieve this, Lugosi et al. (Lugosi, Pa-
paspiliopoulos, and Stoltz 2009) imposed a hard constraint
across the task model parameters. Agarwal et al. (Agarwal,
Rakhlin, and Bartlett 2008) used a matrix regularization on
model weights, like the nuclear norm (Ding et al. 2018). And
Dekel et al. (Dekel, Long, and Singer 2007) learned the task
relationship via a global loss function. However, all these
works assume that the true label is provided to each instance.

OAL addresses this problem by making the decision on
whether to query the label over the data streams (Cesa-
Bianchi, Gentile, and Zaniboni 2006; Dekel, Gentile, and
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Sridharan 2012). It can be smoothly extended to the multi-
task learning setting by applying active learning for each lo-
cal task separately or several related tasks. Saha et al. (Saha
et al. 2011) utilized the learned task-relationship matrix to
query labels of the instances with more shared information.
Murugesan et. al. (Murugesan and Carbonell 2017) deter-
mined a query based on the first-order information of the
predicted margin. To save the labeling cost, our query deci-
sion is made by leveraging the Gaussian distribution of the
predicted margin, which is more effective to capture the in-
formative instances compared with prior solutions.

This work is motivated by the recent OAL techniques in
the multitask setting (Saha et al. 2011; Murugesan and Car-
bonell 2017). A query is determined based on the peer tasks
if the single task model is uncertain about its perdition. Our
query strategy is different from them in two aspects: 1) query
decision is made by consulting the local-global knowledge
of multiple tasks; and 2) query confidence is estimated based
on the Gaussian distribution of the predicted margin. Finally,
our method is related to confidence weighted (CW) learn-
ing (Crammer, Dredze, and Pereira 2009). Different from (Li
et al. 2014), we adapt the CW technique into a multi-task set-
ting that performs active learning across the multiple tasks.

Algorithm
In this section, we first introduce an OMTL problem, then
solve this problem with an active learning strategy.

Problem Setting
Suppose there areK tasks and each task k has a sequence of
Tk training data. In this work, we consider an online binary
classification problem for each task. Let {(xkt , ykt )}Tk

t=1 be a
set of instance-label pairs for the task k where xkt ∈ Rd is the
tth instance and ykt ∈ {±1} is its corresponding true label.
Let {wk}k∈[K] be a set of arbitrary vectors where wk ∈ Rd.
Given a model weight w, we denote `t(w) as its instanta-
neous loss and LkT (w) =

∑Tk

t `t(w) be its cumulative loss.
The goal is to achieve a low regret compared with the best
linear function. Formally, the regret of a model is given by

Regret =

Tk∑
t=1

`t(wt)− inf
w
LkT (w).

The objective is to let the loss of the online algorithm con-
verge to the loss of the best linear function w.

Confidence Weighted Multitask Learning
We propose a local-global MTL framework where the lo-
cal and global memory is introduced to store parts of the
weight vector of each task, motivated by (Evgeniou and Pon-
til 2004). Formally, the task weight wk

t is modeled in terms
of local and global memories on round t,

wk
t = ut + vkt , (1)

where the global memory u captures the interdependent in-
formation across all tasks, while the local memory vk learns
the unique characteristic of a single task. When the offset vk

is ‘small’, it indicates that the tasks are similar to each other.

To better explore the second-order structure of parame-
ter weights, motivated by (Crammer, Dredze, and Pereira
2009), we assume that a weight w follows a Gaussian distri-
bution w ∼ N (µ,Σ) with mean vector µ ∈ Rd and covari-
ance matrix Σ ∈ Rd×d. The values µi and Σi,i encode the
model’s knowledge and confidence towards the weight wi,
i.e., the smaller the value of Σi,i is, the more confident the
learner is towards the mean value µi. The covariance term
Σi,j captures the interactions between wi and wj . To adapt
confidence weight into the local-global setting in Eq. (1), we
begin with the following Lemma:

Lemma 1. If u ∼ N (p,A) and {vk ∼ N (qk,Bk)}Kk=1
are mutually independent normal random variables, then the
linear combination: wk = u + vk follows the Gaussian
distribution:

wk ∼ N
(
p + qk,A + Bk

)
.

Proof. The proof is in the Supplementary Material1.

Given an instance (xkt , y
k
t ) at round t, the local-global pa-

rameters aim to adjust their distributions to ensure the prob-
ability of a correct prediction at least η > 0:

min
p,A,qk,Bk

K∑
k=1

DKL
(
N (qk,Bk)||N (qkt−1,B

k
t−1)

)
+ DKL (N (p,A)||N (pt−1,At−1)) ,

s.t. Prwk∼N (p+qk,A+Bk)[y
k
t (wk · xkt ) ≥ 0] ≥ η

where DKL is the Kullback-Leibler divergence:

DKL(N (µ,Σ)||N (µt,Σt))

=
1

2

(
log

(
|Σt|
|Σ|

)
+ Tr

(
Σ

Σt

)
+ ‖µt − µ‖2Σ−1

t
− d
)
,

| | is the determinant of a matrix and Tr() is the trace of
a matrix. In the following Lemma, The constraint can be
formulated by the Gaussian distribution.

Lemma 2. The predicted margin on (xk, yk) by the model
wk ∼ N (p + qk,A + Bk) follows the Gaussian distribu-
tion:

yk(wk · xk) ∼ N
(
yk((p + qk) · xk), x>(A + Bk)x

)
.

The probability constraint can be written explicitly as:

−yk((p + qk) · xk) + φ
√

xk>(A + Bk)xk ≤ 0,

where φ = Φ−1(η) > 0 and Φ is the Gaussian cumulative
distribution function.

Proof. The proof is in the Supplementary Material1.

We directly tackle the variance variable and the problem
becomes convex, while replacing−yk((p+qk)·xk with the

1https://github.com/YoungBigBird1985/Second-Order-Online-
Multitask-Learning
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hinge loss `(p+qk) = max(0, 1−yk((p+qk)·xk)). We re-
cast the the constraint as a regularizer, solving the following
unconstrained function:

min
p,A,qk,Bk

K∑
k=1

DKL
(
N (qk,Bk)||N (qkt−1,B

k
t−1)

)
+ DKL (N (p,A)||N (pt−1,At−1))

+

K∑
k=1

(
1

2ε
`t(p + qk) +

1

2λ
xk>t (A + Bk)xkt

)
,

(2)

where ε and λ are positive tradeoff parameters. Specifically,
the objective (2) aims to reach the trade-off between the dis-
tribution divergence (the first two terms), the loss function
(the third term) and the predicted variance (the fourth term).
In other words, the objective tends to make the least adjust-
ment to minimize the painful loss and maximize the con-
fidence of prediction. To solve this problem, we exploit the
block coordinate descent (Tseng 2001) to optimize the local-
global memory variables alternatively.

Optimizing Local Memory The parameters Bk can be
solved as below,

f(Bk) = log

(
|Bk

t−1|
|Bk|

)
+ Tr

(
Bk

Bk
t−1

)
+

1

λ
xk>t Bkxkt .

By applying the KKT condition on B, we have that
(Bk

t )−1 = (Bk
t−1)−1 + 1

λxtx
>
t . By using the Sherman–

Morrison formula (Sherman and Morrison 1950), Bk
t can be

updated efficiently with time complexity O(d2),

Bk
t = Bk

t−1 −
Bk
t−1x

k
t x

k>
t Bk

t−1

λ+ xk>t Bk
t−1x

k
t

. (3)

Let p = pt−1, the qk is solved under the hinge loss and
squared hinge loss, respectively.

Lemma 3. Let êkt = (pt−1 + qkt−1) · xkt . Whenever ykt 6=
sign(f̂kt ), we solve the problem

f(qk) = ‖qk − qkt−1‖2(Bk
t )−1 +

1

ε
`t(pt−1 + qk),

where the optimal solution of qk is given by,

qkt = qkt−1 + gkt y
k
t B

k
t x

k
t , (4)

where

gkt =
max{0, 1− ykt êkt }
ε+ xk>t Bk

t x
k
t

(squared hinge)

gkt = min

{
1

2ε
,max

{
0,

1− ykt êkt
xk>t Bk

t x
k
t

}}
(hinge)

Proof. The proof is in the supplementary material1.

Optimizing Global Memory The global parameter A can
be optimized:

f(A) = log

(
|At−1|
|A|

)
+ Tr

(
A

At−1

)
+

1

λ
Tr

(
X>t AXt

)
,

Algorithm 1 CWMT: Confidence Weighted Multitask
Learning

1: Input:λ, ε > 0.
2: Output: pT , AT , qkT , Bk

T , k ∈ [K] .
3: Initialize: p0 = qk0 = 0,A0 = Bk

0 = I, k ∈ [K].
4: for t = 1, . . . , T do
5: for (local update): k = 1, . . . ,K in parallel do
6: Receive xkt and let µkt−1 = pt−1 + qkt−1;
7: Compute ŷkt = sign(µkt−1 · xkt );
8: If ykt 6= ŷkt , update Bk

t in Eq. (3), qkt in Eq. (4);
9: endfor

10: Reduce (global update): aggregate {z1
t , . . . , z

K
t }

11: Update At with Eq. (5) and pt with Eq. (6);
12: end for

where Xt = [x1
t ,x

2
t , . . . ,x

K
t ] ∈ Rd×K . By using Wood-

bury matrix identity, A can be updated by

At = At−1 −At−1XtC
−1
t−1X

>
t At−1, (5)

where Ct−1 = λIK + X>t At−1Xt is positive-definite and
IK ∈ RK×K is an identity matrix. The matrix inverse in
Eq. (5) takesO(K3 +d2K) complexity, which is acceptable
when the task number K is small.

Let zkt = I(ykt 6= ŷkt ) where I(·) is an indicator function,
p is solved by

f(p) = ‖p− pt−1‖2A−1
t

+
1

ε

K∑
k=1

zkt `t(p + qkt−1).

Taking the derivative of the above problem, i.e.∇pt−1f(p),
p is solved by

pt = pt−1 +
1

2ε
At

K∑
k=1

zkt y
k
t x

k
t . (6)

We summarize the confidence weighted multitask learn-
ing in Algorithm 1. It uses a conservative strategy to update
the model when an error occurs. Different from first-order
techniques (Murugesan et al. 2016), this algorithm captures
the second-order information by exploiting the confidence
of weight parameters over Gaussian distribution. Unlike the
CW-based method (Li et al. 2014), we provide a theoretical
analysis for the CW-based MTL in Theorem 1.

Theorem 1. Let {(xkt , ykt )}Tt=1 be a sequence of samples on
any task (k ≤ K), where xkt ∈ Rd, ykt ∈ {±1}. For any
µ ∈ Rd on the convex loss `(µ), the CWMT satisfies:

Regret ≤
λ log(1 +KT )

4ε
+ ε(D(µ))2Tr

(
(AT +Bk

T )−1
)

where D(µ) = maxt ‖(pt + qkt )− µ‖.

Proof. The proof is in the Supplementary Material1.

Discussion: Setting ε = 1
2

√
λ log(1+KT )

(D(µ))2Tr((AT +Bk
T )−1)

, we get

Regret ≤ 1

2

√
λD(µ)

√
Tr((AT + Bk

T )−1) log(1 +KT ).
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Let Σk = A + Bk, A ≺ Σk and Bk ≺ Σk yield to
A−1 � (Σk)−1 and (Bk)−1 � (Σk)−1. Assume ‖xt‖2 ≤
1, we have Tr((Σk)−1) ≤ 1

2Tr(A
−1) + 1

2Tr((B
k)−1) ≤

O( (K+1)T
λ ). Thus, the regret is in the order of O(

√
KT ).

Remark: As Regret =
∑Tk

t=1 `
t
hinge(w

k
t ) − infw LkT (w),

and
∑
t `hinge(·) ≥

∑
t `0−1(·) = |M |, then regret ≥

|M | − infw LkT (w). It infers a relative mistake bound:

E[M ]− inf
w
LkT (w)

≤ λ
4ε

log(1 +KT ) + ε(D(µ))2Tr
(
(AT + Bk

T )−1
)
.

(7)

Active Confidence Weighted Multitask Learning
Unlike the online algorithm that retrieves the label of every
instance, active learning considers the labeling budget and
has to decide whether to query the true label of the current
instance xt. If the label is queried, the algorithm can update
the learner with yt; otherwise, no action is performed and the
learner continues to process the next one. Query and update
decisions are defined as binary variables Qt and Zt at time
t, where Qt = 1 when yt is queried of, and 0 otherwise; Zt
is under the same setting. In general, optimizing the local
memory (B,q) with query and update decisions on round t
yields

B−1
t = B−1

t−1 +QtZt
xtx
>
t

λ
, qt = qt−1 +QtZtgtytBtxt.

The goal of active learning is to achieve few mistakes with
a small query number

∑
tQt. Next we propose a query

method to perform active leaning across multiple tasks.

Adaptive-Margin Query The target of the active learn-
ing algorithm is to make few mistakes with a small amount
of queries. To achieve this goal, we propose a randomized
query strategy based on a confidence score Θt: given h > 0,
the binary variable Qt is sampled using a Bernoulli distri-
bution with a parameter h/(h + max(0,Θt)); if Qt = 1,
then the actual label yt is queried of; otherwise no query is
performed. The randomized query strategy has been stud-
ied in (Dekel, Gentile, and Sridharan 2012). We extend the
randomized query into the multitask setting by performing
active leaning across multiple tasks. We begin with the ad-
ditional annotations below,

akt = xk>t At−1x
k
t , b

k
t = xk>t Bk

t−1x
k
t .

Using the Sherman-Morrison formula, it is inferred that

xk>t Σk
t x

k
t = xk>t Atx

k
t + xk>t Bk

t x
k
t ,

where the last two terms can be derived as:

xk>t

(
At−1 −

At−1x
k
t x

k>
t At−1

λ+ xk>t At−1xkt

)
xkt =

akt
1 + akt /λ

,

xk>t

(
Bk
t−1 −

Bk
t−1x

k
t x

k>
t Bk

t−1

λ+ xk>t Bk
t−1x

k
t

)
xkt =

bkt
1 + bkt /λ

.

Definition 1. Assume a task weight wk ∼ N (µk,Σk), with
mean µk = p + qk and variance Σk = A + Bk. At

round t, the algorithm decides to query with a probability
h

h+max(0,Θk
t )

(h > 0), where the score Θk
t is defined as,

Θk
t = |∆k

t | −
1

4ε
Ckt , (8)

where | · | is the absolute value,

∆k
t = (pt−1 + qkt−1) · xkt ; Ckt =

akt
1 + akt /λ

+
bkt

1 + bkt /λ
.

Θt is a function parameterized by two variables |∆t| and Ct.
The variable |∆t| is a distance of an input to the decision
boundary, known as the ‘margin’ (Cesa-Bianchi, Gentile,
and Zaniboni 2006), while Ct is the confidence of the cur-
rent prediction, known as ‘variance’. In this way, |∆t|− 1

4εCt
acts as a lower confidence bound of the prediction. The
probability of query (h/(h + max(0,Θt))) will be reduced
only when an input is far from the boundary (i.e. a large
|∆t|), meanwhile it has a low variance towards the predic-
tion (i.e. Ct). So that the predicted result is reliable, and a
label can be omitted safely. Similar with (Murugesan and
Carbonell 2017), the confidence Θt is estimated by exploit-
ing the local-global knowledge of multiple tasks. The idea is
that when the single task is uncertain about its prediction, it
can consult the global memory that encodes the knowledge
of similar tasks to help make the query decision.

Intuitively, a query decision is effective only if it can con-
trol the probability of making a mistake when the label is not
queried. To analyze the effectiveness of the query method,
we derive an error bound for our approach that learns from
only queried labels {t : Qt = 1}. For the randomized
queries, the mistake trials can be partitioned into two dis-
joint sets: a set S = {t : h

h+max(0,Θt)
< 1} includes in-

dices on which a stochastic query is conducted, and a set
D = {t : h

h+max(0,Θt)
= 1} includes indices when there is

a deterministic query. The expected number of queries (i.e.,
expected labeling cost) is upper bounded by

E

[
|D|+

∑
t∈S

h

h+ Θt

]
.

Let Zt = 1 if a mistake occurs at the round t, i.e., ŷt 6= yt
after the true label is queried. We denoteM = {t : yt∆t ≤
0} as the set of mistake trials and letM = |M|, while UT =
{t : ZtQt = 1, t ∈ [T ]} as the set of update trials.
Theorem 2. Assume that {(xkt , ykt )}Tt=1 is a sequence of
instances for any task k (k ≤ K), where xkt ∈ Rd, ykt ∈
{±1}. CWMT learns from the queried labels {t : Qkt =
1, s.t. Qkt ∼ h

h+max(0,Θk
t )
}. For any µ ∈ Rd, it satisfies

E[M ] ≤
T∑
t=1

`t(p + qk) +
λ

4hε
log(1 +KT )

+
ε

h
E
[
(D(µ))2Tr

(
(AUT

+ Bk
UT

)−1
)]
,

(9)

where D(µ) = maxt ‖(pt + qkt )− hµ‖.

Proof. The proof is in the Supplementary Material1.
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Algorithm 2 ACWMT: Active Confidence Weighted Multi-
task Learning

1: Input: λ, ε > 0 and h > 0.
2: Output: pT , AT , qkT , Bk

T , k ∈ [K] .
3: Initialize: p0 = qk0 = 0,A0 = Bk

0 = I ∀k ∈ [K].
4: for t = 1, . . . , T do
5: for (local update): k = 1, . . . ,K in parallel do
6: Receive xkt and ŷkt = sign(µkt−1 · xkt ) ;
7: Compute Θk

t with Eq. (8);
8: if Θk

t ≤ 0 then (aggressive update)
9: Set QktZ

k
t = 1 and query the true label;

10: else (stochastic update)
11: Generate Qkt ∼ h

h+Θk
t

;

12: Query if Qkt = 1, let Zkt = 1 if ykt 6= ŷkt ;
13: end if
14: IfQktZ

k
t = 1, update Bk

t in Eq. (3), qkt in Eq. (4);
15: endfor
16: Reduce (global update): aggregate {Z1

t , . . . , Z
K
t }

17: Update At with Eq. (5) and pt with Eq. (6);
18: end for

Discussion: We can replace
∑T
t=1 `t(p + qk) with its loss

of the best model, infµ
∑T
t=1 `t(µ) where µ = p + qk,

then Eq. (9) becomes a relative mistake bound (Abernethy,
Bartlett, and Rakhlin 2007). It is observed that CWMT
learned on actively selected labels can achieve a comparable
mistake bound with the one learned on all labels in Eq. (7).
It demonstrates the efficacy of the proposed query strategy.

Adaptive Optimization We solve the active multitask
learning problem with adaptive optimization. The algorithm
maintains (Bk,qk) for each local memory and (A,p) for
the global memory. At round t, the learner receives an in-
put xkt and predicts its binary label ŷkt = sign(µkt−1 · xkt ).
Then its actual label ykt is revealed with a probability of

h
h+max(0,Θk

t )
, which yields a stochastic query or a determin-

istic query. In a stochastic query ( h
h+max(0,Θk

t )
< 1), update

is driven by mistake. If an error occurs (ŷkt 6= ykt ), the al-
gorithm updates the local memory in a recursive way; oth-
erwise, no action is performed and we proceed to the next
one with Bk

t = Bk
t−1 and qkt = qkt−1. We observe that a

deterministic query is issued when h
h+max(0,Θk

t )
= 1. In this

case, aggressive update is performed, that is, we update a
model even if no error occurs. After that, the global update
(p,A) is conducted via aggregating the update decisions
{Zi}Ki=1 from the local tasks. We summarize this algorithm
ACWMT, active confidence weighted multitask learning, in
Algorithm 2.

To further understand this algorithm, we compute under
what condition an update will be issued aggressively. An ag-
gressive update is issued when Θk

t ≤ 0, which yields

|∆k
t | ≤ θkt (a, b) =

1

4ε
(

akt
1 + akt /λ

+
bkt

1 + bkt /λ
).

If |∆k
t | is less than θkt (a, b), a deterministic query/update is

Table 1: Description of the data sets

Spam Email MHC-I EachMovie
#Tasks 4 12 30

#Sample 7068 18664 6000
#Dimesion 1458 400 1783

#MaxSample 4129 3793 200
#MinSample 710 415 200

conducted, while |∆k
t | is above θkt (a, b), a label is queried

with a probability less than 1. And the upper bound of
θkt (a, b) increases with a or b. Since 0 � At,Bt � I and
‖xt‖ ≤ 1, it is inferred that 0 ≤ akt , b

k
t ≤ 1. When akt , b

k
t =

0 with a minimal uncertainty, a deterministic query is issued
only if the input lies on the boundary (|∆k

t | ≤ θkt (a, b) = 0).
When akt , b

k
t = 1 with the largest value of uncertainty, this

implies that an aggressive query is issued whenever its mar-
gin |∆k

t | is less than θkt (a, b) = λ
2ε(λ+1) .

In the following analysis, we show the superiority of
ACWMT. Besides stochastic query trials S and determinis-
tic query trialsD, we denote V = {t : yt∆t > 0,Θt ≤ 0} as
the set of trials where there is an aggressive update without
predicted errors, and let V = |V|.
Theorem 3. Let {(xkt , ykt )}Tt=1 be an input-label pair se-
quence for any task k, k ∈ [K]. Following the setting in
Theorem 2, the proposed ACWMT satisfies

E[M ] ≤
T∑
t=1

`(µ; xkt , y
k
t ) +

λ

4hε
log(1 +KT )

+
ε

h
E
[
(D(µ))2Tr

(
(AUT

+ Bk
UT

)−1
)]
− E[V ].

The expected number of update is E[|D|+
∑
t∈S∩M

h
h+Θt

].

Proof. The proof is Supplementary Material1.

Discussion: It is observed that the error bound of ACWMT,
in expectation, is lower than that of the conservative update
algorithm in Theorem 2, due to the deduction of E[V ] from
the bound, where E[V ] is the expected number of the ag-
gressive update trials. This can be regarded as a theoreti-
cal support for our aggressive algorithm. Although the ag-
gressive strategy requires more updates in an early stage, it
helps reduce the predicted variance and accelerate the learn-
ing progress, which could reduce the error rate and queried
number when the model learns sufficient knowledge of data.

Experiments
We conduct the performance evaluation for the algorithms
on three real-world datasets. We begin with the introduction
of the experimental data and evaluation metrics. Then we
show and discuss the empirical results.

Experimental Datasets
We introduce three real-world datasets to evaluate the meth-
ods. Table 1 summarizes the statistic features of the datasets.
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Table 2: Mean and standard deviation of cumulative error rate (%), F1-measure (%) and queried number on the datasets

Algorithm Spam Email MHC-I EachMovie
Error Rate F1-measure Query Error Rate F1-measure Query Error Rate F1-measure Query

MTFL 13.40 (3.47) 88.39 (4..67) 7068 43.84 (5.98) 51.04 (7.40) 18664 27.51(12.25) 79.18 (12.87) 6000
TRML 16.21 (3.77) 86.02 (5.27) 7068 44.26 (6.05) 50.50 (7.36) 18664 26.58(11.82) 79.89 (12.49) 6000
OMTL 13.18 (7.65) 90.24 (4.75) 7068 38.13 (5.03) 54.73 (4.28) 18664 18.61 (7.29) 84.45 (8.64) 6000
COL 5.94 (1.67) 94.93 (1.93) 7068 41.46 (4.13) 50.89 (3.00) 18664 18.43 (6.75) 84.14 (8.93) 6000

OSMTL-e 5.22 (2.06) 95.67 (1.78) 7068 38.18 (4.95) 55.03 (4.09) 18664 19.24 (7.15) 83.18 (9.04) 6000
CWMT 4.90 (1.94) 95.93 (1.69) 7068 36.72 (4.87) 55.87 (3.09) 18664 17.98 (6.57) 84.73 (8.39) 6000

ALP 7.49 (0.34) 93.32 (2.30) 5530.8 (53.18) 42.64 (3.39) 50.05 (4.02) 13684.1 (86.19) 21.64 (6.98) 81.77 (8.96) 3905.3 (46.40)
ACWMT 4.89 (1.95) 95.94 (1.67) 3983.2 (31.23) 36.73 (3.66) 55.48 (4.14) 11388.5 (69.26) 17.97 (6.54) 84.78 (8.23) 3171.5 (29.09)

Figure 1: Cumulative error rate, F1-measure and queried number along the entire online learning process
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Spam Email2, maintained by Internet Content Filtering
Group, collects 7068 emails from mailboxes of 4 users (i.e.,
4 tasks). Each mail entry is represented by a word document
vector via the TF-IDF conversion technique. For each user, a
model is proposed to classify each incoming email into two
categories: legitimate or spam. Due to no time stamp on the
emails, the email order is shuffled into a random sequence.
MHC-I3, a biomarker dataset, contains 18664 peptide se-
quences from 12 MHC-I molecules (i.e., 12 tasks). Each
peptide sequence is converted to a 400 dimensional feature
vector (Li et al. 2011). We aim to classify whether a peptide
sequence is binder or non-binder for each MHC-I molecule.
EachMovie4 is a movie recommendation dataset. We ran-

2http://labs-repos.iit.demokritos.gr/skel/i-config/
3http://web.cs.iastate.edu/ honavar/ailab/
4http://goldberg.berkeley.edu/jester-data/

domly prioritize 6000 user-rating pairs where 30 users rate
exactly 200 movies each. The six possible ratings (i.e. [1, 6])
are converted into two classes, like or dislike, based on the
rating order. For each user (as a task), we randomly select
1783 users who viewed the same 200 movies and use their
ratings as the features of movie instances.

Evaluation Metrics
We evaluate the performance of the algorithms with three
measurements: 1) cumulative error rate, reflecting the pre-
diction accuracy of an online algorithm; 2) number of
queried labels, reflecting the label-efficiency of an algo-
rithm; and 3) F1-measure, the harmonic mean of precision
and recall, suitable to evaluate the performance on class-
imbalance data. For error rate and queried number, a small
value indicates better performance of a method. For F1-
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Figure 2: A comparison between ACWMT and ALP with respect to different queried ratios
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measure, a higher value indicates a better result. In order
to compare these algorithms fairly, we randomly shuffle the
ordering of samples for each dataset. We repeat each exper-
iment 10 times and calculate the average results.

Baseline and Parameter Setting
Our baselines cover three categories of MTL techniques:
1) two batch learning techniques: multitask feature learn-
ing (MTFL) (Argyriou, Evgeniou, and Pontil 2006) and
trace-norm regularized MTL (TRML) (Zhou, Chen, and Ye
2011); 2) three online learning algorithms: online MTL
(OMTL) (Saha et al. 2011), collaborative online MTL
(COL) (Li et al. 2014), and online smoothed MTL (OSMTL-
e) (Murugesan et al. 2016); and 3) one active online learning
method: active learning from peers (ALP) (Murugesan and
Carbonell 2017). To handle the online setting, we modify the
batch learning setting of MTFL and TRML by periodically
retraining online data after observing 100 samples. All pa-
rameters of the baselines are tuned according to their recom-
mended instructions. CWMT and ACWMT are the proposed
multitask algorithms in the fully-supervised setting and the
partially-labeled setting, respectively. For simplicity, we set
ε = λ = 100 to avoid overfitting. In the query method, we
set h = 0.1 for MHC-I and EachMovie, h = 1 for Spam-
Email.

Comparison Result
The experimental results are presented in Table 2. We also
show the evaluation measures with respect to the round of
online learning in Fig. 1. The improvement of our algorithms
over ALP is always significant over all datasets. This is con-
sistent with previous observations in online multitask learn-
ing: the second-order algorithms are generally better than
the first-order ones (Yang et al. 2015; Yang, Zhao, and Gao
2018). The reason is that the covariance matrix that encodes
the confidence of parameters can guide the direction and
magnitude of the parameter learning.

ACWMT always achieves a lower error rate with a
smaller number of queries. The possible reasons are three
folds. 1) The prediction variance is reduced by exploiting the
Gaussian distribution of parameter weights. 2) The labeling
cost is saved by the proposed adaptive-margin query. And
3) the aggressive updating strategy accelerates the learning
progress. These techniques speed up the convergence of this
method, so that the error rate and queried number can be re-
duced further when the model learns sufficient knowledge of

Table 3: Run-time (in seconds) for each algorithm

Algorithm Spam Email MHC-I EachMovie
TRML 73.55 361.42 391.22
MTFL 78.01 198.90 302.17
COL 1.86 6.35 31.01

OSMTL-e 1.36 4.33 11.43
ACWMT 11.49 11.45 17.92

data. It demonstrates both the computational efficiency and
label efficiency of these algorithms.

We observe that ACWMT achieves comparable accuracy
to CWMT with a small number of queries. The reason may
be due to the class-imbalance issue, where the training in-
stances from the minority class are much fewer than that
from the majority class. ACWMT can learn aggressively on
the minority class, while CWMT accesses all labels and the
majority class may dominate the predictive model, leading
to poor performance (Zhang, Yang, and Srinivasan 2016).

Sensitivity Analysis on Query Ratio
We study the impact of the parameter h. The algorithm with
a lower value of h will conduct a small number of queries.
Specifically, we set h to {10−4, 10−3, . . . , 1} and calculate
the averaged query ratio over 10 times of random shuffles.
The comparison result is shown in Fig. 2. We observe that
ACWMT achieves better accuracy consistently under differ-
ent ratios of queries. This is expected since ACWMT deter-
mines a query by leveraging the second-order information
of the prediction, which is more effective to capture the in-
formative instances than ALP that adopts first-order query
strategy.

Time Complexity
We study the time complexity of the proposed algorithm in
Table 3. We observe that the online methods run faster than
the two batch learning algorithms. This is obvious since on-
line models only learn on the current instance, while batch
models learn with a substantial amount of samples. In ad-
dition, we observe that ACWMT is relatively slower than
OSMTL-e. This is expected since ACWMT has to update
the covariance matrix of parameter weights. However, the
extra computational cost is worth it since the significant im-
provement has been achieved by considering the parameter
confidence.
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Conclusion
This work presents an online active learning method in
the multitask setting, where the learner performs local task
jointly with learning global knowledge of peer tasks. The in-
tuition in this paper is that learning efficacy can be improved
by accessing the knowledge of peer tasks. Our query strat-
egy is benefited from two aspects: 1) query decision is made
by consulting the local-global knowledge of multiple tasks;
and 2) query confidence depends on both the margin and the
variance of its prediction. Theoretical results show that our
method that runs on a fraction of informative labels achieves
a lower error bound than the fully-supervised counterparts.
Finally, the promising empirical results validate the effec-
tiveness of our methods on several real-world datasets.
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